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ABSTRACT 

 

We herein propose a novel method for removing irregularities of B-spline surfaces via smoothing 

circular highlight lines. A circular highlight line is defined as a set of points on a surface such that the 

distance between a circular light source and an extended surface normal to be zero. Circular 

highlight lines allow us to capture the surface fairness in all directions, whereas conventional method, 

which uses a family of parallel straight lines for light sources, can capture the surface irregularity only 

in one direction. This method of correcting surface irregularities through circular highlight lines is 

intuitive and allows non-skilled persons to generate surfaces that can satisfy requirements imposed 

by downstream applications. Nonlinear equations that relate the difference between the circular 

highlight lines of the current surface and the target curves in the parameter space are formulated in 

terms of control points of the surface to be modified. The nonlinear governing equations are solved 

by Newton's method. The effectiveness of these algorithms is demonstrated through examples. 
 

Keywords: circular highlight lines, surface fairing, surface interrogation, B-spline surface. 

 

1. INTRODUCTION 

Isophotes, reflection lines, and highlight lines are first-order interrogation methods that are used in the automotive 

industry to assess the fairness of a surface [2],[5],[9],[10],[12],[14]. Isophotes are curves of constant light intensity on a 

surface, created by a point light source located at infinity with the direction specified by the user. These curves can be 

used for detecting surface irregularities [12],[14]. If the surface is MC  continuous, then the isophote line will be 1MC −  

continuous. Reflection lines [10] simulate the mirror images of a family of radiating parallel straight lines on a smooth 

surface viewed from a fixed point. In this method, deviations of the surface from a smooth shape can be detected by 

irregularities of the reflection lines. These surface deviations are corrected by modifying the original surface so that the 

new surface has reflection lines without any irregularities. Beier and Chen [2] introduced a simplified reflection line 

model called highlight lines that are viewer-independent. In other words, in the computation of highlight lines, 

viewpoint location is not necessary, which is in contrast to the reflection lines. Recently, Yong et al. [16] developed an 

interactive method that generates highlight lines dynamically on a locally deforming NURBS surface that uses a Taylor 

expansion technique, instead of time consuming tracing processes.  

Elber [6] introduced another interrogation tool called reflection ovals that consider the reflections of oval curves, which 

are not straight lines. Maekawa et al. [11] developed a novel method for surface interrogation called circular highlight 

lines and circular reflection lines. Unlike conventional first-order surface interrogation methods, such as reflection lines 

and highlight lines, in which a family of parallel straight lines is used for the light sources, circular highlight lines 

employ concentric circle light sources to evaluate the surface fairness. In this way, the surface fairness in all directions 

can be captured, whereas conventional methods can only capture the fairness in one direction in a single computation.  

Chen et al. [4] presented a method for updating the control points of the NURBS surface to a desired shape 

automatically by specifying the shape of the highlight lines. A system of nonlinear equations is formulated to relate 

NURBS control points and reference points on the highlight line. However, this method has several limitations. First, 

the computational errors depend on the magnitude of the highlight line modification and the curvature of the surface, 

because the problem formulation relies on the linear approximation through a first-order Taylor expansion. Second, 

the method works well only for highlight lines that are predominantly oriented in the u and v directions, and not for 

diagonally oriented highlight lines or highlight lines with loops. In addition, practically, it is very difficult to predefine 

highlight lines in a 3D space that lie on an unknown surface. 
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Zhang and Cheng [17] studied a method for removing local irregularities of NURBS surface patches by modifying 

highlight lines for real-time interactive design. This method allows a designer to simply click a mouse button at the 

endpoints of the irregular portions of the highlight lines on the surface to make the surface fair. The nonlinear 

governing equations are linearized by predicting the positions and the first partial derivatives of the surface along the 

target highlight lines. Consequently, the magnitude of the highlight line movement will be small and, as a result, the 

method requires several user interactions to modify the surface. 

In the present paper, instead of using conventional highlight lines, we employ circular highlight lines to remove 

irregularities of B-spline surfaces. As depicted in Fig. 1, in some cases, surface irregularities are more clearly detected 

by circular highlight lines than by conventional highlight lines. The proposed method follows the concept proposed by 

Zhang and Cheng [17] whereby the user interactively inputs the two endpoints of the irregular portions of each 

highlight line by clicking the mouse. However, in the present study, we set the target curves in the parameter space of 

the surface, instead of 3D space, which makes the formulation much simpler. Furthermore, we solve the nonlinear 

equations using Newton’s method, allowing us to modify surfaces that have large irregularities with a small number of 
user interactions. 

The present paper is organized as follows. Section 2 reviews the circular highlight line model. In Section 3, the 

governing equations along with the solution methodologies are introduced. Section 4 presents illustrative examples. 

Finally, Section 5 concludes the paper. 

 

 
               (a)                                             (b)                                              (c)                                              (d) 

Fig. 1: (a) Surface with small local irregularities those are recognizable by circular highlight lines. In this figure,(b), (c), 

and (d) show that it is difficult to detect surface irregularities using conventional highlight lines. 

 

2. CIRCULAR HIGHLIGHT LINE MODEL 

The circular highlight line was introduced by Maekawa et al. [11] and is defined as a set of points on a surface such 

that the distance between a circular light source and an extended surface normal to the highlight lines is zero, as shown 

in Fig. 2(a). A parametric representation of the circular light source is given by 

( ) (cos sin )Rθ θ θ= + +L A n b                                                                 (2.1) 

where A and R are the center point and the radius of the circular light source, respectively. The unit vectors n and b  

lie in a plane that contains the circular light and are orthogonal to each other. They form a frame (or trihedron) 

together with a unit vector t , such that t = n×b , and hence t  is perpendicular to the plane that contains the circular 

light. We also assume that the surface of interest is a parametric B-spline surface defined by a topologically rectangular 

set of control points , 0 , 0ij i M j N≤ ≤ ≤ ≤R   and two knot vectors 0 1( , , , )M Ku u u +=U � and 0 1( , , , )N Lv v v +=V �  

associated with each parameter u and v. The corresponding B-spline surface is given by 

 , ,

0 0

( , ) ( ) ( )
M N

ij i K j L

i j

u v N u N v

= =

=∑∑r R ,                                                             (2.2) 

where , ( )i KN u and , ( )j LN v  are the K-th order and L-th order B-spline basis functions, respectively. We assume that the 

parameterization is well conditioned. Now let us define an extended surface normal vector E at a surface point Q  as 

( )τ τ+E = Q N ,                                                                             (2.3) 

where τ  is a parameter and N is the unit surface normal vector at Q 

( , ) ( , )
( , )

| ( , ) ( , ) |
u v

u v

u v u v
u v

u v u v

×

×

r    r  
N   =

r    r  
.                                                              (2.4) 

As illustrated in Fig. 2 (b), the distance vector d  directed from the line ( )τE  to the circle ( )θL  is given by 

(cos sin ) ( ) R θ θ τ= + + − +d A n b Q N .                                                    (2.5) 
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(a)                                                               (b) 

Fig. 2: (a) Definition of circular highlight line. (b) Definition of distance vector. 

 

In addition, the squared distance function D is defined as 
2

( , ) (   (cos sin )) ( )  D Rτ θ θ θ τ= ⋅ = + + − +d d A n b Q N .                                  (2.6) 

To compute the minimum distance, we need to evaluate the stationary points of the squared distance function 

which satisfy the following two equations [10]: 

D ( , )=D ( , )=0τ θτ θ τ θ .                                                                        (2.7) 

Using Eqn. (2.6), these two equations can be rewritten as follows: 

( ) (cos sin ) ,

( ) (cos sin ) 0 ,

R θ θ τ

τ θ θ

− ⋅ + ⋅ − ⋅ =

− − ⋅ − =

A Q N n N b N

A Q N b n
                                                   (2.8) 

or in matrix form as 

cos ( )
.

sin 0( ) ( )

R R θ τ

θτ τ

    ⋅ ⋅ − ⋅     =    − − ⋅ − ⋅         

n N b N A -Q N

A Q N b N A+Q n
                                      (2.9) 

 

Using Cramer’s rule, we obtain 

( ( ) )( ) ( ( ) )( )
cos , sin

Det Det

τ τ τ τ
θ θ

− ⋅ − ⋅ − ⋅ − ⋅
= =

A -Q N N A+Q n A -Q N N A+Q b
,              (2.10) 

whereDet  is the determinant of the matrix of Eqn. (2.9) given by, 

( )( ) ( )( )Det R Rτ τ= ⋅ + − ⋅ + ⋅ + − ⋅n N Q N A n b N Q N A b .                              (2.11) 

If we denote 

, , , ,  = ,α β γ δ ε− = ⋅ = ⋅ = ⋅ ⋅ = ⋅B = A Q n N b N B n B b B N ,                           (2.12) 

Eqn. (2.11) becomes 

( ) ( )Det R Rα ατ γ β βτ δ= − + − .                                                       (2.13) 

Using the above notations Eqn. (2.12) and substituting Eqn. (2.10) into 
2 2 cos sin 1 θ θ+ = ,                                                                (2.14) 

we obtain a quartic equation in τ  
4 3 2 1

4 3 2 1 0+ + 0 c c c c cτ τ τ τ+ + = ,                                                      (2.15) 

where 

( )

2 2
4

2 2
3

2 2 2 2 2 2 2 2 2
2

2 2 2 2 2 2
1

2 2 2 2 2
0

 ,

 2(( ) ( ) ),

 ( ) 4 ( ) ( ) ( ) ,

 2 ( ) ( ) ( )( ) ,

 ( ) ( ) .

c

c

c R

c R

c R

α β

αγ βδ α β ε

α β ε ε αγ βδ γ δ α β

αγ βδ ε γ δ ε α β αγ βδ

γ δ ε αγ βδ

= +

= − + + +

= + + + + + − +

= − + + + − + +

= + − +

                      (2.16) 
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An algorithm for solving the quartic equation is given by Hacke [7]. In summary, given a point Q  on a parametric 

surface ( ,  )u vr , we can compute τ  by solving the quartic equation, Eqn. (2.15), and then cosθ  and sinθ  from Eqn. 

(2.10), provided that Det  is not zero. Finally, the distance vector d  is obtained from Eqn. (2.5). There are cases 

when Det  becomes zero, and these are discussed in [11]. The tangent vector of the circle is obtained by 

differentiating Eqn. (2.1) with respect to θ  yielding 

( ) ( sin cos )Rθ θ θ= − +L n b� .                                                                 (2.17) 

Since, by definition, 0⋅ =d N  and 0⋅ =d L� (see Fig. 2(b)), and since we have ( ) 0× ⋅ =N L N�  and ( ) 0× ⋅ =N L L�   

from the definition of the triple scalar product, we can conclude that the distance vector d  is parallel to ×N L� . 

A signed distance function sd  [2] can be defined by taking the dot product with the unit vector 
×

×

N L

N L

�

�
 as follows: 

( )
( , ) ( )

( , ) (   (cos sin )) ( ( , ))  
( , ) ( )

s

u v
d u v R u v

u v

θ
θ θ τ

θ

×
= + + − + ⋅

×

N L
A n b Q N

N L

�

�
.                              (2.18) 

Circular highlight lines are points on a surface such that the signed distance function vanishes. If we construct a signed 

distance surface ( ,  ,  ( ,  ))su v d u v  by evaluating the discrete values of sd  at the grid points in the uv  parameter space, 

we can easily compute the pre-image of the circular highlight lines using the contour algorithm [3], where curves of 

zero height are computed through surface-plane intersection problems. Although the accuracy of the contouring 

algorithm depends on the choice of grid resolution, we employed the contouring algorithm for its simplicity and speed. 

A more realistic light source can be realized by replacing the circle with a torus of given radius ρ , which is obtained by 

simply finding the points satisfying sd ρ=  and sd ρ= − . These two curves are called circular highlight band boundary 

curves and form a circular highlight band [2],[11]. 

 

3. FORMULATION OF GOVERNING EQUATIONS 

3.1 Basic Concept 

The fairing process starts with finding local irregularities of the surface by observing the behavior of the circular 

highlight lines. While Zhang and Cheng [17] determined the target curve in 3D space, we set the target curve in the 

parameter space. This is possible, as we assuming that the parameterization is well conditioned. The user first inputs 

interactively the two endpoints of the irregular portions of the pre-images of each circular highlight line by clicking the 

mouse, as shown in Fig. 3. Then, we generate a smooth target curve that interpolates the positions and the slopes of 

the two endpoints using a cubic Hermite curve (see Fig. 3(d)). The control points of the surface to be modified will 

then be selected automatically based on the locations of the endpoints. Finally, we modify the control points of the 

surface by solving a set of nonlinear equations using Newton’s method. 

 

3.2 Cubic Hermite Interpolation 

The target curve is determined by interpolating the two endpoints and their tangent vectors of the irregular portion for 

each highlight line in the parameter space, as shown in Fig. 4(a). Let us denote the two endpoints and their tangent 

vectors of the i-th pre-image of the circular highlight line by 1
ie , 2

ie , 1it and 
2
it . The corresponding cubic Hermite 

curve ( )i th  can then be obtained as follows: 

1 1 2 2
0 1 2 3( ) ( ) ( ) ( ) ( ) , 1,2, , ,i i i i it H t H t H t H t i l= + + + =h e t e t �                                    (3.1) 

where 
3 2 3 2 3 2 3 2

0 1 2 3( ) 2 3 1, ( ) 2 3 , ( ) 2 , ( ) ,H t t t H t t t H t t t t H t t t= − + = − + = − + = −                 (3.2) 

 

are cubic Hermite polynomials. The magnitudes of the two tangent vectors are determined empirically as follows: 

1 2 1 2
i i i i= = −t t e e ,                                                                (3.3) 

which is depicted in Fig. 4(a). The directions of the tangent vectors at the two endpoints are estimated by taking the 

first derivatives of the cubic Bézier curves interpolating the four points of the regular portions of the pre-images of the 

circular highlight lines (see Fig. 4(b)). 
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Once all of the endpoints are selected by the user, a bounding box consisting of knots that encloses these endpoints in 

the parameter space is generated, as shown in Fig. 5. All of the control points that affect this bounding box will be 

selected as the control points to be modified. 

 
                 (a)                                   (b)                                    (c)                                     (d)  

Fig. 3: (a) The user selects one of the endpoints of the irregular portion of the i-th pre-image of the circular highlight 

line. (b) The user selects the other endpoint of the irregular portion of the i-th pre-image of circular highlight line. 

(c) Two endpoints of all of the pre-images of the circular highlight lines are selected. (d) Target curves (dashed lines) 

are computed using cubic Hermite interpolation. 

 

 
                   (a)                                                                        (b)                                                     (c) 

Fig. 4: Cubic Hermite interpolation. (a) Magnitude of the tangent vector. (b) Direction of the tangent vector.(c) 

Bounding box that encloses the irregular region (grid points represent knots). 

 

3.3 Solution Methodology 

We take ( )n i  sampling points from each interpolated cubic Hermite curve as follows: 

 -  1
( )  ( , ),    , 1,2, , , 1,2, , ( )

( ) - 1
i j ij ij j

j
t u v t i l j n i

n i
= = = =h � � ,                                 (3.4) 

Where ( )n i  is given by 

1 2

( ) = 2+ .
i i

n i
s

 − 
 
 
  

e e
                                                                (3.5) 

The bracket [ ]x  in Eqn. (3.5) is the Gauss symbol, and provides the greatest integer that is less than or equal to x , 

ands  is a constant. In our implementation, we used 50s = . 

Let 1 2( , , )mr r r=R �  be the selected components of the control points of the input B-spline surface that will be 

modified through the fairing process. Now let us assume that signed distance function ( , )s ij ijd u v  (Eqn. (2.18)) at the j-

th sampling point of the i-th cubic Hermite curve is related by R through a nonlinear function 1 2( ,  ,  . . . ,  )ij mF r r r  

as follows:  

1 2( ,  ,  . . . ,  )  ( , ), 1, 2, , , 1, 2, , ( ).ij m s ij ijF r r r d u v i l j n i= = =� �                        (3.6) 

This system of nonlinear equations with unknowns 
1 2,  ,  , mr r r� can be solved by Newton’s method. At each Newton 

iteration, we want to find small displacements of the selected components of the control points of the input B-spline 

surface 
1 2( ,  ,  ,  ) ,mr r rΔ = Δ Δ Δr � such that 

1 1 2 2( ,  ,  . . . ,  )  0, 1, 2, , , 1, 2, , ( ).ij m mF r r r r r r i l j n i+ Δ + Δ + Δ = = =� �                  (3.7) 
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In other words, we move the control points of the surface so that the signed distance functions ( , )s ij ijd u v at ( , )ij iju v  

vanish for 1,2, ,i l= �  and 1,2, , ( ),j n i= �  which means that these points are the pre-images of the circular highlight 

lines. Now, if we apply a Taylor expansion to Eqn. (3.7) and neglect the higher-order terms, which are sufficiently 

small, we have 

1 1 2 2

1 2 1 2
1 2

1 2
1 2

   ( ,  ,  . . . ,  ) 

( ,  ,  . . . ,  )

( , )

0,

ij m m

ij ij ij
ij m m

m

ij ij ij
s ij ij m

m

F r r r r r r

F F F
F r r r r r r

r r r

F F F
d u v r r r

r r r

+ Δ + Δ + Δ

∂ ∂ ∂
= + Δ + Δ + + Δ

∂ ∂ ∂

∂ ∂ ∂
= + Δ + Δ + + Δ

∂ ∂ ∂

=

�

�

                            (3.8) 

for 1,2, ,i l= �  and 1,2, , ( ),j n i= �  which results in a matrix: 

11 11 11

1 2

1

n(1) n(1) n(1)
2

1 2

n( ) n( ) n( )

1 2

m

l l l

m

m

l l l l l l

m

F F F

r r r

r
F F F

r
r r r

r

F F F

r r r

 ∂ ∂ ∂    ∂ ∂ ∂      Δ  ∂ ∂ ∂   Δ  ∂ ∂ ∂        Δ      ∂ ∂ ∂     ∂ ∂ ∂    

�

� � �

�

�
� � �

� � �

�

11 11

(1) (1)

n( ) n( )

( , )

( , )
 .

( , )

s

s ln ln

s l l l l

d u v

d u v

d u v

                  = −                         

�

�

�

                           (3.9) 

The elements of the Jacobian matrix are evaluated numerically. For example, the elements of the k-th column of the 

Jacobian matrix can be evaluated as follows: 

1. Move only kr  by small amount of wΔ . paper. 

2. Compute functions 
ij 1 k mF (r , . . .,r , ,r )� and 

ij 1 k mF (r , . . .,r w, ,r )+ Δ � at ( , )ij iju v for 1,2, ,i l= �  and 

1,2, , ( ).j n i= �  

3. The partial derivatives are computed as follows: 

11 1 1 211

1 (1) 1 (1) 1 1 (1) 1 2

( ) ( ) 1 ( ) 1 2

( , ,  ,  ,  ) - ( ,  , ,  )
   

( , ,  ,  ,  ) - ( ,  , ,  )
   

( , ,  ,  ,  ) - ( ,  , ,  )
   

k m ij m

k

n n k m n m

k

ln l ln l k m ln l m

k

F r r w r F r r rF

r w

F F r r w r F r r r

r w

F F r r w r F r r r

r w

+ Δ∂
=

∂ Δ

∂ + Δ
=

∂ Δ

∂ + Δ
=

∂ Δ

� � �

�

� � �

�

� �

                           (3.10) 

We repeat steps 1~3 for 1,2, , .k m= �  We used -410wΔ =  for all of the computations in the present. 

The size of the Jacobian matrix in Eqn. (3.9) is ( )1
( )

l

i
n i m

=
×∑ , where l is the number of selected circular highlight 

lines, ( )n i  is the number of sampling points on the i-th cubic Hermite curve, and m is the number of components of 

the selected control points of the input B-spline surface that is to be modified through the fairing process. We can 

select l  and ( )n i , such that the ( )1
( )

l

i
n i m

=
×∑  linear system is always an overdetermined system. The 

overdetermined linear system can be solved in a least squares sense. We employed the Singular Value Decomposition 

(SVD) [1] for solving the linear system. In our implementation, we set the singular values to zero if they are smaller 

than max 0.05w × , where maxw  is the maximum singular value of the matrix. The correction vector at each iteration is 

added to the current solution vector as follows: 
( 1) ( )    p p+ = + ΔR R r ,                                                                (3.11) 
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where the superscripts (p+1) and (p) denote the p+1-th and p-th iterations, respectively. Since the corrections are 

based on a first-order Taylor approximation, the regular Newton’s method may not be sufficient for a very complex 

surface. If the vector norm of the correction vector is large, this is an indication that the problem is highly nonlinear 

and may produce a divergent iteration. Therefore, we assume that the iteration is converging if 
( 1) ( )
max max| | | |p p

s sd d+ < , and ( 1) ( )| | | |p p
s avg s avgd d+ < ,                                                 (3.12) 

where subscripts max and avg denote the maximum and average magnitudes of the signed distance function, 

respectively. If this condition is violated, we employ a step correction procedure: 
( 1) ( )    p p µ+ = + ΔR R r ,                                                               (3.13) 

where 0 1µ< ≤ . If 1µ = , then the equation reduces to the regular Newton’s method Eqn(3.11), whereas 

if 1µ < ,  the rate of convergence will be less than quadratic. We used 0.1µ =  in our implementation. We 

repeat these steps until 
( 1) ( )

( )

| | | |p p
s avg s avg

p

s
avg

d d

d

ε

+ −
< .                                                               (3.14) 

4. EXAMPLES 

In this section, we demonstrate how the proposed algorithms work for fairing B-spline surfaces. The surfaces in the 

examples include a surface with mainly elliptic points (positive Gaussian curvature), a surface with mainly hyperbolic 

points (negative Gaussian curvature), and a real engineering surface, i.e., an automotive roof panel. All of these 

examples were executed on a PC having a Pentium® IV 2.4 GHz processor and 512 MB of memory. We set the 

tolerance ε  for the Newton’s method to 410ε −=  in all examples.  

The first example, shown in Fig. 5, is a dome-like bi-cubic B-spline surface with 15 15×   control points, defined on 

clamped uniform knots, consisting mainly of elliptic points. Fig. 5(a) shows the B-spline surface with circular highlight 

lines, and Fig. 5(b) shows the pre-image of the circular highlight lines with endpoints bounding the local irregularities. 

Fig. 5(c), 5(d), 5(e), and 5(f) show the faired surface and its pre-images of the circular highlight lines after the first and 

second fairings. Tab. 1 lists all of the computational results, including the number of fairing processes, the number of 

light sources used in the computation, the number of iterations in Newton’s method, the size of the Jacobian matrix, 

and the computational time in seconds. The computation time for user interactions, i.e., for selecting endpoints, is not 

included in all of the examples.  

The second example is a saddle-like surface consisting of mainly hyperbolic points, as shown in Fig 6, and is expressed 

by a bi-cubic B-spline surface with 21 20×  control points defined on clamped uniform knots. The computational 

results are presented in Tab. 1.  

The third example is an automotive roof panel expressed by a bi-cubic B-spline surface with 21 22×  control points 

defined on clamped uniform knots (see Fig. 7).  

 

 

Tab. 1: Computational results of three examples. 

Model Faring  # of light sources # of iterations Size of matrix Time(sec) 

Dome-like 

surface 

1st fairing  

2nd fairing 

12 

8 

5 

8 

192×36 
140×30 

0.95 

1.12 

Saddle-like 

surface 

1st fairing 

2nd fairing 

3rd fairing 

11 

5 

7 

4 

8 

7 

460×165 
120×54 
94×27 

6.32 

1.48 

0.47 

Automotive 

roof panel 

1st fairing 

2nd fairing 

3rd fairing 

4th fairing 

5th fairing 

18 

15 

19 

9 

16 

6 

4 

5 

7 

4 

273×108 
202×72 
249×60 
143×24 
273×60 

5.68 

1.56 

2.21 

0.77 

1.50 
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                 (a)                                                                    (c)                                                                   (e) 

 

 
                 (b)                                                                    (d)                                                                  (f) 

 

Fig. 5: (a) Circular highlight lines on a bi-cubic B-spline surface, consisting of mainly elliptic points, with local 

irregularities. (b) Pre-image of the circular highlight lines of surface (a) with endpoints bounding the local irregularities. 

(c) Faired surface after one fairing process. (d) Pre-image of the circular highlight lines of surface (c). (e) Faired 

surface after 2nd fairing process. (f) Pre-image of the circular highlight line of surface (e). 

 

 
                         (a)                                                          (c)                                                              (e) 

 

                                                   
                         (b)                                                          (d)                                                              (f) 

 

Fig. 6: (a) Circular highlight lines on a saddle-like bi-cubic B-spline surface, consisting of mainly hyperbolic points, with 

local irregularities. (b) Pre-image of the circular highlight lines of surface (a) with endpoints bounding the local 

irregularities. (c) Faired surface after one fairing process. (d) Pre-image of circular highlight lines of surface (c). (e) 

Faired surface after 3rd fairing process. (f) Pre-image of circular highlight lines of surface (e). 
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                 (a)                                                                    (c)                                                              (e) 

 

                                                        
                 (b)                                                                  (d)                                                                (f) 

 

Fig. 7: (a) Automotive roof panel with local irregularities, which is expressed by a bi-cubic B-spline surface consisting 

of 462 control points. (b) Pre-image of the circular highlight lines of surface (a) with endpoints bounding the local 

irregularities. (c) Faired surface after the first fairing process. (d) Pre-image of the circular highlight lines of surface (c). 

(e) Faired surface after the 5th fairing process. (f) Pre-image of the circular highlight lines of surface (e). 

 

 
                 (a)                                                                    (c)                                                                   (e) 

 
                 (b)                                                                    (d)                                                                   (f) 

 

Fig. 8: (a) Surface with large irregularities. (b) Pre-images of circular highlight lines of surface (a). (c) Surface after the 

10th fairing. (d) Pre-images of the circular highlight lines of surface (c). (e) Control polygon of surface (a). (f) Control 

polygon of the surface after the 10th fairing. 
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The proposed algorithm has some limitations. If the surface irregularities are located on the boundary of the surface, 

we may not be able to provide good target lines. For the case in which the surface irregularities are too large, as shown 

in Fig. 8(a) and 8(b), even if we are able to remove the irregularities of the pre-images of the circular highlight lines, as 

depicted in (d), the irregularities of the surface are not necessarily removed, even after the 10th fairing, as shown in 

8(c). Fig. 8(e) and 8(f) show the control nets of the B-spline of the surface before and after the fairing, respectively. 

 

5. CONCLUSIONS 

We have introduced a novel interactive method to modify irregularities of B-spline surfaces via smoothing of circular 

highlight lines. The newly developed method is intuitive and allows non-skilled persons to generate surfaces that can 

satisfy the requirements imposed by the downstream applications. The method is demonstrated through several 

examples to be robust and effective for real-time interactive design. 
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