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ABSTRACT

Recently a periodic surface (PS) model for computer aided nano design (CAND) was proposed.
This implicit surface model can parametrically create Euclidean and hyperbolic geometries at
atomic, molecular, and mesoscopic scales while supporting symmetric tiling and crystal packing. In
this paper, loci surface reconstruction from crystals is studied based on a generalized PS model.
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1. INTRODUCTION

Computer-aided nano-design (CAND) is an extension of computer-based engineering design traditionally at bulk scales
to nano scales. Enabling efficient structural descriptions is one of the key research issues in CAND. Traditional
boundary-based parametric solid modeling methods do not support efficient construction of complex and dynamic
nano-scale geometries due to some special characteristics at the low level. For instance, there are no clear-cut
boundaries of atoms in a molecule. The Heisenberg uncertainty principle indicates the impossibility of simultaneously
specifying the precise momentum and position of a particle at the quantum level. The volume packing of different
atoms with clouds of correlated electrons is the central design theme at the atomic scale. Non-deterministic geometries
and topologies are the manifestations of thermodynamic and kinetic properties at the molecular scale.

Traditional molecular visualization methods such as models of space-filled, wireframe, stick, ball-and-stick, ribbon and
solvent-accessible surfaces do not support the parametric construction and modification of molecular structures.
Parametric modeling mechanisms for particle aggregates at the molecular scale are needed to support rapid
construction and optimization of geometries. At the meso scale, super-porous structures with high surface-volume ratios
also need effective geometric descriptions. Providing nano engineers and scientists efficient and easy-to-use tools to
create geometry conformation that is reasonably close to true minimum energy is highly desirable in material design.

With the observation that hyperbolic surfaces ubiquitously exist in nature and periodic features are common in
condensed materials, we recently proposed an implicit surface modeling approach, periodic surface (herein referred to
as PS), to represent geometric structures in nano scales [1, 2]. Periodic surfaces are either loci or foci. Loci surfaces are
fictional continuous surfaces that pass through discrete particles in 3D space, whereas foci surfaces can be looked as
isosurfaces of potential or density in which discrete particles are enclosed. The surface model allows for parametric
construction from atomic scale to meso scale. In this paper, loci surface reconstruction for reverse engineering is
studied. The PS model is generalized with both geometric and polynomial descriptions. An incremental searching
algorithm is developed to reconstruct loci surfaces from crystals. In the remainder of the paper, Section 2 briefly
reviews the related work in implicit surfaces and molecular surfaces. Section 3 generalizes the PS model to allow for the
intuitive geometric interpretation of periodic basis vectors. Section 4 derives transformation properties of the PS model,
which enable interactive manipulation of the implicit surfaces. Section 5 describes the incremental searching algorithm,
presents several examples, and proposes two evaluation metrics for the quality of reconstructed surfaces.

2. BACKGROUND AND RELATED WORK

2.1 Implicit Surface

Implicit surfaces [3] are not as widely used as parametric surfaces in an interactive modeling environment, largely due
to the lack of intuitive shape manipulation and control. Yet, implicit surface modeling has some advantages. For
example, ray tracing is straightforward, and Boolean operations are closed. Research in implicit surface modeling
includes the “blobby model” based on Gaussian function [4, 5], and polynomials [6]. Topics such as implicitization [7,
8], blending [9, 10], interpolation [11], control [12, 13], curvature formulation [14], as well as polygonization [15, 16]
and direct ray tracing [17] have been studied.
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2.2 Molecular Surface Modeling

For visualization purposes, there has been some research on surface modeling of molecular structures [18]. Lee and
Richards [19] first introduced a solvent-accessible surface, the locus of a probe rolling over Van der Waals surface, to
represent boundary of molecules. Connolly [20] presented an analytical method to calculate the surface. Recently,
Carson [21] represented molecular surfaces with the B-spline wavelet. Edelsbrunner [22] described molecules with
implicit-form skin surfaces. Bajaj et al. [23] represented solvent accessible surface by NURBS (non-uniform rational B-
spline). Kim et al. [24] constructed NURBS molecular surfaces by the aid of Euclidean Voronoi diagrams. These
research efforts concentrate on molecular visualization, whereas the construction support of molecular structures for
design purposes is not considered.

2.3 Periodic Surface
We recently proposed a PS model to construct nano-scale geometries. It has the implicit form

wix) = ZAk cos[2n(hy )[4, +p,]=C (1)
T

where r is the location vector in Euclidean space E®, h, is the k" lattice vector in reciprocal space, A, is the
magnitude factor, /, is the wavelength of periods, p, is the phase shift, and C is a constant. Specific periodic structures

can be modeled based on this form. The periodic surface model can approximate triply periodic minimal surfaces
(TPMSs) very well, which have been reported from atomic to meso scales. Compared to the parametric TPMS
representation known as Weierstrass formula, PS models have a much simpler form and are easier to compute.

A periodic surface is specified by a periodic vector (A,H,P,A) in a multi-dimensional configuration and phase space,
where A=[A], H=[h ], P=[p], and A=[)] are concatenations of magnitudes, reciprocal lattice vectors,

phases, and period lengths, respectively. Increasing the dimension of the periodic vector, i.e., the number of control
parameters, gives more degrees of freedom to model complex geometries. Fig. 1 lists some examples of PS models
within one volumetric unit, including TPMS structures, such as P-, D-, G-, and I-WP cubic morphologies which are
frequently referred to in chemistry literature. Besides the cubic phase, other mesophase structures such as spherical
micelles, lamellar, rod alike hexagonal phases can also be modeled. The surfaces inherently satisfy periodic boundary
conditions. Each surface divides the 3D space into two congruent labyrinth subspaces, which have the opposite + and
— signs if the surface is w(r) = 0.

P

I-WP

Lamellar

"\

Fig. 1: Periodic surface models of cubic phase and mesophase structures [2].

3. GENERALIZED PERIODIC SURFACE MODEL
In this paper, the PS model is generalized with geometric and polynomial descriptions. A periodic surface is defined as

L M
y(r)= Z Z,uhn COS(Q}TKI (pl - r)) =0 (2)
1=1 m=1

where «, is the scale parameter, p,, =|a,,,b,,,c,,,6,,]" is a basis vector, such as one of

1 m?Ym>“m>Ym

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 437-447



439

ofrfojoprfrjojryr =140 j1r -1
ofojrjofrjopryry-1y0 1 jJ-1y1

{eo,el,ez,e3,e4,e5,e6,e7,eg,eg,elo,en,elz,...}: olololilolilililo 1t toili 11 I 3)
LT rrgajrjr g1 1 Jr jt

which represents a basis plane in the projective 3-space P*, r = [z,y,z,w]" is the location vector with homogeneous

coordinates, and x, is the periodic moment. Each basis vector represents a basis plane that is a 2D subspace in P?.

Corresponding to a basis plane p,,, d,, = pl.r=p’ r/||pm|| is the projective distance between the origin and the

projective subspace where r resides in. The projective distance is negative when the normal direction of the subspace
is towards the origin, otherwise it is positive. We assume w =1 throughout this paper if w is not explicitly specified. It
is also assumed that the scale parameters are natural integers (Kl € N). The degree of y(r) in Eqn. (2) is defined as

deg(y(r)) = |{ m}|, where |4] is the cardinality of set A. The scale of y(r) is defined as sca(y(r)) ::|{zcl}|. This

generalization allows for intuitive geometric interpretation of the periodic basis vectors and enables interactive
manipulation such as affine transformations with homogeneous coordinates in P? .

If mapped to a density space s =|s " where s, = cos(2z(p” -r)), w(s) can be represented in a polynomial

l,...,sM]

form, known as the Chebyshev polynomial,
L M

wis)= DD 1, Te(s,)  (sa] <D (4)

1
=1 m=1
where T, (s) = COS(K cos ™ s) In a Hilbert space, a vector space with an inner product, the basis functions 7,’s are
orthogonal to each other with respect to density in the normalized domain, with the inner product defined as
- 0 (1 #7)
<Ti,Tj> = j T(s)T(s)ds =7  (i=j=0) (5)
1

Vi-s 7)2 (i=j=0)

where both i and j are natural numbers (i, j € N'). Orthonormal bases are particularly helpful in surface reconstruction.

The periodic moments are determined by the projection

Two periodic surfaces y,(r) and y,(r) are called orthogonal if there exists a domain D = [z,Z]x[y,y]x[z,Z]x1 < R*

such that <1//1,1//2> = JI w, (t)w,(r)dr =0.

s)ds  (j#0) (6)

Lemma 1. If a surface y(r) in Eq. (2) with the basis vectors {p,,} and the scale parameters {x,} is scaled to y'(r)
with the new scale parameters {s«,}, and if there are no such basis vectors p,, ,p,, €{p, }(m, #m,) that satisfy

kP, =skp, forsome x, x e {x,} , then y(r) is orthogonal to '(r).

St i ) x 0, s} x B} % 2)

Proof. (y,y'"y = 2 KD, =5KD,,, . Thus, if there are no basis vectors
0 (i ) (0,1~ s} < (0,1} = 2)
P, Py, €{p,}(m, #m,) thatsatisty xp, =sxp, ,then {x}x{p,}{sx}x{p,}=2 o

Remark. If a periodic surface is scaled up or down, it is orthogonal to the original one if no common basis vectors at
the same scales are found between the two.
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4. TRANSFORMATION

As opposed to general implicit surfaces, transformations of periodic surfaces are more intuitive. Basis vectors play a
central role here. Therefore, they provide users the handle for shape control and interactive manipulation of the
implicit surfaces. In this section, the general affine transformation properties of periodic surfaces are derived as follows.

Lemma 2. Rotation of w(r) about principle axes is equivalent to rotation of each of the basis vectors {p,, } .
cos ffcosy —cos fsiny sin f 0

cosasiny +sinasin fcosy cosacosy —sinasin fsiny —sinacosf 0

Proof. Let R = where a, £, and y

sinasiny —cosasin fcosy sinacosy +cosasin fsiny cosacosff 0
0 0 0 1

are the rotation angles about x, y, and z axes respectively.

= z Z:“Zm cos(27zl(l (Pg . (R-l . r))) = Z i,ulm cos(?mcZ (pfl .RT. r))

1=1 m=1 I=1 m=1

Loy m
= zzﬂl cos(2m( R-p,)" - ))
1 m=1
Lemma 3. Translation is equivalent to offsetting each of the basis planes corresponding to the basis vectors { m} .
100 ¢ 1 0 0 0
010 ¢ L 1 0 0
Proof.LetT:O 01 ¢ ,Tr:(T)T: 0 0 10
000 —t, —t, -t 1
L M L M
(T 1) = zz,ulm cos(27z'l(z(pfl -T,7 r)) = Zzﬂh cos(2m( (T, p,)" ))
I=1 m=1 I=1 m=1
T -p, = (@, Cpus 6 — (@t + 0, Ayt (’mtz)] o

Lemma 4. Scaling and reflection are equivalent to their respective inverse operations on each of the basis vectors

®)-

s, 0 00 1/s, 0O 0 0
0 s, 00 Lot 00

Proof. Let S = 0 0 s o S, =5 = 0 0 1/s. ol
0 0 1 0 0 0 1
M L M

L
z iy, cos(Qm{( -S,T - r) zz;z cos(QﬂK((S p,)" )) m

=1 1 =1

3
I

5. LOCI SURFACE RECONSTRUCTION

3D crystal or protein structures are usually inferred by using experimental techniques such as X-ray crystallography
then archived in structure databases. Given the actual crystal structures, periodic loci surface models can be
reconstructed. This reverse engineering process is helpful in nano material design. It can be widely applied in material
re-engineering and re-design, comparison and analysis of unknown structures, and improving interoperability of
different models. In general, the loci surface reconstruction process is to find a y(r) to approximate the original but

unknown surface f(r), assuming that there always exists a fictional continuous surface f(r) that passes through a

finite number of discrete locations in E?* . Determining periodic moments from the given locations is the goal.

5.1 Incremental Searching Algorithm
In the case of sparse location data, spectral analysis is helpful in deriving periodic moments. Given N known positions
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r, € P’ (n =1,...,N) through which a loci surface passes, loci surface reconstruction is to find a y(r) = 0 such that

the sum of Lp norms is minimized in

N
min Z"l//(rn ) (7)

Given a set of scale parameters «;, (I =1,...,L) and a set of basis vectors p,, (m =1,..., M), deriving the moments can

P

be reduced to solving the linear system
ZCOS(27TKI(pZ:l ‘T, ))yZm =0 (n=1...,N) (8)

or simply denoted as
A =0 )

Solving Eqn.(9) is to find the null space of A . The singular value decomposition (SVD) method can be applied. If the

N><LM"'LM><1

decomposed matrix is A = any column of [v,] whose corresponding w; is zero yields a

T
Ul rnar @3 arenar [V o »
solution. With the consideration of experimental or numerical errors, least-square approximation is usually used in
actual algorithm implementations. For instance, we can select the last column of [v, ] as the approximated solution.

In general cases, the periodic vectors and scale parameters may be unknown, an incremental searching algorithm is
developed to search moments as well as periodic vectors and scale parameters, as shown in Fig. 2. We can use a
general set of periodic vectors such as the one in Eqn. (3) and incrementally reduce scales, i.e., increase the scale

parameters. The searching process continues until the maximum approximation error max|w(rn) is less than a pre-
n

determined threshold.

Input: location vectors r,

(n=1,...,N)

Output: periodic moments {z, }, scale parameters {x,} , and periodic vectors {p,,}
Normalize coordinates r, if necessary (e.g. limit them within the range of [0,1]);
Set an error threshold ¢ ;

Initialize periodic vectors {p,,}\* = {e,} , initialize scale parameter {Kl}(o) ={1}, t=1;

Ll s

Update the periodic vectors {p, }¥ = {p, }'™" U {e,;...,e,, }, update the scale parameters with a
, -1

new scale s, so that {Kl}(f) = {KZ}“ v {s.};

5. Decompose matrix A" = [cos(?m(Z (" -rn))] =UWV" and find p as the last column of V;

6. If max

AD -u(t)| < ¢, stop; otherwise, t=t+1, go to Step 4 and repeat.

Fig. 2: Incremental searching algorithm for loci surface reconstruction.

In the Hilbert space, the orthogonality of periodic basis functions enables a concise representation in reconstruction. In
the incremental searching, the newly created small scale information in iteration ¢ is an approximation of the

difference between the original surface f(r) and the previously constructed surface " (r) in iteration ¢ —1.

Lemma 5. If the original surface f(r) is d times continuously differentiable, the convergence rate of the incremental

searching algorithm is O(x~) where « is the scale parameter.

Proof. According to Eqn. (6), for any target surface f(s), a periodic moment at the scale « is

1
e = %.‘;ﬁ f(s) COS(K Cos_l(s))ds (10)

Because of
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d sin(l( cos ! (s)) _ d COS(K cos’l(s)) B
ds N ds Ji-s2
continuously applying the rule of partial integration to Eqn. (10), we have

sin(l( cos’l(s)),

COS(K cos’l(s)) and

1
0, = lz sin(/ccos_l(s))f'(s)ds
K T

1
= ig EJ‘ ! cos K’COS (s )Isf'(s) -(1- 32)f"(s)]ds
ZeN1-s?
12
== = jsin(l(cos If )+ 3sf"(s) - (1 - 52)f'"(s)]ds
r
e
1
= % . %J.l\/li_sz COS(K cos_l(s)lsf'(s) — (4 =752 f"(s) — (65 + 65%)f"(s) + (1 — 32)2f(4)(s)]ds
12 l
- ;Jlsin(lc cos_l(s){]z_; h(s)f(]‘)(s)}ds when d is odd
REET d
T —I COS(K cosl(s){z h(s)f(j)(s)lds when d is even
RN =1
1 j
d
Since -1<s<1, cos KCOS ] , sm KCOS 1(s)] <1,and Zh(s) 19 (s)| < o0, there exists a constant €' such that
=1
Uy < Ld e
'

5.2 Examples

For the first example, we reconstruct the periodic surface model of a Faujasite crystal, a type of zeolite minerals which
can be widely used as molecular sieves and catalysts in pollution control, detergent, manufacturing, etc. As shown in
Fig. 3-a, each vertex in the polygon model represents a Si atom of the crystal. Within a periodic unit, we apply the
incremental searching algorithm and reconstruct two surfaces with 14 and 15 vectors for different stopping criteria, as
shown in Flg 3 b and Flg 3-c respectlvely The reconstructed PS models are listed in Tab. 1.

(a) Faujasite crystal. Each tetradecahedron encloses (b) Reconstructed surface (c) Reconstructed surface
a Fe, each hexagonal prism encloses an Al, and dim.=14, max_error=0.6691 dim.=15, max_error= 1.686e-15
each vertex of the polygons represents a Si.

Fig. 3: Loci surfaces of a Faujasite crystal with 232 atoms.
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The second example is a PS model of a synthetic Zeolite crystal. As shown in Fig. 4-a. Each vertex of the polygon
model represents an O atom. Three surfaces with different numbers of vectors thus different resolutions are shown in
Fig. 4-b, -c, and -d. The reconstructed PS models are listed in Tab. 2.

Dimension PS model
14 —0.53909 — 0.0085926 cos(27zz) — 0.0085926 cos(27zy) — 0.0085926 cos(27z) — 0.0039482 cos(27(z + y)) — 0.0039482 cos(27(z + 2))
—0.0039482 cos(27(y + z)) — 0.011992 cos(27z(z — y)) — 0.011992 cos(27(z — x)) — 0.011992 cos (27 (y — 2))
—0.44082 cos(27(x + y + z)) + 041407 cos(27z(z — y + z)) + 0.41407 cos(27z(y + z — x)) + 0.41407 cos(27(x + y — 2))
15 0.51662 + 0.40246 cos(27(z + y + z)) — 0.40246 cos(27(z — y + 2)) — 0.40246 cos(27(y + z — z))

—0.40246 cos(277(x + y — z)) — 0.10362 cos(4z(z + y)) — 010362 cos(47(z + z))
- 0.10362cos(47z(y + z)) + 010362 cos(47(x — y)) + 010362 cos(47(z — z)) + 010362 cos(4z(y — 2))
+0.072076 cos(47z(z + y + 2)) + 0.072076 cos(4z(z — y + 2)) + 0.072076 cos(47(y + z — x)) + 0.072076 cos(47(z + y — 2))

o

(a) A synthetic Zeolite crystal.

Tab. 1: PS models of the Faujasite crystal in Fig. 3 with different dimensions.

Each tetrahedron encloses a .Si, (b) Reconstructed surface (c) Reconstructed surface (d) Reconstructed surface
cach vertex of the tetrahedral is a  dim.=14, max_error=0.2515  dim.=24, max_error=0.0092  dim.=33, max_error=3.059¢-15
0, and each green sphere is a Na.

Fig. 4: Loci surfaces of a synthetic Zeolite crystal with 312 atoms.

Dimension

PS model

14

—0.0037436 — 0.28887 cos(27zx) — 0.28887 cos(27zy) — 0.28887 cos(27z) + 0.001388 cos(27z(z + y)) + 0.001388 cos(27(z + z))
+ 0.001388 cos(27z(y + 2)) + 0.001388 cos(27(x — y)) + 0.001388 cos(27(z — x)) + 0.001388 cos(27z(y — 2))
- 0.43291cos(27(z + y + z)) — 043291 cos(27(z — y + 2)) — 0.43291 cos(27(y + z — x)) — 0.43291 cos(27(z + y — 2))

24

—0.16232 + 0.18191 cos(27(z + y)) + 0.18191 cos 27z (z + 2))

+0.18191 cos(27(y + z)) + 0.18191 cos(27z(z — y)) + 0.18191 cos(27(z — ) + 0.18191 cos (27 (y — 2))

+0.00071864 cos(27(z + y + z)) + 0.00071864 cos(277(z — y + z)) + 0.00071864 cos(27(y + z — z)) + 0.00071864 cos(27z(z + y — 2))
—0.32147 cos(47x) — 0.32147 cos(4y) — 0.32147 cos(47z) — 0.24617 cos(4z(z + y)) — 0.24617 cos(47(z + 2))

—0.24617 cos(47(y + z)) — 0.24617 cos(4z(z — y)) — 0.24617 cos(47(z — x)) — 0.24617 cos(4z(y — 2))

—0.15927 cos(4z(z + y + 2)) — 0.15927 cos(4z(z — y + 2)) — 0.15927 cos(47(y + z — ) — 0.15927 cos(4z(z + y — 2))

33

0.01531 + 0.37384 cos(27(z + y)) + 0.37384 cos(27(z + 2))

+0.37384 cos(27(y + z)) + 0.37384 cos(27(z — y)) + 0.37384 cos(27(z — z)) + 0.37384 cos(27(y — z))

—0.086043 cos(47x) — 0.086043 cos(4y) — 0.086043 cos(47z) — 0.098288 cos(47(z + y)) — 0.098288 cos(4z(x + 2))
—0.098288 cos(47z(y + z)) — 0.098288 cos(47(x — y)) — 0.098288 cos(47(z — x)) — 0.098288 cos(47(y — z))

—0.020038 cos(47z(z + y + 2)) — 0.020038 cos(47(z — y + 2)) — 0.020038 cos(47z(y + z — x)) — 0.020038 cos(4z(z + y — 2))
—0.11405 cos(87zx) — 0.11405 cos(87y) — 0.11405 cos(87z) — 0.081757 cos(8z(x + y)) — 0.081757 cos(87z(x + z))

—0.081757 cos(87z(y + z)) — 0.081757 cos(8z(z — y)) — 0.081757 cos(87(z — x)) — 0.081757 cos(8z(y — 2))

+0.0091814 cos(87(x + y + 2)) + 0.0091814 cos(8z(z — y + 2)) + 0.0091814 cos(8z(y + z — z)) + 0.0091814 cos(8z(z + y — 2))

Tab. 2: PS models of the synthetic Zeolite crystal in Fig. 4 with different dimensions.
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5.3 Quality of Reconstructed Surface

The maximum approximation error used in the incremental searching algorithm should not be the only metric to
measure the quality of reconstructed surfaces. It should be noted that the maximum approximation error may cause
overfitting during the least square error reconstruction due to the following lemma.

Lemma 6. Given any finite number of positions r, € P* (n = 1,...,N), there is always a w/(r) = 0 with finite degrees

and scales such that y(r,) =0 (n =1,...,N).

Proof. If n =1, we can construct a surface w(r) = cos L 4+ Y 4+ 2 | =0 for the known position r, = (acw 3107%71)'
3z, 3y, 3z,

Suppose there are two surfaces w,(r)=0 and w,(r)=0 that are constructed by two sets of positions

' (=1..,N,) and {rjb}(] =1,...,N,) respectively. Since cosacosﬁ:%cos(a-rﬁ)-r%cos(a—ﬂ) for any

i

a,f € R, we can always construct a third surface w(r) =y, (r) - ,(r) =0 such that y(r,) = 0 for Vr, € {r;’}u {rjb}

m
To avoid overfitting potentially caused by the maximum approximation error, we use porosity as another metric to
measure the quality of reconstructed loci surfaces, which is defined as

= jﬂ(y/(r)/y/M)zdr/H & (DcP?) (11)
rel rel
where v, = max |1y(r)| . ¢ measures the average absolute value of the implicit function evaluation within a volumetric

unit. Notice that y/(r) =0 at any location r where the surface passes through. Thus the higher the surface-volume
ratio is, the lower the porosity will be. The porosities of the reconstructed surfaces in Fig. 3 and Fig. 4 are listed in Tab.
3. Given a fixed number of known positions that surfaces pass through, there are an infinite number of surfaces that
can be reconstructed. Intuitively, the surfaces with unnecessarily high surface areas have low porosities, which should
be avoided.

Dimension Maximum Porosity

approximation error
Faujasite surface (Fig. 3) 14 0.6691 0.2115
15 1.686e-15 0.1226
Zeolite surface (Fig. 4) 14 0.2515 0.00738
24 0.0092 0.0394
33 3.05%-15 0.0829

Tab. 3: Metrics comparison of different PS surfaces.

The quality of reconstructed surfaces depends on the selection of periodic vectors, scale parameters, and volumetric
domain of periodic units. Based on the porosity metric, we can optimize the surface reconstruction by solving

max¢<{Pm}a{Kz}v]D))

12
s.t. maxll//(rn )l <¢ (n=1...,N) 12)
where porosity is a function of {p,,}, {«x;} ,and D . Any of these parameters can be optimized. We apply Eqn. (12) to

optimize the basis vectors of the PS model of the Zeolite crystal in Fig. 4-d. The result is shown in Fig. 5 and Tab. 4.
The dimension is reduced from 33 to 25 while the porosity is increased to 0.1140 with a similar maximum
approximation error.
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Optimized PS model
Dimension —0.038986 — 0.37489 cos(27(x + y)) — 0.37489 cos(27(z + 2))
=25
Porosity —0.37489 cos(27(y + z)) — 0.37489 cos (27 (z — y)) — 0.37489 cos(27(z — z)) — 0.37489 cos(27(y — z))
;0-1/140 +0.036561 cos(47z) + 0.036561 cos(47y) + 0.036561 cos(47z) + 0.072615 cos(4z(z + 1)) + 0.072615 cos(d7z(z + 2))
ax Approx.
Error +0.072615 cos(4z(y + 2)) + 0.072615 cos(4z(z — y)) + 0.072615 cos(4z(z — )) + 0.072615 cos(4z(y — 2))
=2.1417e-15

+ 0.13904 cos(87z) + 0.13904 cos(87y) + 0.13904 cos(87z) + 0.1013 cos(87z(x + y)) + 0.1013 cos(87(z + 2))
+0.1013 cos(87(y + z)) + 0.1013 cos(87(z — y)) + 0.1013 cos(87(z — z)) + 0.1013 cos(87(y — z))

Tab. 4: Optimized PS model of the Zeolite crystal in Fig. 4-d.

(a) Faujasite surface without optimization (b) Faujasite surface with optimization

Fig. 6: Surface comparison of the Faujasite crystal within a new periodic unit.

As a second example, the optimization process is applied to the PS models of the Faujasite crystal in Fig. 3 to find an
optimal phase shift @ in all periodic vectors. It turns out that the phase shift of zeros in Fig. 3-c is optimal. We change
the volumetric domain of the periodic unit. A different surface is reconstructed, as reconstruction is domain dependent.
The results from the incremental searching algorithm are compared both with and without optimization in Fig. 6 and
Tab. 5. During the optimization, some portions of the surface which do not pass through any atoms are removed. This
illustrates the direct effect of considering porosity during reconstruction.

PS model

Without
optimization

Porosity
=0.0635
Max Approx.
Error

—0.023878 — 0.11551 cos(27(z + y + 2)) — 0.11551 cos(27z(z — y + z)) — 0.11551 cos(27(y + z — z)) — 0.11551 cos(27z(z + y — z))

+0.090823 cos(47zx) + 0.090823 cos(47zy) + 0.090823 cos(47z) — 0.30295 cos(47z(z + y)) — 0.30781 cos(47(x + z)) — 0.30026 cos(47z(y + z))
—0.30295 cos(47(z — y)) — 0.30781 cos(47(z — z)) — 0.30026 cos(47z(y — z)) — 0.010361 cos(47(z + y + 2)) — 0.010361 cos(4z(z — y + 2))
—0.010361cos(47(y + z —z)) — 0.010361 cos(4z(z + y — 2)) + 0.10473 cos(87zz) + 0.11596 cos(87zy) + 0.10873 cos(87z) + 0.22419 cos(87(z + y))
+0.22254 cos(87(x + z)) + 0.26375 cos(87(y + z)) + 0.15627 cos(87z(z — y)) + 013716 cos(877(z — x)) + 012819 cos(87(y — 2))

+0.081645 cos(87z(z + y + 2)) + 0.18339 cos(87(z — y + 2)) + 0.15829 cos (87 (y + z — x)) + 0.19211 cos(8z(z + y — 2))
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=1.9706e-15

With —0.26028 + 0.34162 cos(27(z +y + 2 + 0')) + 0.34162 cos(2x(x — y + 2 + 07)) + 0.34162cos(2z(y + z — + 0))
optimization . . .
+0.34162cos(2z(z +y —z + 0 )) — 0.26862 cos(4z(z + 6 )) — 0.26862 cos(4z(y + 6 ))
Porosity
=0.0715
Max Approx. [+ 0.012355 cos(47(y + z + 07)) + 0.011341 cos(d7(z — y + 0)) + 0.010796 cos(47(z — = + 6")) + 0.012356 cos(4r(y — 2 + 0))

Error . « "
=5.038¢-5 +0.03066 cos(4z(z + y + 2z + 0 )) + 0.030639 cos(4z(z —y + z + 6 )) + 0.030639 cos(4z(y + z —z + 6 "))

—0.26862 cos(47(z + 0)) + 0.01134 cos(dr(z +y + 0)) + 0.010794 cos(47(z + 2 + 0"))

+0.030639 cos(47(z +y —z+0")) + 0.15014 cos(87(z + 07)) + 0.15247 cos(8z(y + 0"))

+0.15165 cos(87(z + 0)) — 0.14607 cos(87(z + y + 0)) — 0.14644 cos(8x(z + z + 07))

—0.14624 cos(87(y + z + 07)) + 0.026281 cos(87z(z — y + 0')) + 0.024318 cos(87(z — z + 0")) + 0.030786 cos(87(y — 2 + 0°))

—0.01715cos(87(z +y + 2+ 0")) — 0.19186 cos(8z(x —y + 2 + 0)) — 0.18873 cos(87(y + 2z —x + 7)) — 0.19107 cos(8z(x + y — 2 + 0"))
here 6" = 0.00011295

Tab. 5: PS models without and with optimization of phase shift.

6. CONCLUDING REMARKS

In this paper, loci surface reconstruction is studied based on a generalized periodic surface model. Transformation
properties of the implicit surface model are derived to support user interactive manipulation. An incremental searching
algorithm is developed to reconstruct loci surfaces from crystals. The maximum approximation error and porosity are
proposed to measure the quality of the reconstructed surface. An optimization method for surface reconstruction based
on the metrics is developed. Future research will include the reconstruction of foci surfaces.
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