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ABSTRACT 

 

Recently a periodic surface (PS) model for computer aided nano design (CAND) was proposed. 

This implicit surface model can parametrically create Euclidean and hyperbolic geometries at 

atomic, molecular, and mesoscopic scales while supporting symmetric tiling and crystal packing. In 

this paper, loci surface reconstruction from crystals is studied based on a generalized PS model.  
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1. INTRODUCTION 

Computer-aided nano-design (CAND) is an extension of computer-based engineering design traditionally at bulk scales 

to nano scales. Enabling efficient structural descriptions is one of the key research issues in CAND. Traditional 

boundary-based parametric solid modeling methods do not support efficient construction of complex and dynamic 

nano-scale geometries due to some special characteristics at the low level. For instance, there are no clear-cut 

boundaries of atoms in a molecule. The Heisenberg uncertainty principle indicates the impossibility of simultaneously 

specifying the precise momentum and position of a particle at the quantum level. The volume packing of different 

atoms with clouds of correlated electrons is the central design theme at the atomic scale. Non-deterministic geometries 

and topologies are the manifestations of thermodynamic and kinetic properties at the molecular scale.  

 

Traditional molecular visualization methods such as models of space-filled, wireframe, stick, ball-and-stick, ribbon and 

solvent-accessible surfaces do not support the parametric construction and modification of molecular structures. 

Parametric modeling mechanisms for particle aggregates at the molecular scale are needed to support rapid 

construction and optimization of geometries. At the meso scale, super-porous structures with high surface-volume ratios 

also need effective geometric descriptions. Providing nano engineers and scientists efficient and easy-to-use tools to 

create geometry conformation that is reasonably close to true minimum energy is highly desirable in material design. 

 

With the observation that hyperbolic surfaces ubiquitously exist in nature and periodic features are common in 

condensed materials, we recently proposed an implicit surface modeling approach, periodic surface (herein referred to 

as PS), to represent geometric structures in nano scales [1, 2]. Periodic surfaces are either loci or foci. Loci surfaces are 

fictional continuous surfaces that pass through discrete particles in 3D space, whereas foci surfaces can be looked as 

isosurfaces of potential or density in which discrete particles are enclosed. The surface model allows for parametric 

construction from atomic scale to meso scale. In this paper, loci surface reconstruction for reverse engineering is 

studied. The PS model is generalized with both geometric and polynomial descriptions. An incremental searching 

algorithm is developed to reconstruct loci surfaces from crystals. In the remainder of the paper, Section 2 briefly 

reviews the related work in implicit surfaces and molecular surfaces. Section 3 generalizes the PS model to allow for the 

intuitive geometric interpretation of periodic basis vectors. Section 4 derives transformation properties of the PS model, 

which enable interactive manipulation of the implicit surfaces. Section 5 describes the incremental searching algorithm, 

presents several examples, and proposes two evaluation metrics for the quality of reconstructed surfaces.  

 

2. BACKGROUND AND RELATED WORK 

2.1 Implicit Surface 

Implicit surfaces [3] are not as widely used as parametric surfaces in an interactive modeling environment, largely due 

to the lack of intuitive shape manipulation and control. Yet, implicit surface modeling has some advantages. For 

example, ray tracing is straightforward, and Boolean operations are closed. Research in implicit surface modeling 

includes the “blobby model” based on Gaussian function [4, 5], and polynomials [6]. Topics such as implicitization [7, 

8], blending [9, 10], interpolation [11], control [12, 13], curvature formulation [14], as well as polygonization [15,  16] 

and direct ray tracing [17] have been studied. 



 

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 437-447 

 

438 

2.2 Molecular Surface Modeling 

For visualization purposes, there has been some research on surface modeling of molecular structures [18]. Lee and 

Richards [19] first introduced a solvent-accessible surface, the locus of a probe rolling over Van der Waals surface, to 

represent boundary of molecules. Connolly [20] presented an analytical method to calculate the surface. Recently, 

Carson [21] represented molecular surfaces with the B-spline wavelet. Edelsbrunner [22] described molecules with 

implicit-form skin surfaces. Bajaj et al. [23] represented solvent accessible surface by NURBS (non-uniform rational B-

spline). Kim et al. [24] constructed NURBS molecular surfaces by the aid of Euclidean Voronoi diagrams. These 

research efforts concentrate on molecular visualization, whereas the construction support of molecular structures for 

design purposes is not considered. 

 

2.3 Periodic Surface 

We recently proposed a PS model to construct nano-scale geometries. It has the implicit form 

 CpA
k

kkkk
=+⋅=∑ ]2cos[)( λπψ )( rhr  (1) 

where r  is the location vector in Euclidean space 3
E , 

k
h is the kth lattice vector in reciprocal space, 

k
A is the 

magnitude factor, 
k
λ  is the wavelength of periods, 

k
p is the phase shift, and C is a constant. Specific periodic structures 

can be modeled based on this form. The periodic surface model can approximate triply periodic minimal surfaces 

(TPMSs) very well, which have been reported from atomic to meso scales. Compared to the parametric TPMS 

representation known as Weierstrass formula, PS models have a much simpler form and are easier to compute.  

 

A periodic surface is specified by a periodic vector ( )Λ,,, PHA  in a multi-dimensional configuration and phase space, 

where ][
k
A=A , ][

k
hH = , ][

k
p=P , and ][

k
λ=Λ  are concatenations of magnitudes, reciprocal lattice vectors, 

phases, and period lengths, respectively. Increasing the dimension of the periodic vector, i.e., the number of control 

parameters, gives more degrees of freedom to model complex geometries. Fig. 1 lists some examples of PS models 

within one volumetric unit, including TPMS structures, such as P-, D-, G-, and I-WP cubic morphologies which are 

frequently referred to in chemistry literature. Besides the cubic phase, other mesophase structures such as spherical 

micelles, lamellar, rod alike hexagonal phases can also be modeled. The surfaces inherently satisfy periodic boundary 

conditions. Each surface divides the 3D space into two congruent labyrinth subspaces, which have the opposite + and 
− signs if the surface is 0)( =rψ . 

P D G I-WP Grid 

     
Lamellar Rod Spherical Micelle Mesh Membrane 

 
    

 
Fig. 1: Periodic surface models of cubic phase and mesophase structures [2]. 

 

3. GENERALIZED PERIODIC SURFACE MODEL 

In this paper, the PS model is generalized with geometric and polynomial descriptions. A periodic surface is defined as 

 ( ) 0)(2cos)(
1 1

=⋅=∑∑
= =

L

l

M

m

T
mllm
rpr πκµψ  (2) 

where 
l
κ  is the scale parameter, T

mmmmm cba ],,,[ θ=p  is a basis vector, such as one of 
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which represents a basis plane in the projective 3-space 3
P , Twzyx ],,,[=r  is the location vector with homogeneous 

coordinates, and 
lm
µ  is the periodic moment. Each basis vector represents a basis plane that is a 2D subspace in 3

P . 

Corresponding to a basis plane mp , m
T
m

T
mmd prprp ⋅=⋅= ˆ  is the projective distance between the origin and the 

projective subspace where r  resides in. The projective distance is negative when the normal direction of the subspace 

is towards the origin, otherwise it is positive. We assume 1=w  throughout this paper if w is not explicitly specified. It 

is also assumed that the scale parameters are natural integers ( N∈
l

κ ). The degree of )(rψ  in Eqn. (2) is defined as 

( ) { }mpr =:)(deg ψ , where A  is the cardinality of set A. The scale of )(rψ  is defined as ( ) { }
l
κψ =:)(sca r . This 

generalization allows for intuitive geometric interpretation of the periodic basis vectors and enables interactive 

manipulation such as affine transformations with homogeneous coordinates in 3
P .  

 

If mapped to a density space T

M
ss ],,[

1
…=s  where ))(2cos( rp ⋅= T

mms π , )(sψ  can be represented in a polynomial 

form, known as the Chebyshev polynomial, 

 )1()()(
1 1

≤=∑∑
= =

m

L

l

M

m

mlm
ssT

l
κµψ s  (4) 

where ( )ssT 1coscos)( −= κκ . In a Hilbert space, a vector space with an inner product, the basis functions κT ’s are 

orthogonal to each other with respect to density in the normalized domain, with the inner product defined as 
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where both i and j are natural numbers ( N∈ji, ). Orthonormal bases are particularly helpful in surface reconstruction. 

The periodic moments are determined by the projection 

 )0()()(
1

12

,

, 1

1
2

≠
−

== ∫
−

jdssTsf
sTT

Tf

j

jj

j

j π
µ  (6) 

Two periodic surfaces )(
1
rψ  and )(

2
rψ  are called orthogonal if there exists a domain 41],[],[],[ RD ⊆×××= zzyyxx  

such that 0)()(,
2121

== ∫∫∫
D

rrr dψψψψ . 

 

Lemma 1. If a surface )(rψ  in Eq. (2) with the basis vectors }{ mp  and the scale parameters }{
l
κ  is scaled to )(' rψ  

with the new scale parameters }{
l
sκ , and if there are no such basis vectors )}({,

2121
mmmmm ≠∈ ppp  that satisfy 

21
mjmi

s pp κκ =  for some }{,
lji
κκκ ∈ , then )(rψ  is orthogonal to )(' rψ . 

Proof. 

( )
( )








=×∩×

≠×∩×
=

∑
=

∅

∅

}{}{}{}{0

}{}{}{}{
2

', 21

21

mlml

mlml
s

jmim

sif

sif

mjmi

pp

pp

pp

κκ

κκµµ
π

ψψ κκ . Thus, if there are no basis vectors 

)}({,
2121
mmmmm ≠∈ ppp  that satisfy 

21
mjmi

s pp κκ = , then ∅=×∩× }{}{}{}{ mlml
s pp κκ    □ 

Remark. If a periodic surface is scaled up or down, it is orthogonal to the original one if no common basis vectors at 

the same scales are found between the two. 
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4. TRANSFORMATION 

As opposed to general implicit surfaces, transformations of periodic surfaces are more intuitive. Basis vectors play a 

central role here. Therefore, they provide users the handle for shape control and interactive manipulation of the 

implicit surfaces. In this section, the general affine transformation properties of periodic surfaces are derived as follows.  

 

Lemma 2. Rotation of )(rψ about principle axes is equivalent to rotation of each of the basis vectors { }mp . 

Proof. Let 
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R  where α , β , and γ  

are the rotation angles about x, y, and z axes respectively. 
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    □ 

 

Lemma 3. Translation is equivalent to offsetting each of the basis planes corresponding to the basis vectors { }mp . 

Proof. Let 
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Lemma 4. Scaling and reflection are equivalent to their respective inverse operations on each of the basis vectors 

{ }mp . 

Proof. Let 
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5. LOCI SURFACE RECONSTRUCTION 

3D crystal or protein structures are usually inferred by using experimental techniques such as X-ray crystallography 

then archived in structure databases. Given the actual crystal structures, periodic loci surface models can be 

reconstructed. This reverse engineering process is helpful in nano material design. It can be widely applied in material 

re-engineering and re-design, comparison and analysis of unknown structures, and improving interoperability of 

different models. In general, the loci surface reconstruction process is to find a )(rψ  to approximate the original but 

unknown surface )(rf , assuming that there always exists a fictional continuous surface )(rf  that passes through a 

finite number of discrete locations in 3
E . Determining periodic moments from the given locations is the goal.  

 

5.1 Incremental Searching Algorithm 

In the case of sparse location data, spectral analysis is helpful in deriving periodic moments. Given N known positions 
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),,1(3 Nnn …=∈ Pr  through which a loci surface passes, loci surface reconstruction is to find a 0)( =rψ  such that 

the sum of Lp norms is minimized in 

 ∑
=

N

n
pn

1

)(min rψ  (7) 

Given a set of scale parameters ),,1( Ll
l

…=κ  and a set of basis vectors ),,1( Mmm …=p , deriving the moments can 

be reduced to solving the linear system  

 ( ) ( )Nn

L

l

M

m
lmn

T
ml

,,10)(2cos
1 1

…==⋅∑∑
= =

µπκ rp  (8) 

or simply denoted as 

 0
1
=

×× LMLMN
µA  (9) 

Solving Eqn.(9) is to find the null space of A . The singular value decomposition (SVD) method can be applied. If the 

decomposed matrix is T

LMLMkLMLMjLMNi
vwu

×××
= ][][][A , any column of ][

k
v  whose corresponding 

j
w  is zero yields a 

solution. With the consideration of experimental or numerical errors, least-square approximation is usually used in 

actual algorithm implementations. For instance, we can select the last column of ][
k
v  as the approximated solution. 

 

In general cases, the periodic vectors and scale parameters may be unknown, an incremental searching algorithm is 

developed to search moments as well as periodic vectors and scale parameters, as shown in Fig. 2. We can use a 

general set of periodic vectors such as the one in Eqn. (3) and incrementally reduce scales, i.e., increase the scale 

parameters. The searching process continues until the maximum approximation error )(max n
n

rψ  is less than a pre-

determined threshold. 

Input: location vectors ),,1( Nnn …=r  

Output: periodic moments }{
lm

µ , scale parameters }{
l

κ , and periodic vectors }{ mp  

1. Normalize coordinates nr  if necessary (e.g. limit them within the range of [0,1]); 

2. Set an error threshold ε ; 

3. Initialize periodic vectors }{}{
0

)0(
ep =m , initialize scale parameter }1{}{ )0( =

l
κ , t=1; 

4. Update the periodic vectors },,{}{}{
1

)1()(

M

t
m

t
m eepp …∪= − , update the scale parameters with a 

new scale 
t
s  so that }{}{}{ )1()(

t

t

l

t

l
s∪= −κκ ; 

5. Decompose matrix ( )[ ] T
n

T
ml

t
UWVrpA =⋅= )(2cos)( πκ  and find )(t

µ  as the last column of V; 

6. If ε<⋅ )()(max tt

n
µA , stop; otherwise, t=t+1, go to Step 4 and repeat. 

 
Fig. 2: Incremental searching algorithm for loci surface reconstruction. 

 

In the Hilbert space, the orthogonality of periodic basis functions enables a concise representation in reconstruction. In 

the incremental searching, the newly created small scale information in iteration t  is an approximation of the 

difference between the original surface )(rf  and the previously constructed surface )()1( r−tψ  in iteration 1−t .  

 

Lemma 5. If the original surface )(rf  is d  times continuously differentiable, the convergence rate of the incremental 

searching algorithm is )( dO −κ  where κ  is the scale parameter.  

Proof.  According to Eqn. (6), for any target surface )(sf , a periodic moment at the scale κ  is  

 ( )∫
−

−

−
=

1

1

1

2
)(coscos)(

1

12
dsssf

s
κ

π
µκ  (10) 

Because of 
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( ) ( ))(coscos
1
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1
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s
sds
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−
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continuously applying the rule of partial integration to Eqn. (10), we have 
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Since 11 ≤≤− s , ( ) 1)(coscos 1 ≤− sκ , ( ) 1)(cossin 1 ≤− sκ , and ∞≤∑
=

d

j

j sfsh

1

)( )()( , there exists a constant C such that 

C
d πκ

µκ
21

⋅≤  

            □ 

 

5.2 Examples 

For the first example, we reconstruct the periodic surface model of a Faujasite crystal, a type of zeolite minerals which 

can be widely used as molecular sieves and catalysts in pollution control, detergent, manufacturing, etc. As shown in 

Fig. 3-a, each vertex in the polygon model represents a Si atom of the crystal. Within a periodic unit, we apply the 

incremental searching algorithm and reconstruct two surfaces with 14 and 15 vectors for different stopping criteria, as 

shown in Fig. 3-b and Fig. 3-c respectively. The reconstructed PS models are listed in Tab. 1.  

          
(a) Faujasite crystal. Each tetradecahedron encloses 
a Fe, each hexagonal prism encloses an Al, and 

each vertex of the polygons represents a Si. 

(b) Reconstructed surface  

dim.=14, max_error=0.6691 

(c) Reconstructed surface  

dim.=15, max_error= 1.686e-15 

 
Fig. 3: Loci surfaces of a Faujasite crystal with 232 atoms. 
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The second example is a PS model of a synthetic Zeolite crystal. As shown in Fig. 4-a. Each vertex of the polygon 

model represents an O atom. Three surfaces with different numbers of vectors thus different resolutions are shown in 

Fig. 4-b, -c, and -d. The reconstructed PS models are listed in Tab. 2. 

 

Dimension PS model 

14 

))(2cos(414070))(2cos(414070))(2cos(414070))(2cos(440820

))(2cos(0119920))(2cos(0119920))(2cos(0119920))(2cos(00394820

))(2cos(00394820))(2cos(00394820)2cos(00859260)2cos(00859260)2cos(0085926053909.0

zyx.xzy.zyx.zyx.

zy.xz.yx.zy.

zx.yx.z.y.x.

−++−+++−+++−

−−−−−−+−

+−+−−−−−

ππππ

ππππ

πππππ
 

15 

))(4cos(0720760))(4cos(0720760))(4cos(0720760))(4cos(0720760

))(4cos(103620))(4cos(103620))(4cos(103620))(4cos(103620

))(4cos(103620))(4cos(103620))(2cos(402460

))(2cos(402460))(2cos(402460))(2cos(402460516620

zyx.xzy.zyx.zyx.

zy.xz.yx.zy.

zx.yx.zyx.

xzy.zyx.zyx..

−++−+++−++++

−+−+−++−

+−+−−+−

−+−+−−+++

ππππ

ππππ

πππ

πππ

 

 

Tab. 1: PS models of the Faujasite crystal in Fig. 3 with different dimensions. 

 

  
(a) A synthetic Zeolite crystal. 

Each tetrahedron encloses a Si, 

each vertex of the tetrahedral is a 

O, and each green sphere is a Na. 

(b) Reconstructed surface  

dim.=14, max_error=0.2515 

(c) Reconstructed surface  

dim.=24, max_error=0.0092 

(d) Reconstructed surface  

dim.=33, max_error=3.059e-15 

 
Fig. 4: Loci surfaces of a synthetic Zeolite crystal with 312 atoms. 

 

Dimension PS model 

14 

))(2cos(432910))(2cos(432910))(2cos(432910))(2cos(432910

))(2cos(001388.0))(2cos(001388.0))(2cos(001388.0))(2cos(001388.0

))(2cos(001388.0))(2cos(001388.0)2cos(288870)2cos(288870)2cos(2888700037436.0

zyx.xzy.zyx.zyx.

zyxzyxzy

zxyxz.y.x.

−+−−+−+−−++−

−+−+−+++

++++−−−−

ππππ

ππππ

πππππ
 

24 

))(4cos(15927.0))(4cos(15927.0))(4cos(15927.0))(4cos(15927.0

))(4cos(24617.0))(4cos(24617.0))(4cos(24617.0))(4cos(24617.0

))(4cos(24617.0))(4cos(24617.0)4cos(32147.0)4cos(32147.0)4cos(32147.0

))(2cos(000718640))(2cos(000718640))(2cos(000718640))(2cos(000718640

))(2cos(18191.0))(2cos(18191.0))(2cos(18191.0))(2cos(18191.0

))(2cos(18191.0))(2cos(18191.016232.0

zyxxzyzyxzyx

zyxzyxzy

zxyxzyx

zyx.xzy.zyx.zyx.

zyxzyxzy

zxyx

−+−−+−+−−++−

−−−−−−+−

+−+−−−−

−++−+++−++++

−+−+−+++

++++−

ππππ

ππππ

πππππ

ππππ

ππππ

ππ

 

33 

))(8cos(0091814.0))(8cos(0091814.0))(8cos(0091814.0))(8cos(0091814.0

))(8cos(081757.0))(8cos(081757.0))(8cos(081757.0))(8cos(081757.0

))(8cos(081757.0))(8cos(081757.0)8cos(11405.0)8cos(11405.0)8cos(11405.0

))(4cos(020038.0))(4cos(020038.0))(4cos(020038.0))(4cos(020038.0

))(4cos(098288.0))(4cos(098288.0))(4cos(098288.0))(4cos(098288.0

))(4cos(098288.0))(4cos(098288.0)4cos(086043.0)4cos(086043.0)4cos(086043.0

))(2cos(37384.0))(2cos(37384.0))(2cos(37384.0))(2cos(37384.0

))(2cos(37384.0))(2cos(37384.001531.0

zyxxzyzyxzyx

zyxzyxzy

zxyxzyx

zyxxzyzyxzyx

zyxzyxzy

zxyxzyx

zyxzyxzy

zxyx

−++−+++−++++

−−−−−−+−

+−+−−−−

−+−−+−+−−++−

−−−−−−+−

+−+−−−−

−+−+−+++

++++

ππππ

ππππ

πππππ

ππππ

ππππ

πππππ

ππππ

ππ

 

 

Tab. 2: PS models of the synthetic Zeolite crystal in Fig. 4 with different dimensions. 
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5.3 Quality of Reconstructed Surface 

The maximum approximation error used in the incremental searching algorithm should not be the only metric to 

measure the quality of reconstructed surfaces. It should be noted that the maximum approximation error may cause 

overfitting during the least square error reconstruction due to the following lemma.  

Lemma 6. Given any finite number of positions ),,1(3 Nnn …=∈ Pr , there is always a 0)( =rψ  with finite degrees 

and scales such that ( )Nnn ,,10)( …==rψ . 

Proof. If 1=n , we can construct a surface 0
333

cos)(
000

=









++=
z

z

y

y

x

x
rψ  for the known position ( )1,,,

0001
zyx=r .  

Suppose there are two surfaces 0)( =raψ  and 0)( =r
b

ψ  that are constructed by two sets of positions 

{ } ),,1( a
a

i
Ni …=r  and { } ),,1(

b

b

j
Nj …=r  respectively. Since ( ) ( )βαβαβα −++= cos

2

1
cos

2

1
coscos  for any 

R∈βα, , we can always construct a third surface  0)()()( =⋅= rrr
ba ψψψ  such that 0)( =nrψ  for { } { }b

j

a

in rrr ∪∈∀ . 

            □ 

To avoid overfitting potentially caused by the maximum approximation error, we use porosity as another metric to 

measure the quality of reconstructed loci surfaces, which is defined as 

 ( ) )(/)(: 32
PD

DD

⊆= ∫∫∫∫∫∫
∈∈ rr

rrr dd
M

ψψφ  (11) 

where )(max r
r

ψψ
D∈∀

=
M

. φ  measures the average absolute value of the implicit function evaluation within a volumetric 

unit. Notice that 0)( =rψ  at any location r  where the surface passes through. Thus the higher the surface-volume 

ratio is, the lower the porosity will be. The porosities of the reconstructed surfaces in Fig. 3 and Fig. 4 are listed in Tab. 

3. Given a fixed number of known positions that surfaces pass through, there are an infinite number of surfaces that 

can be reconstructed. Intuitively, the surfaces with unnecessarily high surface areas have low porosities, which should 

be avoided.  

 

 Dimension Maximum 

approximation error 

Porosity 

14 0.6691 0.2115 Faujasite surface (Fig. 3) 
15 1.686e-15 0.1226 

14 0.2515 0.00738 

24 0.0092 0.0394 
Zeolite surface (Fig. 4) 

33 3.059e-15 0.0829 

 

Tab. 3: Metrics comparison of different PS surfaces. 

 

The quality of reconstructed surfaces depends on the selection of periodic vectors, scale parameters, and volumetric 

domain of periodic units. Based on the porosity metric, we can optimize the surface reconstruction by solving 

 
( )

),,1()(max..

},{},{max

Nnts n
n

lm

…=≤ εψ

κφ

r

p D

 (12) 

where porosity is a function of }{ mp , }{
l

κ , and D . Any of these parameters can be optimized. We apply Eqn. (12) to 

optimize the basis vectors of the PS model of the Zeolite crystal in Fig. 4-d. The result is shown in Fig. 5 and Tab. 4. 

The dimension is reduced from 33 to 25 while the porosity is increased to 0.1140 with a similar maximum 

approximation error.  
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 Optimized PS model 

Dimension 

=25 

Porosity 

=0.1140 

Max Approx. 

Error 

=2.1417e-15 

))(8cos(1013.0))(8cos(1013.0))(8cos(1013.0))(8cos(1013.0

))(8cos(1013.0))(8cos(1013.0)8cos(13904.0)8cos(13904.0)8cos(13904.0

))(4cos(072615.0))(4cos(072615.0))(4cos(072615.0))(4cos(072615.0

))(4cos(072615.0))(4cos(072615.0)4cos(036561.0)4cos(036561.0)4cos(036561.0

))(2cos(37489.0))(2cos(37489.0))(2cos(37489.0))(2cos(37489.0

))(2cos(37489.0))(2cos(37489.0038986.0

zyxzyxzy

zxyxzyx

zyxzyxzy

zxyxzyx

zyxzyxzy

zxyx

−+−+−+++

+++++++

−+−+−+++

+++++++

−−−−−−+−

+−+−−

ππππ

πππππ

ππππ

πππππ

ππππ

ππ

 

 

Tab. 4: Optimized PS model of the Zeolite crystal in Fig. 4-d. 

 

 
 

Fig. 5: Optimized Zeolite surface in Fig. 4-d. 

 

           
(a) Faujasite surface without optimization (b) Faujasite surface with optimization 

 
 

Fig. 6: Surface comparison of the Faujasite crystal within a new periodic unit. 

 

As a second example, the optimization process is applied to the PS models of the Faujasite crystal in Fig. 3 to find an 

optimal phase shift θ  in all periodic vectors. It turns out that the phase shift of zeros in Fig. 3-c is optimal. We change 
the volumetric domain of the periodic unit. A different surface is reconstructed, as reconstruction is domain dependent. 

The results from the incremental searching algorithm are compared both with and without optimization in Fig. 6 and 

Tab. 5. During the optimization, some portions of the surface which do not pass through any atoms are removed. This 

illustrates the direct effect of considering porosity during reconstruction. 

 
 PS model 

Without 

optimization 

 

 

Porosity 

=0.0635 

Max Approx. 

Error ))(8cos(19211.0))(8cos(15829.0))(8cos(18339.0))(8cos(081645.0

))(8cos(128190))(8cos(137160))(8cos(15627.0))(8cos(26375.0))(8cos(22254.0

))(8cos(22419.0)8cos(10873.0)8cos(11596.0)8cos(10473.0))(4cos(0103610))(4cos(0103610

))(4cos(0103610))(4cos(0103610))(4cos(30026.0))(4cos(30781.0))(4cos(30295.0

))(4cos(30026.0))(4cos(30781.0))(4cos(30295.0)4cos(090823.0)4cos(090823.0)4cos(090823.0

))(2cos(11551.0))(2cos(11551.0))(2cos(11551.0))(2cos(11551.0023878.0

zyxxzyzyxzyx

zy.xz.yxzyzx

yxzyxzyx.xzy.

zyx.zyx.zyxzyx

zyzxyxzyx

zyxxzyzyxzyx

−++−+++−++++

−+−+−+++++

+++++−+−−+−

+−−++−−−−−−−

+−+−+−+++

−+−−+−+−−++−−

ππππ

πππππ

ππππππ

πππππ

ππππππ

ππππ
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=1.9706e-15 

With 

optimization 

 

Porosity 

=0.0715 

Max Approx. 

Error 

=5.038e-5 

))(8cos(19107.0))(8cos(18873.0))(8cos(19186.0))(8cos(01715.0

))(8cos(0307860))(8cos(0243180))(8cos(0262810))(8cos(14624.0

))(8cos(14644.0))(8cos(14607.0))(8cos(15165.0

))(8cos(15247.0))(8cos(15014.0))(4cos(0306390

))(4cos(0306390))(4cos(0306390))(4cos(030660

))(4cos(0123560))(4cos(0107960))(4cos(0113410))(4cos(012355.0

))(4cos(010794.0))(4cos(01134.0))(4cos(26862.0

))(4cos(26862.0))(4cos(26862.0))(2cos(341620

))(2cos(341620))(2cos(341620))(2cos(34162026028.0

****

****

***

***

***

****

***

***

***

θπθπθπθπ

θπθπθπθπ

θπθπθπ

θπθπθπ

θπθπθπ

θπθπθπθπ

θπθπθπ

θπθπθπ

θπθπθπ

+−+−+−+−++−−+++−

+−++−++−+++−

++−++−++

+++++−++

+−++++−+++++

+−++−++−++++

+++++++−

+−+−+−++

+−++++−+++++−

zyxxzyzyxzyx

zy.xz.yx.zy

zxyxz

yxzyx.

xzy.zyx.zyx.

zy.xz.yx.zy

zxyxz

yxzyx.

xzy.zyx.zyx.

 

where 00011295.0* =θ  

 

Tab. 5: PS models without and with optimization of phase shift. 

 

6. CONCLUDING REMARKS 

In this paper, loci surface reconstruction is studied based on a generalized periodic surface model. Transformation 

properties of the implicit surface model are derived to support user interactive manipulation. An incremental searching 

algorithm is developed to reconstruct loci surfaces from crystals. The maximum approximation error and porosity are 

proposed to measure the quality of the reconstructed surface. An optimization method for surface reconstruction based 

on the metrics is developed. Future research will include the reconstruction of foci surfaces. 
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