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ABSTRACT 
 

Designing aesthetically appealing models is vital for the marketing success of industrial products.  In 

this paper, we propose quasi-Aesthetic Curves that can be used in CAD systems for aesthetic shape 

design.  Quasi-Aesthetic Curves represented in rational cubic Bézier Forms are curves whose 

logarithmic curvature histograms (LCHs) become nearly straight lines.  The monotonicity of 

curvature of quasi-Aesthetic Curves is checked by the proposed method.  We generate quasi-

Aesthetic Curves by approximating the Aesthetic Curves whose LCHs are strictly represented by 

straight lines. We show that one Aesthetic Curve segment whose change of tangential angle is less 

than 90 deg. can be replaced by one quasi-Aesthetic Curve segment guaranteeing the monotonicity 

of the curvature in most of practical situations. 

 

Keywords: Aesthetic Curves, logarithmic curvature histogram, rational cubic Bézier curves, 

monotone curvature 

 

 

1. INTRODUCTION 
CAD systems for designing aesthetically appealing models are considered to be the next generation CAD systems.  In 

the design of aesthetic shapes such as automotive bodies, designers determine shapes with their great concern for the 

reflected images of the surroundings, shade lines and highlight lines [7].  In designing aesthetic surfaces, it is desirable 

to use curves that can control the variation of curvature, which dominates the distortion of reflected shapes on curved 

surfaces.  The Aesthetic Curves [6,9,15,16] are curves that have such a property.   

 

The Aesthetic Curves are curves whose logarithmic curvature histograms (LCHs – to be described in Section 3.1) are 

represented strictly by straight lines.  We use capitals in the first letters (like the “Aesthetic Curve”) to mean curves with 

linear LCH.  We use “aesthetic curves” to mean beautiful curves in artificial and the natural objects.  The Aesthetic 

Curves have the following properties: (1) The Aesthetic Curves can represent many of aesthetic curves in artificial and 

the natural objects.  (2) The Aesthetic Curves include the Clothoids, logarithmic spirals, circle involutes and circles as 

special cases.  (3) The curvature is of monotone.  (4) The curvature variation can be controlled by one parameter α . 

(5) Aesthetic Curve segments can be interactively generated by three control points and α .  Although the Aesthetic 

Curves have many desirable properties, they are represented in quadrature forms.  In CAD systems, it is de facto 

standard to use freeform curves and surfaces, such as B-spline or Bézier curves.   To get the Aesthetic Curves 

incorporated into CAD systems, we need to show that they can be replaced in the form of freeform curves and present 

a method for doing this. 

 

This paper proposes quasi-Aesthetic Curve segments in the form of rational cubic Bézier curves.  Quasi-Aesthetic 

Curves are curves with approximate linear LCH.  We show that the Aesthetic Curve segments can be replaced by 

quasi-Aesthetic Curve segments of monotone curvatures with the approximate linearity of LCH.  Except when an 

aesthetic curve segment includes a nearby point of infinite curvature, our results show that the proposed method can 

replace very well the Aesthetic Curve segments by quasi-Aesthetic Curves preserving the monotonicity of curvature 

and the approximate linearity of LCH. 

 

The rest of the paper is organized as follows.  Section 2 reviews the relevant literature.  Section 3 briefly describes the 

LCH, the family of the Aesthetic Curves and Aesthetic Curve segments.  Section 4 presents a method for representing 

quasi-Aesthetic Curves in rational cubic Bézier forms.  Section 5 describes a method for checking the monotonicity of 

curvature of rational cubic Bézier curve segments.  The final two sections present results and conclusions. 
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2. RELATED WORK 
A lot of work has been done for designing aesthetically pleasing curves and surfaces.  Higashi et al. proposed a 

method for controlling the curvature distribution of a curve by its evolute, which is the locus of the curvature center [7].  

They also propose a method for generating smooth surfaces.  Miura proposed unit quaternion integral curves for more 

direct control of their curvatures and variations than Bézier or B-spline curves [8].  Recently, Farin proposed a method 

for generating control points of a Bézier curve segment of arbitrary degree of monotone curvature and torsion [4].  

The generated curves are called Class A curves.  The book edited by Sapidis [11] includes a collection of papers 

focusing on aesthetic aspects of geometric modeling.   

 

The Aesthetic Curves are curves whose logarithmic curvature histograms are represented by straight lines [6,16].  They 

include the Clothoids, logarithmic spirals, the circle involutes, and circles as special cases.  In this paper, we represent 

the Aesthetic Curves in rational Bézier forms guaranteeing the monotonicity of curvature.  Aesthetic Curves are briefly 

described in the next section. 

 

Methods have been proposed for approximating logarithmic spirals or the Clothoid curves, which are included in the 

Aesthetic Curves.  Baumgarten and Farin proposed a method for approximating logarithmic spirals by rational cubic 

Bézier curves [1].  In their method, the positions, tangents and curvatures at the two endpoints of the approximated 

curve are the same as those of the original spiral.   We use a similar technique for the endpoints constraints.  Wang et 

al. have described a method for approximating the Clothoid curve by polynomial Bézier curve segments of degree n  

using Taylor expositions [13].  

 

Concerning  the methods for checking the monotonicity of curvatures, Sapidis and Frey presented the necessary and 

sufficient condition of monotone curvature for polynomial Bézier curves of degree two [11].   Frey and Field presented 

the condition for rational quadratic curves [5].  Dietz and Piper proposed a method for controlling polynomial cubic 

Bézier curves such that they become spirals (thus become of monotone curvature) [2].  They used precomputed tables 

for the control of Bézier curves.  Wang et al. presented sufficient monotone curvature conditions of polynomial Bézier 

and B-spline curves of degree n [14].   The condition of the monotonicity of the curvature of rational cubic Bézier 

curves has yet to be derived. 

 

3. THE AESTHETIC CURVES 
The Aesthetic Curves are curves based on the analysis of many aesthetic curves in artificial and the natural objects.  

Harada et al. have shown that many of aesthetic curves in artificial and the natural worlds are curves whose LCHs can 

be approximated by straight lines [6,16].  The slope of the straight line of LCH (also called the slope of LCH) is called 

α .  Miura derived the general formula of the Aesthetic Curves [9].  Using the general formula, we have identified the 

family of the Aesthetic Curves and presented a method for interactively drawing a segment by specifying three control 

points and the slope of LCH α .  This section introduces the LCH, the family of the Aesthetic Curves and Aesthetic 

Curve segments. 

 
3.1 Logarithmic Curvature Histograms 
A curve and its logarithmic curvature histogram are shown in Fig. 1.  Let ρ  and s  be the radius of curvature and the 

arc length, respectively.  When a curve is subdivided into infinitesimal segments such that  ρρ /Δ  being constant, the 

LCH represents the relationship between ρ  and sΔ  in a double logarithmic graph [9].   Harada showed that many of 

aesthetic curves, such as the key lines of automobiles, the birds’ eggs and the butterfly’s wings, are curves whose LCH 

can be approximated by straight lines with slope α .  Harada et al. insisted that the slope of LCH α  is closely related 

to the impression of a curve [6,16]. 

 

Miura derived the general formula of the Aesthetic Curves whose LCHs are represented by straight lines: 

 c
s

+=
Δ

Δ
ρα

ρρ
log

/
log                        (3.1) 

where c  is a constant. 
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Fig. 1: A curve and its Logarithmic Curvature Histogram. 

 

3.2 The Family of Aesthetic Curves 
We have derived the equations of the Aesthetic Curves [15] by integrating the general formula derived by Miura using 

the constraints of the standard form.   In the standard form, constraints of translation, rotation and scaling are placed 

at a certain point of the curve.  We call the point of the curve at Λ=sd/dρ  the reference point.  At the reference point, 

the following constraints are placed to obtain the standard form:  the curve goes through the origin (translational 

constraint), the tangential direction is the positive x axis (rotational constraint) and the radius of curvature is 1 (scaling 

constraint). 

 

The point on an Aesthetic Curve whose tangential angle is θ  with the slope of LCH α  in the standard form is 

represented on the complex plane by 
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where i  is the imaginary unit, Λ  is the parameter for specifying sd/dρ at the origin.  Changing Λ  means a similarity 

transformation of the curve when 1≠α  or the change of the shape of the curve when 1=α .  The point on an Aesthetic 

Curve can also be formulated using the arc length.  θ  and Λ  may have either an upper bound or a lower bound.  

See [15] for the details.  The curvature κ  of the Aesthetic Curves are given by  
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Tangential angle θ  and arc length s  are related by 
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For understanding the family of the Aesthetic Curves and drawing curve segments, two kinds of standard forms are 

considered.  Standard Form I is used for identifying the overall shapes of the Aesthetic Curves. Λ  is set to 1  in 

Standard Form I.  Standard Form II is used for interactively drawing curve segments and Λ  can be an arbitrary value 

( Λ  may have bounds depending on α ).  

 
Fig. 2 shows the family of the Aesthetic Curves in Standard Form I.  When ∞±−= or  2,1,1α , the Aesthetic Curve is 

the Clothoid curve, a logarithmic spiral, a circle involute or a circle, respectively.  The characteristics of the Aesthetic 

Curves at 0=ρ  or ∞=ρ are analyzed in [15].  For example, when 0<α , the Aesthetic Curve includes the point of 

arc length
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ρρ Δ+sΔ

the radius of curvature

constant being  / 　ρρΔ

ρ
ρρ Δ+sΔ

ρρ /
log

Δ
Δs

ρlog
ρρ /Δ

The slope of LCH：α
ρρ /

log
Δ

Δs

ρlog
ρρ /Δ

The slope of LCH：α

 



 

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 477-486 

 

480 

inflection.  When 0>α , the Aesthetic Curve includes the point at  0=ρ .  If 10 ≤< α , the Aesthetic Curve spirally 

converges to the point at 0=ρ .  If 1>α , the tangential direction is determined at 0=ρ . 

 

 
Fig. 2: The family of Aesthetic Curves in Standard Form I. 

 
3.3 Aesthetic Curve Segments 
An Aesthetic Curve segment can be interactively drawn by specifying three control points cba ppp ,,  and α .  We 

briefly describe how the curve segment is computed.  From the control points given, the change of tangential angle dθ  

can be computed as the angle formed by ab pp −  and bc pp − (See Fig. 5 (a)).   On the overall shape of the Aesthetic 

Curve with the slope of LCH α , we can decide the points 0p  and 2p  such that their tangential angles are 0  and dθ , 

respectively(See Fig. 5 (b)).  1p  is the intersection between the tangent lines at 0p  and 2p .  If the two triangles 

cba ppp  and 210 ppp  are similar, the Aesthetic Curve segment can be drawn by transforming the points on the 

Aesthetic Curve in Standard Form II such that 210 ,, ppp   are transformed to cba ppp ,, , respectively.  The similar 

triangle 210 ppp  can be found by changing Λ  using the bisection method[15].  Note that the positions of control points 

and α  dictate whether an Aesthetic Curve segment can be drawn.  See [15] for the drawable regions depending on 

α .  Fig. 3 shows an Aesthetic Curve segment of 1−=α  and its corresponding overall shape. 

 
Fig. 3: (a) An Aesthetic Curve segment and (b) the corresponding overall shape.  
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4. QUASI-AESTHETIC CURVES IN RATIONAL CUBIC BÉZIER FORMS 
We are given an Aesthetic Curve segment AEs  defined by three control points cba bbb ,,  and the slope of LCH α (Fig. 

4 (a)).  We try to find a quasi-Aesthetic Curve segment represented by a rational cubic Bézier curve segment Bs  that 

replaces the given Aesthetic Curve segment ( ) ( )θθ AEAE Ps =  preserving the approximate linearity of LCH.  Thus, we 

can draw a quasi-Aesthetic Curve segment similarly as an Aesthetic Curve segment by specifying three control points 

and α .  Finding a curve with monotone curvature and prescribed positions, unit tangents and curvatures at the end 

points is a sensitive problem.  As will be shown in Fig. 7, however, Aesthetic Curves are well-approximated by Quasi-

Aesthetic Curves except when the curves include the point at 0=ρ  or ∞ . 

 

Let a rational cubic Bézier curve segment Bs  be defined by 

( ) ( )
( )

[ ]1,0     ∈= t
tw

t
tB

p
s                       (4.1) 

where 
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( )tBi
3  is the Bernstein polynomial, iii w bP = , ( )2Eb ∈i  is the i-th control point vector and +∈Riw  is its weight.  

Although the rational cubic Bézier curve has 12 parameters, its degree of freedom (DOF) is actually 10.   Thus 2 of 12 

parameters may be chosen arbitrarily.  This is because either scaling all iP  by a scalar ( )00 ≠s  or scaling 3210 ,,, wwww  

by ( )0,,, 1

3

1

2

1

1

1

0

1 ≠sssss  respectively does not change the shape of the curve.   For approximating the given Aesthetic 

Curve, we need to fix 10 DOFs. 

 

To determine the rational cubic Bézier curve segment Bs , we need to determine the control point vectors 3210 ,,, bbbb  

and their weights 3210 ,,, wwww .  We choose the weights 1w  and 2w  for arbitrarily chosen parameters.  We define: 

 ( )( ) .3/12/cos221 +== Dww θ        (4.3) 

1w  and 2w are derived by performing degree-elevation to a rational quadratic Bézier curve that represents a circular 

arc with the change of tangential angle Dθ  assuming 130 == ww .  Dθ is the angle formed by ab bb −  and bc bb −  (Fig. 

4 (a)).   Positional and tangential constraints at the start and end points of AEs  yields: 

 ,0 abb = ( ),11 aba b bbbb −+= ( ),22 cbc b bbbb −+= ,3 cbb =  

where ( )1,0, 1010 ≤≤ bbbb  are unknowns.  The curvatures at the start point ( 0κ ) and at the end point ( 1κ ) are [1,3] 
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Fig. 4: (a) An Aesthetic Curve segment and (b) its approximation. 
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Solving these equations for 30 ,ww , respectively, using Eqn.(4.3), we obtain 
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Thus, 30 ,ww  can be computed if two unknowns 10 ,bb  are determined.   In Fig. 4(b), fixed DOFs are shown in 

parentheses. 

 

We use the optimization approach to determine 10 ,bb such that the sum of squared errors between points on the 

rational cubic Bézier curve segment Bs and the corresponding points on the Aesthetic Curve AEs .  The correspondence 

between the points on Bs (Eqn.(4.1)) and AEs (Eqn.(3.2)) is established as follows.   The change of tangential angleθ  

at ( )tBs  is computed as the angle formed by ( )0Bs�  and ( )tBs� .  Then the corresponding point on the Aesthetic Curve is 

computed by ( )θAEs .  See Fig. 5.  We minimize the following function ( )10 ,bbf : 

 ( ) ( ) ( )( )∑ −= θAEB tbbf ss10 , .                      (4.8) 

If 10 ,bb  are found such that ( )10 ,bbf  is a minimum, all the parameters of a rational cubic Bézier curve are determined.  

Thus we can represent quasi-Aesthetic Curves in rational cubic Bézier forms. 

 

 
Fig. 5: A point (left) on the rational cubic Bézier curve segment Bs  and the corresponding point (right) on the Aesthetic 

Curve AEs . 

 

5. THE MONOTONICITY OF THE CURVATURE OF RATIONAL CUBIC BÉZIER CUREVES 
To confirm that the approximated curve Bs  is of monotone curvature, we need a method for checking the 

monotonicity of the curvature of rational cubic Bézier curves.  We briefly describe our method for checking the 

monotonicity of the curvature based on Wang et al.’s approach [14]. 

 
The derivative of curvature κ  of a curve ( )tx  with respect to arc length s  is [3,10] 

 
( )( ) ( )

6

3 ,det3,det

x

xxxxxxxx

�

��������� ⋅−⋅
=

ds

dκ
                     (5.1) 

where ( )3,, xxx ��� are the first, second and third derivatives of x  with respect to t .  If 0≥
ds

dκ
 or 0≤

ds

dκ
 within [ ]1,0∈t , 

then the curve is of monotone curvature.   Note that this definition of monotone curvature includes circular arcs where 

0=
ds

dκ
 without depending on t .   

 

We check the monotonicity of curvature of a rational cubic Bézier curve segment ( )tBs  using Eqn.(5.1).  If the 

positions of all the control points are different, the denominator of the right-hand side of Eqn.(5.1) is always positive.  

 

( )tBs  

( )tBs�  

( )θAEs  

Compute the tangential angle θ  
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Thus, we only need to consider the numerator of the right-hand side of Eqn.(5.1).   Let nK  be the numerator of the 

right-hand side of Eqn.(5.1).  Computing nK  replacing x  by Bs , we obtain 

 ( ) ( )
( )tk

tk
tK

d

n

n =                         (5.2) 

where ( )tkn  is a polynomial of degree 12 and ( )tkd  is ( )8tw  after simplification.  Since we assume all the weights are 

positive, 0≥dk .  Thus we need to consider ( )tkn  only. 

 

We change the basis of ( )tkn  to Bernstein basis and represent ( )tkn  by 

 ( ) ( )∑
=

=
12

0

12

i

iin btBtk .                       (5.3) 

Now ( )tkn  is a Bézier curve of degree 12.   To see if ( )tkn  changes its sign within [ ]1,0∈t , we consider the following 

two conditions. 

 

(a) ( )12i0 0 ≤≤≥ib  or ( )12i0 0 ≤≤≤ib  

(b) 0120 <⋅bb  

 
If the condition (a) holds, we can immediately conclude that ( ) 0≥tkn  or ( ) 0≤tkn  within [ ]1,0∈t  from the convex hull 

property.  Thus the curve is of monotone curvature.   If the condition (b) holds,  ( )tkn  changes its sign within [ ]1,0∈t .  

Thus the curve is not of monotone curvature.  If neither (a) nor (b) holds, we recursively subdivide the Bézier curve of 

Eqn.(5.3) using the de Casteljau algorithm until the condition (a) holds in one of the subdivided curves or (b) holds in 

all of the subdivided curves.  If the condition (a) holds in one of the subdivided curves, the curve is not of monotone 

curvature.   If the condition (b) holds in all of the subdivided curves, the curve is of monotone curvature. 

 
Fig. 6 shows the rational cubic Bézier curve segments with weights, the curvature plots (the graphs of κ  with respect 

to s ), and the graphs of ( )tkn  with respect to t .  Note that the vertical scales of κ  and ( )tkn  are arbitrarily scaled.  

The curve segment of Fig.6(a) is not of monotone curvature, whereas that of Fig.6(b) is.  The described method 

correctly checks the monotonicity of the curvature. 

 

 
Fig. 6: Monotonicity of the curvature of rational cubic Bézier curve segments. 
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6. RESULTS 
Fig. 7 and 8 show quasi-Aesthetic Curves in rational cubic Bézier forms with various α s.  All of these curve segments 

are confirmed to be of monotone curvature by the method described in Section 5.  If a curve should find not to be of 

monotone curvature, the aesthetic curve may be subdivided into segments until the monotone curvature condition is 

satisfied.  However, in our experiments, the monotonicity of curvature was confirmed in all the situations where the 

optimization process was successful.  In Fig. 7, two kinds of errors (rms and errMax) between the original Aesthetic 

Curve segment and the created quasi-Aesthetic curve segment are shown.  “rms” means the root mean square, and 

“errMax” means the maximum distance between the corresponding points (See Fig. 5).  These errors are normalized 

so that the arc length becomes 1.  As the change of tangential angle of the original Aesthetic Curve segment gets larger, 

both rms and errMax get worse.  The changes of tangential angles of all the curve segments shown in Fig. 7 and 8 are 

set to be 90 deg, which can be considered as the largest change of the tangential angle in practical situations.   

 

If the control points of the original Aesthetic Curve segment form an isosceles triangle, the Aesthetic Curve segment 

becomes a circular arc without depending on α . In such a situation both rms and errMax are around 16101 −×  

because a rational cubic Bézier curve can exactly represent a circular arc.   As the control points gets away from an 

isosceles triangle, the approximation error gets worse as shown in Fig. 7.  Aesthetic curve segments of 1>α  may 

include a point at infinite curvature.  Because a rational cubic Bézier curve cannot represent such a point, the 

optimization process may get unstable (trapped in local minima).  However, it is rare to use curves that include points 

at infinite curvature.   Thus, quasi-Aesthetic Curves are practical in most situations. 

 

Logarithmic curvature histograms (shown as LCH) of quasi-Aesthetic curve segments (approximated rational 

cubic Bézier curve segments) are also shown in Fig. 7 and 8.  To draw logarithmic curvature histograms, we need to 

compute 
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Fig. 7: Quasi-Aesthetic Curves of 0,1−=α  and their LCHs. 
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Fig. 8: Quasi-Aesthetic Curves of 2,1=α  and their LCHs. 

 
Fig. 9: Quasi-Aesthetic Curves and their curvature plots (1). 

 
Fig. 10: Quasi-Aesthetic Curves and their curvature plots (2). 
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using Eqn.(5.1).  From the LCHs shown in Fig. 7 and 8, we can conclude that the linearity of LCH is well-preserved 

comparing the results based on the analysis of many Aesthetic Curves [6,16].  Therefore, we can replace the Aesthetic 

Curves by quasi-Aesthetic Curves guaranteeing the monotonicity of the curvature and preserving the approximate 

linearity of LCH. 

 

Fig. 9 and 10 show quasi-Aesthetic Curve segments in rational cubic Bezier forms and its curvature plots with various 

α s.  In each of these figures, the positions of the control points are the same but α s are different.  The figures show 

how the variation of curvature changes with different α s. 

 

7. CONCLUSIONS 
We have proposed quasi-Aesthetic Curves in rational cubic Bézier forms.  Quasi-Aesthetic curves are curves with the 

approximate linear LCH.  Comparing with the approximate linearity of LCH [6,17] of the aesthetic curves in artificial 

and the natural objects, we conclude that quasi-Aesthetic Curves preserve the approximate linearity of LCH very well.  

Thus quasi-Aesthetic Curves have a potential to be used in many aspects of aesthetic shape design.  We showed that 

in most cases an Aesthetic Curve segment whose change of tangential angle is less than 90 deg. can be replaced by 

one rational cubic Bézier curve segment. 

 

Future areas of research include a more efficient and more stable method for representing quasi-Aesthetic Curve 

segments, the connection of segments and the creation of surfaces. 
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