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ABSTRACT 

 

This paper presents a new methodology of material blending for heterogeneous object modeling by 

matching the material governing features for designing a heterogeneous object. The proposed 

geometric feature matching method is used to generate non-self-intersecting and non-twisted 

connecting surfaces. The proposed method establishes point-to-point correspondence represented 

by a set of connecting lines between two material directrices. To blend the material features 

between the directrices, a heuristic optimization method developed with the objective is to 

maximize the sum of the inner products of the unit normals at the end points of the connecting 

lines and minimize the sum of the lengths of connecting lines. By subdividing the connecting lines 

into equal number of segments, one can construct a series of intermediate piecewise curves that 

represent the material metamorphosis between the governing material features. Implementation 

and examples are also presented. 

 

Keywords: Heterogeneous object modeling, curve matching, metamorphosis, ruled surface 

generation. 

 

 

1. INTRODUCTION 

Heterogeneous objects are made of different materials where each material contributes to a certain property. By 

proper control of the constituent material compositions, a heterogeneous object can be designed to exhibit different 

properties at different portions of the part. If designed properly, these objects can perform better than their 

homogeneous counterparts in many different engineering applications because of their ability to satisfy multiple 

property requirements [13]. In our earlier work [13], a feature-based heterogeneous object modeling method is 

presented. Object features that control material composition are identified as material governing features because they 

dictate the material variation inside the object. A lofting based method [13] was used to blend the material features. In 

[13], it was found that the property requirements at each material governing feature follow the normal direction as 

shown in Fig. 1. The outcome of the lofting process represents a smooth blending among its generators. In case of 

surface lofting from its generator curves, the resulting surface passes smoothly through each of the curves. In the same 

way lofting can be used to get a smooth transition from one governing feature to another. As shown in Fig. 1, the 

property requirements at each of the generators are blended along the normal direction from the generators. It is 

assumed that each iso-parametric entity in the blend direction t will represent constant property requirements. Fig. 1 

shows how two different material property requirements are blended together using a lofting process. Two curves, 

GF1(u) and GF1(u) are exposed to high and low temperatures, respectively, and therefore exhibit different property 

requirements. It is a known fact that from a heated body, heat flows in the normal direction from every point of the 

body. Therefore, the iso-parametric curves on the loft surface will represent iso-conditions (iso-temperatures). In the 

figure, the thicknesses of the curves show the temperature variations and therefore different property requirements.  

 

As shown in Fig. 1, a smooth transition between two given material governing features is provided to blend the 

material properties for heterogeneous object modeling. This can be also used as shape blending, morphing, or 

metamorphosis which is represented by a series of “in-between” curves generated by matching the generators curves’ 

normal vectors. In other words, a ruled surface is generated using the inputs as directrices and each iso-parametric 

curve on the surface constitute a stage of the metamorphosis. 
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Fig. 1: Material (property) blending between two material governing features GF1(u) and GF2(u). 

 

To be able to blend the material between two or more generators along their normal direction, the normal vectors of 

the material governing features must match. While matching the normal vectors, the following conditions must be met 

for smooth transition: 

a) The connecting normal lines must not self-intersect. 

b) The length of the ruling lines must be minimum possible. 

c) The end points of each ruling line must be matching i.e. they must have some common or similar properties. 

 

This problem can be generalized at generating ruling surface between two directices. A naïve way of constructing the 

ruling lines is by parametrically connecting the points on the two directrices. The rationale here is that both end points 

of each ruling line have the same parameter values. This does not guarantee a non-twisted ruled surface, particularly 

in case of directrices given as closed curves. The surface may also become self-intersecting and therefore unsuitable for 

metamorphosis, as also pointed out by Elber [3] and Surazhsky et al [18]. Therefore, other sophisticated methods are 

required to find the “best” set of ruled lines which satisfy all those conditions mentioned above. 

 

In the literature, several methods have been proposed, mostly catering to specific applications. For shape blending, 

attention is focused on establishing matching between the input curves based on common local properties such as 

position, edge/arc length, angle, parameter, tangent and curvature. Sederberg and Greenwood [15] established vertex-

to-vertex matching based on locations and angles at the vertices of 2-D polygonal curves. The intermediate shapes are 

obtained by linear interpolation of the matched vertices. The method also tries to avoid local self intersections. A 

similar method has been used by the same authors in [16] where the inputs are given as piecewise polynomial curves. 

 

When combinations of some of the common characteristics are found over a range of the input curves, they are 

referred to as “features.” Although the exact definitions of “features” vary by methods, the common goal is to establish 

matching between the features to retain the characteristic features of the objects during the blending process. Hui and 

Li [6] used 2D shapes composed of curve segments and defined rules in order to identify features. They developed 

algorithms to match the features based on their positions and shapes. 

 

The approach of Cohen et al [2] is to establish matching between two given C1 continuous parametric curves based 

on tangent maps. To construct a set of non-self-intersecting ruling lines, one curve is reparameterized with respect to 

the other by means of formulating an optimization problem. The objective is to maximize the sum of the dot products 

between the unit tangents to the curves at the matched points. Constraints are specified to avoid local self intersection. 

An approximate solution to the problem is obtained by first discretizing the curves into piecewise polygonal curves and 

subsequently solved using dynamic programming. However, the method is explained in detail for matching open 

curves only, where matching of the end points of the curves are constrained. For matching closed curves, the authors 

suggest using a k-shift of tangents approach. 
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Johan et al [7] also uses optimization to match equally spaced sampled points from two given input curves. The 

objective here is to minimize the sum of a cost function which is composed of a weighted sum of the difference of 

angles and difference of parameters at the matched vertices. Dynamic programming is used to solve the problem. The 

overall approach, as the authors mentioned, is an extension of [15] and [2].  

 

It is argued that features identification and matching is important so that the matched features transform into each 

other smoothly while ensuring no deformation or distortion of the in-between curves [13, 14]. In most cases of shape 

blending, feature identification is easy because the input shapes already contain some similarities between themselves. 

Although this helps in achieving visually pleasing animations, the resulting ruled surface may not always be twist or 

stretch free. Moreover, in cases of input curves that exhibit very little or no similarity, it may be very difficult to identify 

common features. Therefore, in such applications, other local properties are used for establishing the matching. 

 

In [18], the authors presented optimal boundary triangulations of interpolating ruled surfaces. This paper presents an 

algorithm for constructing an optimal triangulated ruled surface that interpolates two discrete directrices. The 

developed algorithms are used to establish equivalence between the optimal triangulation and the single-source 

shortest path problem on the graph.  

 

In the use of ruled surfaces in CAD/CAM applications, such as adaptive ruled layers approximation for multi-axis 

machining in rapid prototyping, the directrices are given as two consecutive piecewise linear curves (or, polygonal 

contours). In Koc and Lee [8], the directrices are obtained from slicing a stereolithography (STL) file. The authors find 

the matching points so as to minimize the twisting of the resulting ruled surface. Both curves are reparameterized by 

means of inserting points so that one-to-one matching can be achieved.  

 

This paper proposes a new methodology for matching between two material governing features [13] in closed 

freeform B-spline curves. The conditions for matching of two points, each on one of the given curves, are specified as 

follows: (i) the sum of the angular distances between the normals to the curves at the matching points must be 

minimized, and (ii) the sum of the Euclidean distances between the matching points must be minimized. The normal 

vector matching criterion has been selected because the matching is not dependent on any feature identification. The 

problem is formulated as a continuous optimization problem. A Greedy Ruling Line Construction (GRLC) method is 

proposed to find the global optimum discrete matching that establishes point-to-point correspondence between all 

vertices. The proposed method guarantees that the total number of ruling lines generated in the process is also 

minimized. A vertex insertion method is also proposed to ensure one-to-one correspondence. 

 

2. MATERIAL GOVERNING FEATURES 
In this paper, the directrices used for generating the ruled line set are given freeform B-spline curves [12]. B-spline 

curves are chosen because of their superiority over Bezier curves. The proposed method utilizes the normals at the 

sampled points for matching. Therefore it is necessary that both the curves be at least C1 continuous so that well-

defined normals exist at all points on the curves. In cases where the inputs are given as point sets or polygonal 

contours, one can fit a closed B-spline curve that satisfies at least C1 continuity. 

 

A B-spline curve of degree p is defined as follows [12]: 

 
,

0

( ) ( )

n

i p i

i

u N u

=

=∑C P  (1) 

 

where, the 0, ,{ }i i n=P
…

 are the control points and ,{ ( )}i pN u  are the p-th degree B-spline basis functions defined on the 

knot vector 0{ , , }hU u u= … , where, 1h n p= + + ; 

 

The input to the problem consists of two non-self intersecting, closed, and at least C1 continuous, planar, B-spline 

curves, C1(u) and C2(v) with degrees p1 and p2 , respectively. The degrees p1 and p2 need not be the same. Both curves 

are non-self intersecting (except at the joining point) and they do not intersect each other, i.e. the following conditions 

are satisfied: 
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As have been mentioned before, the ruled surface constructed by parametrically connecting the points on the curves 

1( )uC  and 2 ( )vC  is not guaranteed to be twist-free. Therefore, it is required that 2 ( )vC  be re-parameterized with 

respect to 1( )uC  before generating the surface and the ruling lines. The re-parameterization domain is same as that of 

the curve 1( )uC , i.e. 
1 1 1

[ , ]p h pu u u −∈ . Let this domain be renamed as [ , ]low highu u u∈ . If the re-parameterized version of 

2 ( )vC  is denoted as 2 ( ( ))v uC , then a ruling line ( )RL t with end points 1( )ku=p C  and 2( ( ))kv u=q C  is given as: 

 

 ( ) (1 ) ; [0,1]RL t t t t= + − ∈p q  (3) 

 
The ruling line ( )RL t  in Eqn. (3) is represents a match between its end points. Therefore, it is required that the curve 

2 ( )vC  is re-parameterized with respect to 1( )uC  such that the end points of all the ruling lines are matched. A ruling 

line ( )RL t  is introduced only when the following two conditions are satisfied:  

 

(a) The inner product of the unit normal vectors to the curves 1( )uC  and 2 ( ( ))v uC at p  and q  respectively 

is maximized. The maximum value of the inner product is equal to one when the both unit normals 

become collinear with the ruling line, rendering p  and q  perfectly matched.  

(b) The Euclidean distance between the points p and q,  
2

−p q
������

 is minimized. This condition is required to 

prevent twisting of the ruled surface.  

 

To mathematically express these two conditions, a function f can be defined that assigns a value to each ruling line as 
follows:  

 
2

( ), ( )
( , )f =

−

N p N q
p q

p q
������

 (4) 

Without loss of generality, it can be assumed that the curves 1( )uC  and 2 ( )vC  lie on the xy-plane and 1( )uC  is totally 

contained inside 2 ( )vC . The normals are calculated as follows: 
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where k is the unit vector in the positive z-direction. 

 

Now the global curve matching problem can be formulated as a continuous optimization problem where the objective 

is to maximize the sum of the function f over the entire parameter domain of the curve 1( )uC , i.e. [ , ]low highu u u∈ .  
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 (6) 

Subject to the following constraints: 

  

1. So that 2 ( ( ))v uC  is a valid re-parameterization, two consecutive ruling lines 1 2( ) ( ( ))i iu v uC C  and 

1 1 2 1( ) ( ( ))i iu v u+ +C C  should not intersect each other, i.e. 1( ) ( )i iv u v u +<    

2. No ruling line 1 2( ) ( ( ))i iu v uC C  should intersect the directrices 1( )uC  and 2 ( )vC  
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Note that no initial re-parameterization is specified as a constraint because the curves are not open.   

 

The input curves 1( )uC  and 2 ( )vC  are re-parameterized into approximating polygons (or piecewise linear curves). For 

each polygon, the number and relative locations of the vertices are governed by the desired accuracy of 

approximation. In general, the higher the number of vertices, the better is the approximation. Matching is established 

between the vertices of the polygons.  

 
 

1( )uC  is re-parameterized into a set of (a + 1) points P as follows:  

 

 { }
0, ,i i a=

=P p
…

; where, 1( )i iu=p C ; 
1 1 1

[ , ]i p h pu u u −∈ ; 1i iu u +< ; 
10 pu u= ; 

1 1a h pu u −=  

 
10 1 0 1( ) ( )pu u= =p C C  and 

1 11 1( ) ( )n a h pu u −= =p C C  (7) 

Similarly, 2 ( )vC  is re-parameterized into a set of (b + 1) points Q as follows:  

{ }
0, ,

j
j b=

=Q q
…

; where, 2 ( )i jv=q C ; 
2 2 2

[ , ]j p h pv v v −∈ ; 1j jv v +< ; 
20 pv v= ; 

2 2b h pv v −=  

20 2 0 2( ) ( )pv v= =q C C  and 
2 22 2( ) ( )b b h pv v −= =q C C  

(8) 

 

Note that the parameters iu ’s and jv ’s are not necessarily evenly distributed in their respective domains. Moreover, a 

and b are not assumed to be equal. While re- parameterizing, at every point ip  and jq , the unit normals ( )iN p  and 

( )jN q  are also calculated. Now the re-parameterized version of the function f in Eqn. (4) becomes:  

 

( )

( ) 2

( )

( ), ( )
( , )

i j i

i j i

i j i

f =
−

N p N q
p q

p q
����������

 (9) 

 

Therefore, the re-parameterized approximation of the original continuous optimization problem in Eqn. (6) can be 

expressed as: 

 

2

0 0

( ), ( )a b
i j

i j
i j

Maximize

= = −
∑∑

N p N q

p q
��������

    

 

(10) 

Subject to the following constraints.  
  

1. So that ( ) ( 1)j i j i< +  is a valid discrete re-parameterization, two consecutive 

ruling lines ( )i j ipq and 1 ( 1)i j i+ +p q  should not intersect each other, i.e. 

( ) ( 1)j i j i< + .   

2. No ruling line ( )i j ipq  should intersect the polygons, P and Q.  

 

 

A good re-parameterization is where the total number of vertices and their positions relative to each other are judicially 

chosen. The purpose is to approximate the curve within the tolerance with a minimum number of vertices. Therefore 

an adaptive subdivision scheme is employed. 

 

3. OPTIMIZATION FOR MATCHING REPARAMETERIZED GEOMETRIC FEATURES 

This section describes the solution methodology to the discrete optimization problem for ruled line construction in Eqn. 

(10). An approach named Greedy Ruled Line Construction (GRLC) is proposed to find a set of ruling lines, RL that 
maximizes the objective function in Eqn. (10). The underlying principle of the GRLC approach is to construct the set 
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RL by adding at a time one ruling line which increases the objective function value the most. At every stage of RL 
construction, the ruling line added to RL is chosen from a set of candidates named RL_candidate_list. Each candidate 

in RL_candidate_list is called a maximum valued ruling line ( )iMVRL  which satisfies both constraints 1 and 2 in Eqn. 

(10). Construction of RL continues until all the vertices on both polygons P and Q are connected by at least one ruling 
line. It can be proved that this greedy approach guarantees the global optimal solution.  

 

A maximum valued ruling line ( )iMVRL  represents the best match for a given vertex i ∈p P . If the ruling line i jpq  

satisfies both constraints in Eqn. (10) and at the same time so happens that { }
0, ,

( , ) max ( , )i j i j
j b

f f
=

=p q p q
…

 is true, 

then i jpq  is designated as the iMVRL . Since at every stage, a new ruling line is added to RL, the iMVRL  may not 

always remain the same for the same ip . This is the reason why the RL_candidate_list is emptied and reconstructed at 

every stage of RL construction. Below, the methods are described on how iMVRL  is found while satisfying both the 

constraints. To describe these two methods in the general scenario, it is assumed that iMVRL  is found while there are 

already some ruling lines in RL, none of which has ip  as an end point. In other words, GRLC method has already 

progressed to a stage when iMVRL  will be one of the candidates in the RL_candidate_list and will be added to RL set. 

 

The first constraint is met by a visibility checking method as defined below.  

 

Definition: Visibility – A point j ∈q Q is visible to ip  if the ruling line i jpq  does not intersect any edges of either of the 

polygons P  and Q .  

 

While finding the iMVRL  of the given vertex ip , only those vertices in Q  are considered which are visible to ip . A 

function IsVisible( ,i jp q ) is defined which returns true only if jq  is visible to ip . Let iV  be a subset of Q so that all 

vertices in iV  are visible to ip .  

 

{ }
0, ,

( , )i j i j
j b

true
=

= ∈ =V q Q IsVisible p q
…

 (11) 

 

Fig. 2 shows how a ruling line i jp q enters RL. Fig. 2(a) explains Equation (11) where the vertex   is connected by 

broken ruling lines to all the vertices in  iV . The iMVRL   is one among the broken lines, but not identified yet. 

  

In order to meet the second constraint in Eqn. (10), all vertices in P are traversed in counterclockwise direction starting 

from 1i+p  and ending at 1i−p . While traversing, let i′p  and i′′p be the first and last connected vertices encountered, i.e. 

i j′ ′p q  and i j′′ ′′p q  are two ruling lines already in RL. Then all the ruling lines ;i j j j j′′ ′≤ ≤pq  satisfy constraint 2.  

 

A function IsValid( ,i jp q ) is defined which returns true only if j j j′′ ′≤ ≤ . The function is so named because 

each ( ), ( )j i j j i j′′ ′≤ ≤ , qualifies to represent the discrete version of the valid re-parameterization ( )j iv . Let, iR  be a 

subset of Q containing all ,j j j j′′ ′≤ ≤q . 

 

{ }
0, ,

( , )i j i j
j b

true
=

= ∈ =R q Q IsValid p q
…

 (12) 

 

Now iMVRL  can be found from the set i i∩V R as shown in Fig. 2(b). If i i jMVRL = pq  then, by definition of iMVRL , 

the condition { }( , ) max ( , )
j i ii j i jf f ∈ ∩

 =  
 q V Rp q p q holds.  
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Fig. 2: (a) Visible vertices to ip satisfying first constraint (b) finding ruling lines satisfying both constraints 1 and 2. 

 

Since both polygons are closed, no initial match conditions are specified. The greedy approach constructs the 

RL_candidate_list. Among all candidates in RL_candidate_list, the one with the maximum value is chosen and added 

to RL. The end vertices of this ruling line are marked as connected. Then the candidate set is emptied and a fresh set is 

reconstructed excluding all the ruling lines that are already in RL. Again the “best” one is chosen from the set and 

stored in RL. This is performed repeatedly until all the vertices of both polygons are connected by at least one ruling 

line. 

 

It is possible that there can exist one-to-many matching of the vertices. This happens when the curvature of the curves 

differ significantly at the vertices. It is neither intuitive nor visually pleasing that one vertex on one directrix matches 

with many points on the other directrix. This means that while material blending, one vertex of the source will 

metamorphose into an arc on the target and vice versa. Therefore, a vertex insertion method is developed that 

“spreads out” the ruling lines so that all ruling lines have one-to-one correspondence. This is achieved by inserting 

more vertices near the vertex with degree more than one and connecting each of them with the ruling lines as shown in 

Fig. 3. 

 

If ip  and 1i+p  are two consecutive vertices onP , both of which may have degrees more than one. Let, out of all the 

ruling lines connected to ip , the line i jpq has the highest function value. Similarly, out of all the ruling lines connected 

to 1i+p , the line 1i j k+ +p q has the highest function value. Therefore, the k – 1 points between jq  and j k+q  have to be 

detached from their connections on P and be relocated because the two ruling lines i jpq  and 1i j k+ +p q  are the locally 

best matches. The points 1 1, ,j j k+ + −q q…  were connected to either ip  or 1i+p  because there were no other points 

available in-between.  

ip

1i+p

jq

j k+q

ip

i k+p

jq

j k+q

 
Fig. 3: The ruling lines with highest function value are identified and inserted. 

 

The insertion of points between ip  and 1i+p  are done according to proportional parametric increments of jq  and 

j k+q . Let the parameter associated with j l+q  be j lv + , 0, ,l k= … . Since k – 1 vertices are going to be inserted between 

ip  and 1i+p , index i+1 will increase to i+k. Let the parameters associated with ip  and i k+p be iu  and i ku + , 

respectively. Then k – 1 points are sampled from C1 between ip  and i k+p  as follows.  
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1( ) ( ) ; 1, , 1where,
j l j

i l i l i l i i k i

j k j

v v
u u u u u l k

v v

+
+ + + +

+

−
= = + − = −

−
p C …  (13) 

Using the proportional parameter increment approach of inserting points is only a discrete way of re-parameterization 

only. The vertex insertion is done in two stages. The first stage involves marching along 1C  and inserting points using 

the equation 10. Later, at the second stage points are inserted on 2C  using the same procedure discussed above.  

 

4. IMPLEMENTATION AND EXAMPLES 

The above methodology is implemented in Microsoft Visual C++. OpenGL library functions are used for visualization. 

GLUI library functions are used for user interfacing. In Fig. 4, the RL set contained 44 ruling lines, and the value of the 
objective function was 5.00185. The redundant ruling lines are identified and removed which resulted in a reduction in 

the objective function value to 3.43399. After the two pass vertex insertion, the final RL set contains 44 ruling lines, 
each of which represents one-to-one matching. The objective function value increased to 3.5000. 

Redundant 
ruling lines

    
(a)      (b) 

Fig. 4: (a) Ruling line set RL with redundant lines (b) final ruled line set after two passes of point insertion. Each ruling 

line represents one-to-one matching between the directrices. 

 

In order to compare the results of Fig. 3, both directrices C1(u) and C2(v) are re-parameterized using the uniform 
parameterization. The vertices are connected one-to-one parametrically to generate the ruling lines, as shown in Fig. 5 
(a). The result is a twisted ruled surface, and the value of the objective function is a low 1.18029. As a naïve approach 

to untwist the surface, the ruling lines are shifted by a constant number of vertices and the objective function values are 

recorded. The highest objective function value observed is 3.01518 for a 4-vertex shift, as shown in Fig. 5 (b). This is 

much less than the result in Fig. 4. 

 

(a) (b)

44 ruling lines in after 
parametric matching

RL 
Ruling lines after 
a 4-vertex shift

Ruled surface 
twisted globally

Local twisting still 
remaining on 
ruled surface

Untwisting achieved 
only locally

 
Fig. 5: Comparison of results with GRLC with parametric matching, (a) globally twisted ruled surface produced, (b) 

global untwisting is not guaranteed by k-shift of ruling lines.  
 

The directrices can be considered as key curves and a series of metamorphosis curves (iso-property curves) for 

heterogeneous object modeling can be generated between them by using the ruled lines. Fig. 6 shows the 

example where the ruling line set is divided into 5 uniform segments (material blending). 
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(a) (b) (c)

(d) (e) (f)

1( )uC

2( )vC

Metamorphosis 
(in-between) curves

 
Fig. 6:  Metamorphosis between the curves C1 and C2 using ruled line set with five intermediate curves, i.e.  j = 0… 5, 

(a) j = 0 is same as the first generator curve, (b) j = 1, (c) j = 2, (d) j = 3, (e) j = 4, (f) j = 5, is same as the second 

generator curve. 

 
The matching method described in this paper can be directly used to match the material governing features for 

designing a heterogeneous object [13]. In order to perform material blending, a lofting is done between the material 

governing features, where it was assumed that the freeform curves representing the features are already re-

parameterized and therefore already matched. Therefore, no twisting or stretching is observed in the “elements.” The 

discrete curve matching approach can be considered a generalization of the lofting process presented in [13]. 
 

5. CONCLUSIONS 

In this paper, a new method is proposed to generate matching lines between two material governing features 

(directrices) for heterogeneous object modeling. Each connecting line represents a match between two points on the 

directrices. A new method named Greedy Ruling Line Construction (GRLC) is developed to match the directices such 

that their material features (properties) are blended each other along their matched normal direction. The developed 

mGRLC method generates non-self-intersecting and non-twisted connecting material governing features. By 

subdividing the connecting lines into equal number of segments, a series of intermediate iso-property curves are 

obtained to represent the material metamorphosis between the governing material features. The developed methods 

can also be used in several other applications such as getting smooth transition between two given 2-D curves for 

animation, shape blending, morphing, approximation of 3-D solid object models from planar curves, multi-axis NC 

machining of ruled surfaces. 
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