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ABSTRACT 

 

This paper describes an approach for state-of-the-art visualization in Computer Aided Design and 

Applications (CAD) based on connecting CAD to computer animation. Instead of replicating 

functionality in rapidly outdated visualization modules for each CAD software system, CAD scene is 

imported into an animation software system where state-of-the-art visualizations are produced. The 

approach of outsourcing CAD visualization to animation has the advantages of simplicity—it is 

easier to translate CAD scene descriptions to formats suitable for import into animation software 

systems than to re-implement state-of-the-art visualization techniques—, of automatic updates—as 

animation software advances at a rapid pace driven by popular applications in entertainment, the 

advances automatically benefit CAD—, and of promoting CAD visualization research—

collaborations between CAD and visualization experts can focus exclusively on devising novel 

visualization techniques as opposed to making state-of-the-art visualization available to CAD. The 

approach is exemplified on the production of a high-quality visualization of the September 11 

Attack on the Pentagon, based on importing FEA output data into an animation software system. 

 

Keywords: visualization importance, CAD output imported into animation software, state-of-the-

art visualization. 

 

 

1. INTRODUCTION 

Visualization is an essential tool in Computer Aided Design (CAD), used at all stages of the life of a product. 

Visualization enables designing, debugging, validating, marketing, maintaining, repairing, updating, and recycling 

products effectively and efficiently. Recognizing the importance of visualization, most CAD software systems provide 

visualization functionality. However, typical visualization modules of CAD software systems fall short of realizing the 

true potential of visualization. 

One reason for this is that graphics and visualization progresses at a rapid pace driven by popular applications in 

entertainment such as 3D games and movies. Graphics and visualization techniques have reached a great level of 

sophistication that remains unmatched by the visualization modules of CAD software systems. Visualization modules 

of CAD systems are typically one or more steps behind the state-of-the-art in graphics and visualization, and the gap 

continues to widen. 

A second reason is that visualization modules of CAD software systems are now asked to produce images to be used 

outside the narrow circle of CAD specialists. If the original goal of such modules was to visually present quantities of 

highest relevance to CAD specialists, now visualization is asked more and more to produce images that describe the 

CAD scene realistically as to be readily assimilated by marketers, maintenance crews, clients, decision makers, and the 

public at large. A notable weakness of visualization modules of CAD systems is the inadequate support for realistic 

visualization of the CAD scene such that the non-expert can quickly recognize the entities involved by association with 

their real world counterparts. 

On the other hand, commercial computer animation software systems, such as Maya [8] or 3ds Max [1], track the 

progress of graphics and visualization state-of-the-art with little latency. Animation systems have reached a stage where 

they can render complex 3D scenes to produce images that can be easily mistaken for photographs (see Fig. 1.). 

Animation systems provide state-of-the-art tools for creating and controlling cameras and lights, for describing the 

visual properties of materials in minute detail as to match precisely those of virtually any real world surface, for 

managing the complexity of 3D scenes, for flexible rendering that allows trading accuracy and efficiency, and for 

exporting the 3D scene in formats suitable for interactive visualization. 
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This paper describes an approach to state-of-the-art visualization in CAD based on connecting CAD to computer 

animation. Instead of replicating functionality in rapidly outdated visualization modules for each  

 
 

Fig. 1: Photorealistic image rendered using animation software. © Proper Graphics, www.propergraphics.com. 

 

CAD software system, CAD data is imported into an animation software system where state-of-the-art visualizations 

are produced. The approach of importing CAD data into an animation software system that produces state-of-the-art 

visualizations has at least three major advantages.  

First, implementing a custom importer is a much simpler task than implementing state-of-the-art visualization 

capabilities into the CAD system. The importer essentially translates from one format to another, and, once the hurdle 

of understanding the two formats is overcome, developing the importer becomes a rather routine software 

development task, which does not require artistic talent or intimate knowledge of CAD or visualization algorithms.  

Second, the animation system tracks almost in real-time the graphics and visualization state-of-the-art. As soon as an 

advance is assimilated into the animation system, it becomes available de facto to the CAD world, for the small cost of 

occasional simple updates to the translator. 

Third, making the state-of-the-art in visualization automatically available to the CAD field increases the collaboration 

between visualization and CAD researchers in a way that stimulates research in CAD visualization. As most of those 

CAD/visualization researchers that ever collaborated or attempted to collaborate with visualization/CAD researchers 

will attest, an important challenge that needs to be overcome is to make the collaboration useful for both parties. It is 

usually the case that the bulk of the collaboration effort is spent making well known visualization methods available to 

the particular problem at hand. If instead all well known visualization methods are available by default to the CAD 

field, the collaboration with visualization researchers will focus on devising novel visualization techniques that advance 

rather than replicate the state-of-the-art. 

It is important to note that it is not proposed that all visualization capabilities of the CAD system be removed. For most 

CAD systems basic visualization is an important part of the interface, and that should not change. For example, a CAD 

tool for designing a building should still reflect the changes to the design in real time in several orthographic and 

perspective viewports. However, the CAD tool should not be expected to produce a photorealistic walkthrough of the 

building or to integrate the new building within its future surroundings in a real world city. As another example, an 

FEA tool should still be equipped with lightweight pre- and post-processors that allow for the rapid inspection of the 

results of a simulation, but the post-processor should not be expected to produce visualizations that are eloquent to the 

non-expert. 

 

2. APPROACH OVERVIEW 

Given a CAD software system and a computer animation software system, one approach for visualizing the CAD 

scene is to save the CAD scene in a format F0 and to import it into the animation system from a format F1. In some 

cases the CAD and the animation systems can import / export the same format, so F0 and F1 are the same. For 

example AutoCad files import directly into 3ds Max. In other cases there is no intersection between the export formats 

of the CAD system and the import formats of the animation system. In such a case F0 is different from F1 and one 

needs to write a translator F0F1, which implies that formats F0 and F1 be openly documented.  
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However, this approach is not always sufficient for establishing a comprehensive, robust, and scalable link between the 

CAD and the animation systems. Consider for example the case of visualizing LS-DYNA [6] output in 3ds Max. The 

LS-DYNA database format is publicly available and one could write a translator to VRML (Virtual Reality Modeling 

Language [12]), which in turn is one of the formats that 3ds Max imports. However, the approach would have several 

problems. First, the VRML format is not sufficiently rich to express complex materials, which means that some of the 

LS-DYNA data would be lost. Second, VRML is a multi-purpose 3D graphics format, and, as it is often the case when 

generality is the object, it is suboptimal in the narrow context at hand. For example, VRML does not allow animating 

vertices of triangle meshes individually. This could be bypassed by fragmenting a mesh in sub-meshes whose motion is 

well approximated by a rigid body motion, but the solution comes at the cost of substantial loss in performance. Third, 

the VRML importer in 3ds Max is far from efficient, robust or complete. Commercial software typically excels at 

importing/exporting its data in its own format, and comparatively fewer resources are allocated to developing high 

performance importer/exporters for other formats. For example, it has been our experience that some scenes exported 

from 3ds Max in the VRML format cannot be loaded back into 3ds Max. 

A better approach for visualizing a CAD scene into an animation system is to either extend the CAD system with a 

custom exporter that outputs the scene in the native format of the animation system, or to extend the animation 

system with a custom importer that inputs the CAD scene in its native format. The second option—namely developing 

a custom importer into the animation system—is usually the one to be preferred since  

• Commercial animation systems have an open software architecture which allows extending their 

functionality, without exposing the source code. 

• Animation systems employ a complex scene file format. 

• Animation systems have a well developed and documented Software Development Kits (SDKs), which 

provide good support for the development of custom modules. 

Fig. 2 gives an overview of the approach of producing high-quality visualizations of CAD scenes within an animation 

system based on a custom importer. The importer pipeline takes as input the CAD scene stored in one or several files 

and creates the corresponding scene in the animation system. The importer pipeline is described in Section 3. Once 

the scene is imported into the animation software it is assigned graphics and visualization materials which enable a 

high-quality visualization. This step is described in Section 4. In many cases the eloquence of the visualization is 

enhanced by integrating the CAD scene into the surrounding scene which provides the necessary context without 

having to increase the complexity of the CAD scene unnecessarily. Approaches for modeling the surrounding scene 

using both tools provided by the animation system and external tools are described in Section 5. Once the CAD scene 

is registered in space and time with the surrounding scene, a high quality visualization is produced (output a). The 

animation system also serves as a platform from where simplified scenes suitable for interactive visualization are 

exported (output b). The various export options are discussed in Section 6. 

 

 

 

Fig. 2: Approach overview. 
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The approach was used to produce a high quality visualization of the September 11 Attack on the Pentagon [3, 11]. A 

large-scale FEA simulation of the aircraft impacting the Pentagon building was computed in LS-DYNA and then 

visualized in 3ds Max using a custom plug-in that imported the LS-DYNA output database into 3ds Max. The case 

study is used in the following sections as illustration. 

 

3. IMPORTER PIPELINE AND IMPLEMENTATION 

This section describes the stages of the importer pipeline and then gives a general description of the process of 

extending an open software architecture through a plug-in. 

 

3.1 Pipeline Stages 

The importer pipeline has 3 stages that convert the CAD scene into an animation system scene that is equivalent from 

the visualization standpoint (see Fig. 2 again). In the first stage the CAD scene files are parsed and loaded into 

intermediate data structures internal to the importer. Parsing the format of a well described CAD scene file is routine. 

Sometimes the file format is not fully specified so that this step is somewhat tedious. Not all data is loaded. For 

example values of material parameters that do not influence visual properties are skipped.  

In the second stage all data that is irrelevant from the visualization standpoint is simplified. For example, intermediate 

node positions for states s1, s2, …, sn can be discarded if the node trajectory is well approximated by the node positions 

at states s0 and sn+1. Deciding what trajectory simplification is acceptable depends on the application. A non-lossy 

simplification will remove only positions perfectly aligned with the segment defined by the first and last states. A lossy 

simplification could tolerate deviations up to a user chosen ε. Another example of data that is redundant from the 

standpoint of visualization are internal faces in a cell decomposition. If a face is never visible during the visualization, it 

can be safely removed to lower the geometric complexity of the scene. In the example of importing FEA data, 

removing the internal faces of a large structure composed of hexahedral elements reduces the face count considerably. 

Deciding which face is internal and which is not has to be done on the last state if eroding elements make the large 

structure break into pieces exposing originally internal faces.  

A third source of redundant data is excessive tessellation. The tessellation level dictated by CAD constraints (e.g. 

manufacturability, uniformity of elements in FEA simulation) can be substantially higher than that needed to produce 

a smooth visualization. This is particularly true since graphics and visualization techniques such as Phong shading [9] 

have been developed to produce the appearance of a smooth surface even for coarse tessellations. To avoid wasting 

visualization resources, the importer should attempt to load higher order surfaces and then let the animation system set 

the tessellation level according to each rendered frame. When that is not possible, classic geometry simplification 

techniques can be used to replace adjacent coplanar or nearly coplanar faces with a larger face. 

The two pipeline stages discussed so far load the relevant data into custom data structures internal to the importer, and 

are independent of the actual animation system used. The third stage instantiates animation system structures 

according to the importer data structures to create the animation system scene. For example, a set of connected FEA 

beam elements with a circular cross section is modeled as a spline with several segments and with a relatively high 

level of tessellation (e.g. 12). Beam elements with a square cross section are modeled by reducing the tessellation 

factor to 4 and by setting the shading model to flat (as opposed to smooth). If the beam elements have a more 

complicated cross section (i.e. an I or a T cross section), the elements are modeled with a triangle mesh. A double-

sided mesh can model thin I-shaped beams at the cost of 6 vertices per node. Thick I-shaped beams require 12 

vertices per node. 

It is important that the importer defines its own data structures. Custom data structures tailored precisely for the type of 

data to be loaded make the import efficient, avoiding having to use the often heavy data structures of the animation 

system. The custom data structures also accelerate the development of the importer as the developer does not need to 

be intimately familiar with the animation system data structures to debug the implementation efficiently. Finally, the 

importer data structures provide a clear separation between the front end of the importer that implements the task of 

loading and simplifying the CAD scene and the back end of the importer which populates the animation system scene. 

The front end is reused when retargeting the importer to additional animation systems. For example developing an 

LS-DYNA to Maya importer based on the 3ds Max importer requires only a fraction of the effort of the initial 

development. 

The output of the importer pipeline (see label 1 in Fig. 2) is a raw animation system scene created from the CAD 

scene. Fig. 3 shows a state of the Pentagon LS-DYNA simulation imported into 3ds Max. Although the import pipeline 
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itself does not contribute directly to improving the visual qualities of the scene, it brings the CAD scene into the 

animation system where its visual properties are refined. 

 

   
 

Fig. 3: Example of importer pipeline output—FEA data imported into animation system. 

 

3.2 Software Development Considerations 

The importer is implemented as an animation system plug-in. Modern animation systems such as 3ds Max and Maya 

have an open software architecture extendable through plug-ins. A plug-in is a custom module of the animation 

system, developed with the SDK that is made available to developers. The plug-in is usually written in a widely used 

high level programming language such as C++. The plug-in source code is built into a dynamically linked library file 

which is loaded into the animation system at startup. There are several types of plug-ins, according to the type of 

functionality they provide. The plug-in type best suited for extending the importing capabilities of the animation 

system is selected. The plug-in is implemented by a class that inherits from the generic class for the plug-in type and 

specializes the virtual methods according to the CAD scene imported. 

For example, 3ds Max SDK defines 13 plug-in types, 12 of which are listed in Tab. 1. File Import is a plug-in type 

specifically designed for importing from novel formats. There are 12 virtual methods for the File Import plug-in class. A 

constructor and a destructor allow building and releasing data structures internal to the plug-in. A set of 9 methods 

allow gathering data about the plug-in such as file extensions supported, author name, copyright message, short and 

long text descriptions, and version. One method defines 3ds Max commands to be performed after the plug-in 

concludes such as choosing appropriate views for each viewport. The actual import pipeline is implemented by a 

method suggestively dubbed DoImport, which implements the import pipeline. 

 

 Plug-in type  Plug-in type  Plug-in type 

1 Atmospheric 5 Image processing 9 Renderer 

2 Controllers 6 Materials 10 Space Warps 

3 File Import/ File Export 7 Object Modifiers 11 System 

4 Image loading and saving 8 Procedural Objects 12 Texture Maps 

 

Tab. 1: Plug-in types defined by the 3ds Max SDK. 

 

In order to develop the plug-in efficiently the front-end, which is independent of the animation system, should be 

tested in a separate executable. Once the front-end performs as expected, the entire plug-in is tested within a much 

slower debugging loop which includes launching the animation system and invoking the newly added functionality by 

importing a CAD file type from the animation system user interface. 
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4. VISUALIZATION REFINEMENT 

Animation systems have reached a high-level sophistication and allow synthesizing images of stunning quality and 

realism. A detailed animation system tutorial is beyond the scope of this paper. The essential ingredients for producing 

a visualization are geometry, animation, materials, lights, and cameras. 

The animated geometry has already been created by the importer. Animation systems offer powerful tools such as 

tools for computing normals, for further simplifying geometry to meet face count budgets, and for smoothing faces and 

normals. However, any modification to the geometry or its animation alters the imported CAD scene. Therefore 

modifications can be performed only within the limits of the desired level of fidelity. 

Modern animation systems offer sophisticated material editor tools which allow creating materials whose appearance 

matches that of virtually any real world scene. Many materials needed to visualize the CAD scene are already available 

in comprehensive material databases. Materials models can incorporate physical measurements such as photographs 

or bidirectional reflectance distribution function (BRDF) data. Some materials can be rendered at interactive rates with 

the feed forward graphics pipeline implemented by graphics hardware (e.g. materials based on simple direct 

illumination shading models, texture mapping, approximate reflections and refractions, or hard shadows), and some 

materials require more expensive rendering techniques such as ray tracing (e.g. materials requiring accurate reflection 

and refraction, soft shadows, complex BRDFs). 

Animation systems also offer comprehensive support for light design and placement. Omnidirectional, directional, 

spot, area, skylight, free, target and combinations allow building lights with the desired general characteristics which 

are then refined using numerous parameters to obtain precise lighting effects. 

Cameras are essential since they ultimately capture the images of the virtual world to produce video sequences that 

expose the characteristics of the scene and help make the points for which the CAD scene was generated in the first 

place. As in the case of lights, perspective, orthographic, free, target and combinations define the desired type of 

camera which is then further described by choosing appropriate parameter values. The animation systems provide 

convenient methods for animating cameras such that they smoothly travel through the scene as to reveal all important 

aspects. One general approach is to define key frames by choosing a few relevant viewpoints and then let the system 

create intermediate views by interpolation. A second general approach is to define the camera trajectory using a one 

dimensional geometric object such as a spline. A third possibility is to capture the camera motion in the real world 

using motion capture devices or trackers. 

Fig. 4 shows snapshots of 3ds Max visualizations of the Pentagon simulation data. Most of the kinetic energy of the 

plane was concentrated in its fuel, so the visualization effort focused on liquid visualization. 

 

5. MODELING THE SURROUNDING SCENE 

It is often the case that the impact of the visualization is magnified if the CAD scene is integrated into the surrounding 

scene. For example, a new building should be placed in the context of the neighboring buildings, streets, and parks. 

Illustrating how to service a power plant by replacing a large component should also show the neighboring 

components and the access paths to and within the plant in order ensure accessibility and to devise the optimal 

approach for installing the new component. 

Modeling 3D scenes is a challenging open research problem approached from the directions of computer graphics, 

computer vision, physics, and optical engineering. Animation systems offer support for 3D modeling based on the 

traditional computer graphics approach of manually instantiating, placing, and decorating geometric primitives. The 

approach is inefficient due to the manual work involved and relies on 3D content creators with a rare combination of 

artistic and technical skills.  

 

An alternative approach is to model from acquired color and depth data. Color acquisition is a solved problem as 

high-resolution digital cameras are now ubiquitous. Satellite and aerial imaging provide detailed visual descriptions of 

large real-world scenes. Photographs can be applied to geometry by texture mapping or projective texture mapping 

which are classic computer graphics techniques for orthographically or perspectively mapping color data to surfaces. 

Depth acquisition is more challenging. A series of depth acquisition technologies have been developed, including 

depth from stereo [10], depth from structured light [5], and time-of-flight laser rangefinding [2, 4], each with its 

strengths and weaknesses (see Tab. 2.). 
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Fig. 4: High-quality visualization of FEA data, produced within animation system.  

 

   

 
 

Fig. 5: Satellite (courtesy Space Imaging) and aerial (courtesy ASCE) photographs (top), and Boeing 757 (courtesy 

Amazing Graphics) and Pentagon building models (bottom). The images and models were used to describe the 

surrounding scene for the September 11 Attack on the Pentagon simulation. 

 

 

Depth 

acquisition 

method 

Robustness Cost 

Depth from 

stereo 

Problems with uniformly colored surfaces or on 

surfaces with view dependent appearance (e.g. 

specular, transparent). 

Fast, inexpensive, intuitive 

acquisition (photographs) 

Slow search for correspondences 

Depth from 

structured 

light 

Handles uniformly colored surfaces. 

Problems with ambient light (light pattern becomes 

invisible), with view dependent appearance, with 

dynamic scenes (lengthy sequential scanning). 

Slow acquisition and modeling 

(registration, 3D triangulation) 

Expensive controllable light 

sources (projectors, lasers) 

Time-of-flight 

laser 

rangefinding 

Does not require controlling the scene lighting. 

Problems with view dependent appearance and with 

dynamic scenes. 

Slow acquisition and modeling. 

Expensive laser rangefinders. 

 

Tab. 2: Strengths and weaknesses of various depth acquisition technologies. 
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In the case of the Pentagon Attack, the surrounding scene was modeled using satellite and aerial digital photographs, 

as well as surface models for the plane and the Pentagon (Fig 5). It was important to model not only the scene 

spatially adjacent to the impact, but also to extend the timeline to the moments preceding and succeeding the impact. 

Fig. 6, 7, and 8 show snapshots of the pre-impact, impact, and post-impact visualizations. 

 

6. EXPORT FOR INTERACTIVE VISUALIZATION 

Animation systems produce visualizations off-line by running complex algorithms distributed across rendering farms. 

However, animation systems are excellent platforms from which to export simplified versions of the scene that are 

suitable for interactive visualization. Most animation systems allow exporting in VRML and other formats that are 

readily handled by interactive renderers. VRML standalone and web browser plug-in viewers allow visualizing complex 

scenes at interactive rates, leveraging the great power of PC graphics accelerators. Materials that require ray tracing in 

3ds Max are replaced by simpler materials that can be handled by the feed-forward graphics pipeline. For example 

liquid is visualized interactively by alpha-blending, an approximate but fast method for rendering transparency (Fig. 9). 

 

   
 
 

Fig. 6: Snapshots from the pre-impact visualization. 

 

  

 

Fig. 7: Snapshots from the impact visualization. At the region of impact the top floors of the Pentagon building were 

removed for improved visualization. 
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Fig. 8: Snapshots from the post-impact visualization. 

 

 

  
 

Fig. 9: Ray traced (off-line) and alpha-blended (interactive) liquid visualization. 

 

Another example of simplification needed to achieve interactive rendering rates is replacing accurate ray traced 

reflections with approximate environment mapped reflections. The animation system can be used to produce quality 

environment maps to be used subsequently in interactive visualizations. 

Several methods have been developed to improve the quality of the interactively rendered images. One method is to 

“bake” the high-quality appearance of surfaces into textures. Another method is to save snapshots of the scene 

enhanced with depth [7], which are then used as rendering primitives in interactive visualizations. Both methods 

convey successfully an “off-line” quality to interactively rendered images, but they limit the changes that can occur in 

the scene during visualization. For example one cannot change the lighting or move objects that cast shadows since 

that would imply re-baking the appearance textures or re-rendering the reference images. 

Graphics hardware continues to progress at a rapid pace hence the quality gap between images rendered off- and on-

line shrinks continually. As graphics processing units (GPUs) and the languages that program them grow in 

sophistication, vertex and pixel programs will grow in length and complexity. We foresee that the animation system will 

serve as an interface between the user of complex materials and the programmer that designs the shaders that render 

the material at interactive rates on the GPUs. 

 

7. DISCUSSION 

This paper proposes to produce high-quality visualizations of CAD scenes in state-of-the-art animation systems. 

Developing an importer is a relatively simple task which unlocks the many benefits of animation systems. The CAD 

specialist will not obtain the same results using an animation system as would an artistically gifted proficient user of the 
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animation system. However, the CAD specialist will produce visualizations superior to those produced in visualization 

modules of CAD tools after a minimal learning effort. Moreover, the importer gives the CAD specialist the option of 

recruiting the help of a professional animator, which is not possible when the scene is only available in the native CAD 

format. The approach of outsourcing visualization has potential in domains beyond CAD including science and 

engineering in general. Importers could be developed in open source within a community that shares front and back 

ends of the importers to allow interconnecting N science and engineering software systems to M computer animation 

software systems at a cost proportional to N+M. 
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