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ABSTRACT

In this paper, we propose a triangular mesh deformation method based on dimensions. By
specifying the type of dimensions, the regions defining the dimensions, and the target dimensions,
the mesh is automatically deformed so that it satisfies the target dimensions. Mesh deformation is
based on space-based deformation using barycentric coordinates. The deformation handle, which
consists of a set of triangular prisms, is automatically created by mesh segmentation, simplification
and offsetting of simplified mesh. In deformation, the deformation and fixed spaces are assigned to
each prism in the handle, and the mesh is deformed by applying affine transformation to the control
vertices and space-based deformation to the deformation space. Results for the mechanical parts
show the effectiveness of our method.
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1. INTRODUCTION
Mesh-based geometric modeling is a powerful technology for use in CG character design and product design.
Especially in CAE, flexible mesh deformation methods are essential for realizing efficient product development. In
order to find a functionally satisfactory shape of the product, the current CAE process includes iterative meshing of the
CAD model, analysis, and modification of the product shape using the CAD model according to the results of analysis.
Although much research on automatic mesh generation for FEA has been done, the challenge of improving the
robustness and efficiency of meshing still remains. Therefore, direct modification of the mesh is highly necessary for
avoiding the iterative meshing process.

Dimension-driven mesh deformation is very useful for the efficient modification of the mesh model of the product
shape in CAE. Mesh deformation based on dimensions allows us to effectively modify the design of the product shape,
as in CAD systems. Moreover, it provides an efficient parametric survey for finding optimal dimensions without the
CAD model, and may bridge the gap between the CAD and CAE models.

Much research on mesh deformation has been conducted for mesh-based geometric modeling. Current mesh
deformation methods can be classified into space-based, surface-based and simple representation-based methods.
Space-based deformation deforms the mesh models by embedding the mesh into a space spanned by some basis
functions and deforming the space while manipulating the handle (control points) [5,9,10]. Surface-based deformation
describes the mesh geometry by local differential equations and deforms the model by changing the boundary
conditions and solving equations [11,14]. An elegant combined method of these methods has also been proposed for
assembly model deformation [8]. Simple representation-based deformation makes geometric relationships between
mesh vertices and simple representations such as sketches and simplified meshes, and deforms the models by
manipulating them [6,15]. These methods achieve flexible and intuitive deformation of mesh models. However, they
do not discuss the modification of the dimensions of the model.
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This paper proposes a triangular mesh deformation method based on dimensions. Our method is based on space-
based deformation using barycentric coordinates. In space-based deformation, creating a deformation handle suitable
for the intended deformation is a practical use issue because the degree of freedom for deformation is determined by
the number of handle control points. Manipulating the handle appropriately is also important to obtain the intended
shapes, because the user does not manipulate the model geometry directly in the basic approach. Therefore, we
introduce a method for creating a handle suitable for dimension-based deformation and automatic handle
manipulation depending on the target dimensions.

In section 2, the problem settings and basic considerations for dimension-based mesh deformation are described. Then,
a mesh deformation method using barycentric coordinates is introduced in section 3. The procedures for dimension-
based mesh deformation and the formation of detailed algorithms are proposed in section 4. The results of our method
are shown in section 5.

2. DIMENSIONS AND SPACES FOR DEFORMATION
2.1 Dimensions
Many types of dimensions are used in geometric modeling and implemented in CAD systems. In this paper, we address
the following three, which are highly useful in the design modification of mechanical parts (Fig. 1):

A) Distance between two parallel planes (Fig. 1(a))
B) Radius of the cylinder (Fig. 1(b))
C) Position of the local object on the plane (Fig. 1(c))

These dimensions are often equivalent to the parameters of major form features in mechanical parts. The distance
between two parallel planes (DP) corresponds to the distance of the padding (extrusion) of the sketch and the depth of
pockets or blind holes. The radius of the cylinder (RC) can change the radius of the cylindrical holes or bosses. The
position of the local object on the plane (PO) can modify the positions of the form features defined on the plane. Fig.
1(d) shows an example of mechanical parts. In this model, it is possible to modify all parameters of the form features
used for defining its geometry by these dimensions.
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Fig. 1: Dimensions.

2.2 Spaces for Dimension-based Mesh Deformation

Changing the above dimensions is achieved using affine transformations: translation of a planar face or local object for

the DP and PO, and scaling of cylindrical faces for the RC. Here, the face and local object indicate a meaningful set of

triangles in the mesh, such as a planar region, cylindrical region or the form features. Due to the transformation of the

faces or objects, their neighboring faces must be deformed in order to preserve geometrical consistency. Therefore, we

define three spaces for dimension-based deformation: the control space, where affine transformations are applied, the

fixed space, which does not changed during deformation, and the deformation space, which is deformed depending on

changes in the control space. The deformation space exists between the control and fixed spaces, as shown in Fig. 2(a),

because it absorbs the effects of changes in the control space and prevents these effects from reaching the fixed space.

A simple arrangement of spaces is achieved by assigning the control space to the face or local object to be transformed,

the deformation space to its adjacent faces, and the fixed space to the others. However, the transformed face or local

object must often be deformed in order to preserve the geometries of the adjacent faces. For example, in the case of

changing the DP, a planar face adjacent to some planar faces must be deformed in order to preserve the planes of

these adjacent faces, as shown in Fig. 2(b). To address the deformation of the transformed face, representative vertices
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are adopted at the points where some faces meet. By assigning the control spaces only to the representative vertices

and the deformation spaces to the faces among them, the deformation of the transformed face can be achieved in

order to preserve the geometries of the adjacent faces. Here, the representative vertices are moved along the planes of

the adjacent faces.

In our method, the deformation handle consists of a set of convex triangular prisms. Each triangular prism is created by

connecting representative vertices, including mesh vertices. In mesh deformation, the affine transformation with

appropriate parameters is applied to the representative vertices of the transformed faces, and the positions of the mesh

vertices in the triangular prisms deformed by affine transformation are updated by space-based deformation using

barycentric coordinates as described in the next section.
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Fig. 2: Spaces for deformation.

3. MESH DEFORMATION USING BARYCENTRIC COORDINATES

In this section, we first give the definition of the barycentric coordinates for a convex polytope proposed by Warren et

al. [12], and we then introduce mesh deformation using these coordinates [9]. Another method for space-based

deformation can be useful. For example, the mean value coordinates proposed by Ju et al. [5] allow us to use a non-

convex polyhedron for the deformation handle. However, our method creates the deformation handle, which consists

of a set of convex triangular prisms (simple convex polytopes) as described in section 4.2, so barycentric coordinates

were used for simplicity and efficiency.

First, we consider a simple polytope, which is constructed only of simple vertices. Given a point x in the polytope P,

the weight )(xiw for a vertex i of the polytope is defined as the ratio of the parallelepiped volume made from the unit

normal vectors
iii

321 ,,  nnn of the adjacent three faces of i, and the product of the distances between each of the

neighboring faces and x .
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where ip is the position of vertex i of the polytope. The barycentric coordinates )(xib are defined by normalizing

weight )(xiw for all vertices of the polytope as Eq. (2.2).
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where
PV is a set of the vertices of polytope P. If the polytope is not simple, it has non-simple vertices and we cannot

calculate the weights using Eq. (2.1). Then, each non-simple vertex is split into simple vertices by perturbing its

adjacent faces, and their barycentric coordinates are calculated. Finally, by adding the barycentric coordinates of the

simple vertices, the barycentric coordinates for a non-simple vertex can be obtained.

In mesh deformation using barycentric coordinates [9], a handle is first defined by the convex polytope so that it

includes the local/global mesh to be deformed, and the barycentric coordinates of the mesh vertices in the handle are

calculated using Eq. (2.2). Then, the positions of the handle vertices are changed by the user. Finally, the positions of

the mesh vertices are updated using Eq. (2.3).
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where
M
ip denotes the position of mesh vertex i,

H
jp the position of handle vertex j, and HV a set of the vertices of

handle H.

In our approach described below, the handle consists of a set of convex triangular prisms, which are not connected.

Each prism includes the local vertices of the given mesh. In the deformation, some prisms become the boundary of the

deforming space based on the user-selected dimension types and regions which define the dimension, and then some

of their vertices move by affine transformations. Finally, the positions of inner vertices of the deformed prisms are

modified using Eq. (2.3).

4. MESH DEFORMATION BASED ON DIMENSIONS
4.1 Deformation Procedure
The proposed mesh deformation method is shown in Fig. 3. By following these three steps, the user can change the
arbitrary dimensions of a given mesh model.

(1) Selecting the type of dimension.
(2) Selecting the regions which define the dimension.
(3) Specifying the target value of the dimension.

The system first creates a deformation handle (section 4.2). Then, according to the type of dimension and selected
regions, the dimensions of the model are calculated (section 4.3). Finally, the mesh model is deformed so as to satisfy
the target dimension by manipulating the handle using the user-specified target value of the dimension (section 4.4).
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Fig. 3: Procedure for dimension-based mesh deformation.

4.2 Handle Generation
In this section, a method for creating the global handle of a given mesh is described. Fig.4 shows the procedure for the
handle generation. First, a given mesh model is segmented into regions (Fig. 4(b)) to find the planar and cylindrical
regions, which are selected by the user for determining the dimensions to be modified, and then, the surface
parameters of each region are calculated in order to extract the dimensions. Then, a simplified version of the given
mesh is created to find the base triangles and edges of the triangular prisms, which are the components of the global
handle (Fig. 4(c)). Finally, by offsetting the triangles and edges of the simplified mesh, a set of triangular prisms is
generated as the deformation handle (Fig. 4(d)).

In this procedure, many existing methods for mesh segmentation [2,3], surface fitting for parameter extraction [1,13],
and mesh simplification [4,7] are useful, and we used some of them in our implementation (The implementation
details are described in section 5.1). In this section, only the method concerning handle construction is described (from
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Fig. 4(c) to Fig. 4(d)). Therefore, we assume that the mesh is segmented into the regions and each region is classified
as a plane, a cylinder with surface parameters or other, and a simplified version of the given mesh is obtained.

(a) Original mesh (b) Segmentation (regions) (c) Simplification (d) Offset (handle and
original mesh)

(a) Original mesh (b) Segmentation (regions) (c) Simplification (d) Offset (handle and
original mesh)

Fig. 4: Deformation handle generation.

First, we would like to present some of the notations used in the following algorithm. We denote the given mesh as
MO=<VO, EO, TO>, and the simplified mesh as MS=<VS, ES, TS>, where Vg={ig}, Eg={eg=(ig, jg)}, and Tg={tg=(ig, jg,
kg)} (g=O or S) are sets of vertices, edges, and triangles of each mesh. We assume that each vertex iS in VS has a
corresponding vertex vc(iS) in VO. Such a vertex can be found directly, when we use certain mesh simplification
operators, such as edge collapse and vertex removal [4,7]. Each planar region has four parameters (a, b, c, d) of the
fitted plane (a2+b2+c2=1). Each cylindrical region has axis direction vector d, a point on the axis a, and radius r of the
fitted cylinder.

The deformation handle, which consists of a set of triangular prisms, including mesh vertices in VO, is created by
splitting and offsetting the vertices of the edges and triangles of the simplified mesh MS (Fig. 5(a)). The details of handle
generation procedure are as follows: each vertex of the triangle tS in the TS are split into the outside and inside of the
surface, as shown in Fig. 5(b). As a result, a triangular prism P(tS) is created for each triangle. For each edge eS, except
for the one on the same planar region, each endpoint is divided into three. If eS is convex, two vertices are generated
outside of the surface, and one is generated inside, as shown in Fig. 5(c), and vice versa if eS is concave. As a result, as
in the case of the triangle, the triangular prism P(eS) is created for eS. The unit direction vector of eS is assigned to each
P(eS) as constraint vector c(eS).
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Fig. 5: Triangular prisms of the deformation handle.

For triangles, the direction of the offset of its three vertices is that of its normal. For the edges, two vertices are
generated along the normal directions of the two incident triangles, and one vertex is created along their average
normal direction. These directions are able to include all vertices in VO except for vc(iS) using certain offset distances,
and they create a set of convex prisms (simple convex polytope) as shown in Fig. 5. Therefore, the barycentric
coordinates of each vertex in VO can be calculated for the corresponding prism. In the final step of the handle
construction, the vertices in VO included in P(tS) and P(eS) except for vc(iS), are found successively, and the barycentric
coordinates of each vertex are calculated for the corresponding prism using Eq. (2.2). Here, we define representative
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vertices for each vertex vc(iS), which consist of the vertices of the prisms generated by splitting iS, and vc(iS) as shown in
Fig. 5(d). As a result, both a set of triangular prisms and a set of representative vertices are obtained.

4.3 Region Selection and Dimension Extraction
As described in section 4.1, the user first selects the dimension type from among the DP, RC and PO. Then, depending
on the dimension type chosen, some regions obtained by mesh segmentation and reference points are selected by the
user. For each dimension type, the user selects following regions and points.

DP: two parallel planar regions as the region to be transformed rA and the reference region rB

RC: one cylindrical region rC

PO: a base planar region rb where the target object exists, two points po and pa on the base region for defining local
coordinate system (origin and a point on the local axis), regions robj defining the object, and a reference point pobj

of the object

In PO modification, local coordinate system is defined by the origin po, a axis direction vector u=(pa–po) /pa–po,
and its orthogonal vector on the base planar region, v=(nrbu) /nrbu, where nrb is the normal vector of rb.

For the DP, the current dimension dcrr is the determined by drA – drB, where drA and drB are the fourth coefficients of the
planes of the regions rA and rB respectively. For the RC, the current dimension rcrr is the radius of the cylinder of the
region rC. In the PO, the current object position on the plane is given by (ucrr, vcrr)=((pobj–po)•u, (pobj–po)•v).

4.4 Deformation
Using the extracted current dimensions and target dimensions given by the user, the mesh is deformed so that it
satisfies the user-specified dimensions. In this step, the deformation, control, and fixed spaces described in section 2.2
are first assigned. The deformation spaces are assigned to the inside of the triangular prisms, which include vertex in
VR(rt), where VR(r) is the representative vertices including the vertex in region r of MO, and rt is the region to be
transformed, i.e. rA/rC/robj in DP/RC/PO. The control spaces include VR(rt). The control spaces are not explicitly defined
because only affine transformation is applied to the vertices in the control space. The remaining representative vertices
and prisms are included in the fixed spaces.

Given the target dimension dtrg, DP modification is done by applying Trans(nrA, dtrg–dcrr) to each vertex in VR(rA), where
Trans(n, d) means the translation by d along vector n, nrA is the unit normal vector of the plane of rA. Constraints for
preserving the planes of the neighboring regions of the transformed region rA can be easily imposed using constraint
vector c(eS) of P(eS). If only one of the endpoints vc(iS) of the edge eS is included in the control space, the
corresponding representative vertices of it are moved along c(eS) (In DP modification, they are translated by Trans(c,
(dtrg–dcrr)/c•nrA) ). For the RC, given the target radius rtrg, scaling by rtrg/rcrr is applied to the VR(rC) on the plane
perpendicular to the axis of the cylinder. In the PO, given target dimension (utrg, vtrg), the positions of the vertices in
VR(rC) are obtained by Trans(u, utrg–ucrr)Trans(v, vtrg–vcrr).

After changing the positions of the representative vertices in control spaces, the positions of vertices in VO are updated
using barycentric coordinates by Eq. (2.3).

5. IMPLEMENTATION AND RESULTS
5.1 Used Algorithms and Implementation
For mesh segmentation and surface parameter extraction, we indicated in section 4.2 that we have the option of using
the existing methods. In our implementation, we used dihedral angle-based segmentation for simplicity. First, dihedral
angles between two faces sharing an edge are evaluated, and then the edges are identified as feature edges, if the
angle is smaller than the user-specified threshold. The region surrounded by the feature edges is identified as a region.
After segmentation, planes and cylinders are fitted to each region respectively. We used the method described in [1] for
the plane and cylinder fitting.

Additionally, we leave a choice in the method to be used for mesh simplification in handle creation. Variational shape
approximation (VSA) method with L2,1 norm [3] was used for obtaining simplified mesh in our implementation,
because it provides good approximation and straightforward correspondences between the mesh vertices in the
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simplified and original meshes. The VSA was applied so that each triangle cluster does not go over the region resulting
from segmentation. This was achieved by inserting the adjacent triangles on same region in the queue in the flooding
step. Simplified triangular mesh was generated by triangulation method using the flooding described in [3].

In our system, the user interactively selects the regions resulting of segmentation. However, in the case of PO
modification, the user often has to select many regions, which define the local object to be moved. Therefore, we
designed the software so that the user can select the regions of the object on the base plane at a time (for example, a
boss in Fig. 6(a)) or only regions connecting to the base plane (for example, a region for through hole in Fig. 6(a)).
These selection approaches allowed the user to efficiently determine the regions for the deformation.

5.2 Results
Fig. 6 shows the results of dimension-based mesh deformations for a simple shape. Each figure shows the original
mesh (a), results of segmentation (b), simplified mesh using VSA (c), handle (d), and the results of changing DP (e), RC
(f), and PO (g). Figs. 7 and 8 show other examples of the design modification of a mechanical part, and connecting
rod consisting of some parts. In these examples, we generate the original meshes by FE meshing of solid models. The
numbers of the triangles of original meshes are shown in each figure as #t. The handle generation took less than few
seconds (within 0.8 sec for the models in Figs. 6-8, and 2.1 sec for the fandisk model with 12.9k triangles in Figs. 3-4),
and all deformations was achieved instantaneously (In our implementation, vertex position modification using
barycentric coordinates in Eq.(2.3) took less than 30 msec for three hundred thousand mesh vertices and ten handle
vertices) using a PC (P4-3.8GHz, RAM 2GB).

The results of deformations show that the proposed method is useful for modifying the design of mechanical parts.
Additionally, we confirmed that the constraints for preserving the planes of the neighbors of the transformed region
worked well, as in Fig. 6 and 7. In the case shown in Fig. 8, dimension-based deformation easily provided consistent
deformation in assembly model using the same target dimensions for corresponding regions. Moreover, using resulting
dimensions, the CAD model could be easily modified and dimension-based mesh deformation demonstrated an ability
to bridge the CAD and CAE models.

(a) Original mesh (b) Segmentation (d) Handle(c) Simplification

(e) Changing DP (g) Changing PO(f) Changing RC

#t=2.8k

(a) Original mesh (b) Segmentation (d) Handle(c) Simplification

(e) Changing DP (g) Changing PO(f) Changing RC

#t=2.8k

Fig. 6: Simple examples of dimension-based deformation.

In current approach, large deformations cause large distortion of the triangles resulting in the frequent occurrence of
face flipping due to the deformation. In our method, the deformable range, given consistent geometry without flipping,
is determined by the connectivity of the simplified mesh, which defines the structure of the handle (The flipping of the
prisms of the handle by affine transformation always causes the face flipping of the mesh). For large and flexible
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dimension-based deformation, the optimal simplified mesh generation and dynamic modification of the handle
structure considering the target dimension and original geometry, and also connectivity modification of the mesh is
required. Moreover, volume mesh must be handled for application of the method to efficient CAE. These are our main
works for the future.
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Fig. 7: The deformation of a mechanical part model.

6. CONCLUSIONS
In this paper, a triangular mesh deformation method based on dimensions was proposed. First, we defined the spaces
for dimension-based deformation and stated that the control, deformation and fixed spaces are useful for dimension-
based deformation. Then, we showed a procedure for mesh deformation based on dimensions, along with detailed
algorithms for creating and manipulating deformation handle. Our handle creation method used segmentation, surface
fitting, mesh simplification and offsetting. The resulting handle was constructed of only triangular prisms. We also
described in detail the handle manipulation method for deformation with constraints. Our results for mechanical parts
showed that our approach was able to modify mesh shapes by dimensions in real time. The results also indicate that
dimension based deformation had ability to provide consistent deformation of assembly model and to bridge CAD and
CAE models using dimensions. Future works include introducing dynamic handle modification for more flexible
deformation without face flipping, and extending the dimension-based deformation to volume meshes for efficient CAE.
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Fig. 8: The deformation of connecting rod parts and crankshaft.


