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ABSTRACT

This paper presents a method for creating a flank millable surface for conical and barrel tools. The
approach is a generalization of an earlier approach for cyclindrical tools, where the tool is moved
along two guiding curves and a NURBS approximation is created for the swept surface. The
cylindirical method is first extended to conical tools, and then to general surfaces of revolution,
although it has only been implemented for barrel tools. With this method, it is possible to create
surfaces that can be machined accurately. These surfaces can be used in analysis software without
resorting to approximations and result in better designs.
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1. INTRODUCTION
Flank milling is an important CNC machining technique. When designing tool paths to flank mill a surface, typically a
piecewise ruled surface is used to approximate the design surface, and a tool path is created by positioning the CNC
tool on the guiding rails. However, in 5-axis machining, the machined surface is not a ruled surface. Thus, two
approximations are being made: first, a piecewise ruled approximation to the design surface, and second, the ruled
surface itself is only an approximation to what is being machined. For analysis purposes (such as required by
Computational Fluid Dynamics), the piecewise ruled surface is used instead of the original design surface, since it is a
better approximation to the machined surface. However, for accurate analysis, this piecewise ruled surface must be
composed of many small pieces.

In an earlier paper [6], we presented a method for designing a surface with cylindrical tools that can be flanked milled
exactly (or at least up to machining tolerance). The method basically finds NURBS curve approximations to several
grazing curves (curves on the swept surface) and then constructs a tensor product NURBS surface containing these
curves. This flank millable surface can be used in the analysis process, reducing the number of pieces required and
potentially decreasing machining time. In this paper, we extend the method to general tools of revolution, and in
particular, to conical and barrel tools. While we use NURBS profile curves, note that a non-NURBS profile can be
approximated to a high tolerance with a NURBS profile. Finally, although we use Bedi et al.’s tool positioning method
[1] in our examples, the method should work for any tool positioning method.

2. BACKGROUND
In CNC machining, a tool path is comprised of a sequence of tool positions. Each tool position defines the machine
parameters for one position of the tool. The NC machine then linearly interpolates the parameters from one tool
position to the next. As a sequence of tool positions are executed, the tool cuts a surface in the stock. At any given
instance, there will be one curve on the tool that will be a curve on the machined surface (unless it is cut away in a
later pass). This curve is known as a grazing curve [9]. Our method finds a NURBS curve approximation to each
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grazing curve and then constructs a NURBS surface containing these curves. While the tool itself has a complex
cutting shape, because it is spinning at high speed it is typically treated as a surface of revolution for many analysis
purposes and we do so in this paper.

We assume the reader is familiar with NURBS and Bézier curves and surfaces, which are core to our method. Here
we will only review the rational Bézier representation of a circular arc. For more details on NURBS and Bézier curves
and surfaces, see any spline textbook such as [3].

Fig. 1: Finding the rational quadratic Bézier representation a circular arc.

Referring to Fig. 1, given two points R1 and R2 on a circle with tangents T1 and T2, the three control points of a rational
quadratic Bézier representation of the circular arc from R1 to R2 are as follows: The first and last control points are R1

and R2 and the middle control point Rm is the intersection of the two tangents. The weights of the first and last control
points are 1, and the weight of Rm is the cosine of the half angle spanning R1RmR2 [3].

2.1 Grazing Curves
At any tool position, the grazing curve is the set of points on the tool whose motion is perpendicular to the surface
normal of the tool at those points. The grazing points on a surface of revolution can be computed using the following
method, from [8]. We will assume that the tool is being swept along two guiding curves, T(u) and B(u).

(a) (b) (c)

As shown in Fig.
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2(a), if the velocity at point PT on the tool axis is VT and at point PB (also on the tool axis) is VB, then
een PB and PT along tool axis direction can be linearly interpolated and is given by

V=(1–v)VB + v VT, 10  v .
rst derivative of the guiding curve T(u) at the contact point on this curve. For the solid body of the
elocity of this point should be the same as PT. Similarly, VB is the first derivative of the guiding curve
om contact point. The coordinate between PB and PT along the tool axis can also be linearly
is given by

P=(1–v)PB + v PT. 10  v .

y of any point on the tool axis, we can compute the grazing points on any cross section of a general
tion as follows. For any point Q on the generating profile curve for the surface of revolution, find the
xis of revolution such that P–Q is perpendicular to the profile curve at Q (Fig. 2(b)). Take the plane
dicular to direction of motion V of P, and intersect this plane with the circle of revolution through Q

oven in [8], these intersection points will be grazing points on the tool. By using a set of points on the
obtains a set of points and piecewise linear approximation to the grazing curve.

Fig. 2: (a) A tool sweeping along two guiding curves; (b,c) computing grazing points.
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2.2 Flank Millable Surface Design Using Cylindrical Tools
In an earlier paper [6] we designed a flank millable surface for a conical tool by constructing a sequence of Bézier
curves that approximated the grazing curves at several tool positions. That method proceeds as follows. At any tool
position, the tool touches each guiding curve at one location. Call these contact points T1 and B2 (we give these points
different subscripts since the contact points typically occur at different locations on the circular cross section of the
cylinder). The grazing curve will extend from T1 to B2. For a cylindrical tool, if we project the grazing curve into a
plane perpendicular to the tool axis, then we get a circular arc. Consider the projection of the grazing curve into the
planes containing T1 and B2 and at a third plane lying between these two planes. This gives three circular arcs. Each
arc can be represented by a rational quadratic Bézier curve (Fig. 3). Note that the first control points of all three arcs
(T1, T, and T2) lie on a line on the cylinder. Likewise the last control points of each curve lie on a second line on the
cylinder. The middle control points also lie on a line, and although this line is not on the cylinder, it is parallel to the
tool axis and the other two lines.

Fig. 3: A grazing curve and its control points on a cylindrical tool.

We used a quadratic rational Bézier curve (the dark dashed curve in Fig. 3) to approximate the given grazing curve
with control points T1, P, and B2. T1 is the top contact point between the cylindrical tool and the guiding curve T(u),
and B2 is the bottom contact point between the cylindrical tool and the guiding curve B(u). We need to find the
interior control point P, which is done as follows.

Call the middle control point of the top arc P1 and call the middle control point of the bottom arc P2. We will move P

along the line segment
1 2

PP and find the location of P that results in the rational Bézier curve (T1, P, B2) with the

smallest error between it and the grazing curve (where the first and last weights are 1, and the center weight is the
weight of P1 in the circular arc T1,P1,B1 [3]).

Thus, for cylindrical cutting tools, the movement of the interior control point of the 3D Bézier curve is always along the

locus of the interior control points of the 2D Bézier curves. The locus is a line segment,
1 2

PP in Fig. 3, that is parallel

to the cylindrical tool axis. For better accuracy a NURBS curve with more interior control points can be used in the
circular arc representation, in which case different tracks for each interior control point can be found, each of which is
a line and parallel to the tool axis. By moving each interior control point along its own track, a 3D Bézier or NURBS
curve can be defined and the one with the smallest approximate error selected for use in surface design.

Our method constructed such curves at several tool positions and then constructed a tensor product NURBS surface
that interpolated this sequence of curves. The tensor product surface was then shown to be flank millable to machine
tolerance. See our earlier paper for details of the surface construction and for our analysis of the surface [6].

3. FLANK MILLABLE SURFACE DESIGN WITH CONICAL TOOLS
We will now generalize the method described in the previous section to conical tools. When a conical tool is used to
machine a part, the grazing curve at each tool position lies on the conical tool surface (Fig. 4(a)) and its projection
along the conical tool axis direction into a plane perpendicular to the tool axis is a 2D curve (Fig. 3(b)). However, this
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projection is not a circular arc as it was for cylindrical tools. Thus, a new technique is needed to find a NURBS
representation of the 2D projection of the grazing curve and from there to find the NURBS representation of the
grazing curve.

Fig. 4: (a) A conical tool with the grazing curve; (b) projection of grazing curve.

Initially a quadratic Bézier curve will be used to represent the grazing curve on the conical tool surface. More control
points will be added in the subsequent surface error analysis. If a quadratic Bézier curve is used to define the grazing
curve on a conical tool surface, then these top and bottom contact points, T1 and B2 (Fig. 4(a)), can be used as the two
end control points of the quadratic Bézier curve and only its interior control point is left undecided.

To determine the interior control point, we modify the method used for cylindrical tools. The generatrix of the cone
(the curve that is revolved around the cone axis to construct the surface of the cone) is not parallel to the cone axis,
but we can project each point of the grazing curve on the cone surface along its generatrix direction to a plane that is
perpendicular to the conical tool axis. A circular arc is obtained on this plane. Projection onto different intersection
planes between the top and the bottom planes of the cone results in different circular arcs. Each 2D arc can be

represented by a quadratic rational Bézier curve (Fig. 5). Our method places the control point Px on the line
1 2

PP .

Fig. 5: The projection of the grazing curve and its control points.

This method is a generalization of the method used for cylindrical tools in Section 2.2 and the remaining details are

essentially the same: the interior control point(s) position is moved up and down the segment
1 2

PP to find the spline

curve that best approximates the grazing curve. See [4] for additional details.

3.1 Example of Approximating a Grazing Curve on a Conicial Tool
An example is given to test the proposed method; this example is also used in the remaining tests in the paper. The
control points for the top guiding rail are PT1=(75, 15, –5), PT2=(30, 30, –5), PT3=(0, 60, –5) (Fig. 6, left), for the
bottom guiding rail are PB0=(60, 0, –45), PB1=(30, 30, –45), PB2=(15, 75, –45) (Fig 6, middle), with the two guiding
rails shown superimposed on the right of Fig. 6.
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For this example, the parameters of the conical cutter and the control points are
B2= [Rb cos(/6), Rb sin(/6), 0] T1= [Rt cos(/3), Rt sin(/3), h]

Vb= [–Rb sin( /6), Rb cos( /6), 0] Vt= [–Rt sin( /3), Rt cos( /3), 0]
wt=1, wx=cos( /12), wb=1, Rt=6, Rb=4, h=45

where Rt and Rb are the top and bottom radius of the cone; wt, wx and wb are the weights of the control points B2, Px

and T1; h is the effective contact length along the axis of the conical cutter; Vb and Vt are velocities at B2 and T1, where
the directions are along line directions of each circle and their magnitudes are velocities.

Fig. 6: Control points for top and bottom guiding curves (in mm).

Bedi et al.’s tool positioning method [1] is used to position this conical tool at a location on the grazing curves. The
three control points, B2, Px, T1, and their weights define a quadratic rational Bézier curve.. We calculated the deviation
between the given grazing curve and the approximate Bézier curve with the interior control point Px set to the middle

of
1 2

PP ; Fig. 7(a) is a plot of this error. The shape of the error curve is not symmetric, and the maximum error occurs

near v=0.6 and is less than 0.135.

Fig. 7: Deviation along the grazing curve (a) Px in the middle; (b) Px not in the middle.

To reduce the maximum error, we optimized the position of Px along
1 2

PP . The value of Px that resulted in the

smallest curve error was then used to define the grazing curve. The distribution of the error along the grazing curve is
plotted in Fig. 7(b). This reduces the maximum curve error to around 0.038.

If the maximum error shown in Fig. 7(b) is still too high, more control points can be used to approximate the grazing
curve by adding more control points to the circular arcs using knot insertion [3]. Fig. 8 shows a four control point
rational quadratic B-spline curve being used to approximate the grazing curve.

3.2 Approximating a Grazing Surface
After creating the grazing curves approximations, a NURBS surface can be constructed. This NURBS surface is used to
approximate the given grazing surface. The details to generate the NURBS surface (the flank millable surface) from the
NURBS curves are described in the references [4, 6].

(a) (b)
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3.3 Examples of Flank Millable Surfaces for Conical Tools
We give some examples in this section to demonstrate the proposed flank millable surface design method with conical
tools. The design starts with the two guiding curves shown in Fig. 6, where the degrees are two and where the knot
vector for both of them is [0,0,0, 1,1,1].

Fig. 8: A grazing curve with its four control points.

Fig. 9: (a) a conical tool. (b) a barrel tool.

The geometry of the conical tool is given in Fig. 9(a), with Rt=7, Rb=4 and h=50. Bedi et al.’s tool positioning
method [1] is used to position the conical tool and generate the tool path. NURBS approximations to the grazing
curves are created, and the grazing curves are used to build the flank millable surface [4]. Each grazing curve is
defined with a rational Bézier curve. Three tool positions, u=0, u=0.48 and u=1, were used to find the interior
control points and their weights of the flank millable surface (Fig. 10). A bi-quadratic rational Bézier surface that can be
flank milled was constructed. The maximum error in our NURBS approximation to the grazing surface is around
0.048. If this error exceeds the user defined tolerance, more control points can be added in u and/or v directions to
control the surface error.

To illustrate the effect of increasing the number of control points, the number of control points is increased from three
by three to various values up to four by five and the corresponding NURBS surfaces are created. The maximum
surface errors are tabulated in Tab. 1. From the table, it can be seen that the surface error is reduced when the
number of control points are increased.

4. FLANK MILLABLE SURFACE DESIGN WITH TOOLS OF REVOLUTION
In the previous section, a method to design a flank millable surface with a conical tool was developed. We now
generalize this method to tools defined by general surfaces of revolution, although we have only tested it on barrel
tools. The key for the generalization is to model the grazing curve on the tool surface of revolution. If each grazing
curve on the tool can be expressed as a NURBS curve, the flank millable surface can be built using the techniques
developed in [4,6].

The key observation is that in the construction for cylindrical and conical tools, the six control points T1, P1, B1, T2,
P2, B2, form a linear by quadratic NURBS patch S for the section of the tool between the two grazing points, T1 and
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B2, where these two grazing points are also the first and last control points of our NURBS approximation to the grazing
curve. The remaining control point P of the grazing curve was found by treating S’s column of interior control points
(P1, P2) as defining a linear curve and locating P along this line. This will also be our method for a general surface of
revolution: we construct a NURBS patch S for the section of the tool bounded by the two points of contact (T1, B2),
and then locate each interior control point of the grazing curve on the NURBS curve formed by an interior column of
control points of S. The next section illustrates this process for a barrel tool.

Fig. 10: Tool positioned at three locations on guiding curves.

CPs 3×3 3×4 3×5 4×3 4×4 4×5

εmax 0.048 0.046 0.044 0.0185 0.0155 0.011

Tab. 1: Errors for different NURBS surface. C.Ps: Control Points.

4.1 Modeling of the Grazing Curve on a Barrel Tool
For a tool with a generalized NURBS profile of revolution, the technique for conical tools is generalized and is
illustrated in Fig. 11(a) where for simplicity we assume that the profile curve is the arc of a circle in NURBS form. Our
method begins by first constructing a NURBS representation for the section of the tool spanned by the two grazing
points, T1 and B2. For cylindrical and conical tools, only two control points are needed to represent the profile for the
surface of revolution (a line). For a more general tool, more control points are needed for the profile curve. This
complicates our construction somewhat, since in the NURBS patch for the portion of the tool of interest, we now need
to construct control points that do not lie on the patch boundary, as well as find weights for these control points.

The control points of the patch are decided by the control points of the profiles, and the control points of the top and
the bottom circular arcs. The two boundary columns of control points for this patch, T1, Q1, T2, B1, Q2, B2, are known.
The three interior control points, P1, Q and P2 (whose position is determined so that each row of control points forms
an arc) are used to define a NURBS curve approximation of the grazing curve from T1 to B2 (see Fig. 11(a)). The

weights of control points P1 and P2 are set to the cosine of the half angle 111 BPT , and the weight of the control

point Q equals to the product of cosine of the half angle 21QPP and the cosine of the half angle 111 BPT . (The

weight of Q comes from multiplying the weight of the control point in the same row of the profile arc with the weight
of the control point in the same column of the cross section arc). This NURBS curve (with control points P1, Q, P2) is

the track


21PP of the interior control point P of the NURBS curve used to approximate the grazing curve.
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(a) (b)

Fig. 11: Grazing curve and its control points on a tool of revolution (a) one track (b) two tracks.

To build the NURBS representation of the grazing curve, the contact points T1 and B2 are used directly. The interior

control point P is moved along the track


21PP to find the position such that the maximum error between the grazing

curve and the approximate NURBS curve is minimized. The weight of the interior point P is the cosine of the half

angle 111 BPT , the weight of the profile arc.

4.2 Example of Approximating a Grazing Curve on a Barrel Tool
A simple example is given to exhibit the generalized curve design method. A barrel tool is used to test the proposed
method. The geometry of the barrel tool is shown in Fig. 9(b) and the cutting tool parameters for this example are (see
Fig. 11(a))

B2= [Rb cos(/6), Rb sin(/6), 0] T1= [Rt cos(/3), Rt sin(/3), h]
Vb= [–Rb sin( /6), Rb cos( /6), 0] Vt= [–Rt sin( /3), Rt cos( /3), 0]

wt=1, wx=cos( /12), wb=1, Rt=5, Rb=8, R0=339, h=45,
where Rt and Rb are radius of the top and the bottom of the tool; R0 is the radius of the generatrix; wt, wx and wb are
the weights of the control points T1, P and B2; h is the effective contact length along the axis of the barrel cutter; Vt and
Vb are velocities at points T1 and B2, where the directions are along line directions of each circle and their magnitudes
are velocities.

Bedi et al.’s tool positioning method [1] was used to position this tool at a single location on the grazing curves. The
``projection’’ of this grazing curve along the profile of the tool onto the top and the bottom planes of the barrel are 2D
arcs. These arcs and the profile curves between them compose a patch on the surface of the barrel. The control net of
this patch with weights can be calculated as described in Section 4.1 and in particular, the interior control points P1, Q
and P2 are defined. These interior control points are used to construct a B-spline curve that is the track of the middle
control point of the approximate grazing curve. In this example, the middle control point is P.

Using T1, P and B2, a NURBS curve is built to approximate the grazing curve. The error between the grazing curve and
its approximate NURBS curve is calculated and is minimized by moving the control point P along the curve P1, Q, P2;
we have plotted the error of this approximation to the grazing curve in Fig. 12(a).

From Fig. 12(a), it can be seen that the maximum curve error is around 0.4, which is too large for general engineering
applications. To reduce the maximum curve error, more control points are needed. In this study, we increased the
control points to four (Fig. 11(b)), and then to five (Fig. 11(c)). We used degree two NURBS curves to approximate
the grazing curves for all three examples. The knot vectors were [0,0,0, 0.5, 1,1,1] for the four control point curve and
[0,0,0, 0.33, 0.67, 1,1,1] for the five control point curve. We see from the plots that the maximum error decreases
from 0.4 to 0.17 to 0.09 as the number of control points are increased from three to four to five.
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(a) (b) (c)

Fig. 12: Deviation along the grazing curve (a) three control points; (b) four control points; (c) five control points.

4.3 Modeling of the Grazing Surface
After the grazing curve is defined, it can be used to generate a NURBS surface to approximate the grazing surface. The
approximate grazing curves at a few tool positions are used to skin a NURBS surface.

4.4 Examples of Flank Millable Surfaces for the Barrel Tool
Examples are given in this section to demonstrate the proposed flank millable surface design method. The surface
design starts with the two guiding curves shown in Fig. 6. The degrees of the guiding curves are two and the knot
vectors of both are [0,0,0, 1,1,1].

A barrel tool is used to machine the designed surface. The geometry of the tool is shown in Fig. 9(b) and has Rt=7,
Rb=4, R0=418.7 and h=50. Bedi et al.’s tool positioning method is used to position the tool and generate the tool
path. Grazing curves at three tool positions, u=0, u=0.48 and u=1, are used to generate each four control point
quadratic approximate NURBS curve (with knot vector [0,0,0, 0.5, 1,1,1]), and consequently to design a four by three
bi-quadratic NURBS surface using the method given in [4].

The maximum surface error is around 0.145, which is too large for general engineering applications. To reduce the
maximum error, we used more control points in the control net of the surface by using knot insertion on the rows of
the NURBS surface. In particular, two NURBS surfaces, a four by four and a four by five, were developed to check the
maximum surface error. The control points in the guiding curve direction (the u direction) are kept the same, i.e.,
three, but the control points in the v direction are increased from four to five and then to six using knot insertion. The
degree for both of surfaces is not changed. The knot vector in the v direction is [0,0,0, 0.33, 0.67, 1,1,1] for the five by
three surface and [0,0,0, 0.25, 0.5, 0.75, 1,1,1] for the six by three surface.

Using the proposed surface design method, two more NURBS surfaces were designed. The deviation between the
grazing surface and the flank millable surface are computed and are listed in Tab. 2.

Tab. 2: Errors for different NURBS surface. C.Ps: Control Points.

5. DISCUSSION
In this paper, a method to design flank millable surfaces was developed. The proposed method can effectively control
the designed surface error and create a NURBS surface that can be flank milled in a single tool pass to machine
tolerance.

Compared to the polynomial composition method presented in an earlier paper [7], the proposed method has a
slightly different process to approximate the grazing surface. A high degree flank millable surface is needed in [7], and
the approximate polynomial curves exactly lie on the tools of revolution. For the proposed method, the approximate

C.P.s(uxv) 4×3 4×4 4×5

εmax 0.145 0.079 0.048
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curve is not on the tool of revolution, but is of lower degree and fewer control points are needed to define each grazing
curve and the final surface. For example, for the barrel tool example, the surface constructed in this paper is degree
2×2 and has 20 control points, while the polynomial composition method was degree 8×2 and required 27 control
points. While the new method has higher error on the barrel tool example (0.048 vs. 0.024 for the polynomial
composition method), with additional control points, the error can be decreased to the desired level [4].

We can also compare the proposed general flank millable surface design method with the least squares method [5].
Both of the proposed methods and the least squares method can achieve a quality flank millable surface. The
proposed approach has some runtime advantages, but it is somewhat less accurate than the least squares approach
[4]. The least squares method is sensitive to a number of parameters such as location of points, knots and the number
of control points. A successful use of the method requires knowledge of least squares and surface design. However, the
users of the flank millable surfaces are designers and typically do not have a strong background in surface
mathematics, which can cause problems in the use of the least squares method. In comparison the proposed method is
more robust in use and does not require a deep knowledge of the mathematics of surfaces.

Finally, instead of using rational curves, polynomial curves can also be used to approximate the grazing curves. In
particular, a four control point cubic Bézier curve can be used to approximate a 2D arc [2]. Thus, instead of the
rational B-spline curves in Fig. 8, for example, a cubic polynomial curve can be used to define the projection of the
grazing curve on the top and the bottom planes of the cone. As a result, the generated approximating curve is a
polynomial curve or a NUBS curve and the resulting surface is polynomial instead of rational. As before, more control
points can be added (using the knot insertion) to increase the accuracy of the NUBS approximating curve. For a
discussion of these polynomial methods to construct a flank millable surface, see [4].
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