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ABSTRACT

This paper is concerned with the problem of constructing an aesthetically pleasing triangular mesh
with a given closed polygonal contour in three dimensional space as boundary. Triangular meshes
of minimal area from all triangular meshes with the prescribed boundary are suggested as the
candidates for this problem. An iterative algorithm of constructing such a triangular mesh from a
given polygonal boundary is presented. Experimental examples show that the proposed algorithm is
reliable and effective. Some related theoretical issues, possible extensions and applications are also
discussed.
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1. INTRODUCTION
One of the main tasks in geometric modeling is the generation of aesthetically pleasing surfaces [14]. The surfaces are
usually created from some inputs such as a set of 3D points or curves that serve as constraints or guidance for the
surfaces. However, the selection of the most appealing surface or the most reasonable surface from the given
constraints is subjective. There is no best answer for all situations. In practice, many energy functionals have been
used, which are defined in terms of elastic membranes or thin plates or geometric invariants like curvatures. The
surface with the minimal energy is selected.
This paper studies the problem of how to construct visually pleasing shapes from prescribed boundary and minimal
surfaces are considered to be the natural solutions. Fig. 1 shows two famous minimal surfaces: the Helicoid and
Catenoid surfaces. Minimal surfaces refer to the surfaces that minimize surface area. The physical models of minimal
area surfaces can be made by dipping a closed, curved wire frame into a solution of soap and water and withdrawing
it. A soap film is formed, which is a minimal surface whose boundary is the wire frame. The “naturalness" of minimal
surfaces may be partially explained by this fact from physics: the surface tension that governs the film’s shape is
proportional to the area, the film tries to minimize the tension everywhere subject to the fixed boundary constraint,
and thus the shape tends to form the surface of minimal area among nearby surfaces with the same boundary. Due to
their special properties, minimal surfaces often become the candidates of ideal models in many applications of
different fields such as molecular engineering, materials science, and architecture. For example, minimal surfaces were
used in architecture for light roof constructions, form-finding models for tents, nets and air halls. In computer graphics,
polyhedra of minimal surface area were suggested as natural candidates for object models [17] and the triangular tiles
of minimal surface area were used to interpolate parallel slices [10].

Mathematically, minimal surfaces are characterized as surfaces whose mean curvature vanishes everywhere, reflecting
the fact that there is no pressure differential across the surface. Finding a surface that minimizes the area is actually a
problem of calculus of variations [12]. In particular, the problem of finding the minimal surface for a given boundary
curve is known as the Plateau problem after the Belgian Physicist Plateau who carried out extensive experiments with
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soap films in the mid-nineteenth century. Out of his investigations there developed a conjecture that every closed, non-
self-intersecting curve can be spanned by a minimal surface. The conjecture was mathematically proved in 1930 by
Rado [19] and in 1931 by Douglas [7] independently. In general, exact solutions are usually complicated and difficult
to find. Many numerical methods have been developed to approximate the exact minimal surfaces. For example,
Douglas used a finite element method to find a numerical solution of the Plateau problem [6] and Wilson used a
boundary element method to produce an approximate minimal surface [26]. Wang et al [25] combined Trefftz finite
element formulation with radial basis functions and the analogue equation method to analyze minimal surface
problems. Different functional energies have been used in developing numerical methods. Area functional, mean
curvature flow and the Dirichlet energy are the typical energies. Tsuchiya [22-24] proposed two numerical methods:
one minimized the surface area and the other minimized the Dirichlet energy. Both solutions converged to the minimal
surface in a suitable function space. Dziuk [9] used the mean curvature flow to compute stable minimal surfaces by a
semi implicit finite element scheme. The minimal surfaces spanned by a polygon were studied by Hinze and a
numerical method was proposed based on a theoretical result that the minimal surfaces spanning the polygon
correspond in a one to one manner to the critical points of Shiffman’s function [11].

Fig. 1: The Helicoid and Catenoid surfaces.

Polynomial approximation to minimal surfaces is also of interest. Monterde et al studied the Plateau-Bézier problem
that finds the surface of minimal surface area from among all Bézier surfaces with prescribed border [1,4,15]. Given
three or four Bézier curves, the triangular Bézier patch or tensor-product Bézier patch which minimizes the Dirichlet
energy can be found. It is shown that the resulting Bézier surface patch does not minimize area in general but has the
area close to the minimum.
This paper presents a new method for constructing a triangular mesh of minimal area from a given polygonal
boundary. Unlike previous numerical approaches that are based on sophisticated mathematics, the new approach is in
the fashion of digital geometry processing [5,20,21], which is conceptually simple and easy to implement. A similar
work that one referee points out to us was done by Pinkall and Polthier who presented a numerical minimization
procedure to find discrete minimal surfaces bounded by a number of boundary curves [18]. The method begins with
an initial mesh and iteratively updates the mesh by minimizing the Dirichlet integral. Our method has three basic
processes: area minimizing, Laplacian fairing and edge swapping. The first two processes are used to optimize the
geometry of the mesh and the last one is used to adjust the connectivity of the triangular mesh. The paper also gives a
simple initialization step which can control the level of detail of the resulting mesh. The experimental results have
demonstrated that the new approach performs very stably and effectively. Since nowadays triangular meshes are
widely used in computer aided design and computer graphics because of their simplicity and powerful capability to
model complicated shapes, the new method can find applications where smooth, visual appealing shapes are required.
In addition, the method can also be used as a visualization tool in minimal surface study [3].
The rest of the paper is structured as follows. Section 2 reviews some important concepts and properties relevant to
minimal surfaces. They serve as guidance for developing our new algorithm that is described in detail in Section 3.
Section 4 provides some examples to demonstrate how well our algorithm can generate visual pleasing shapes.
Finally in Section 5 some theoretical and practical issues are discussed.

2. MINIMAL SURFACES

Let  , a closed subset of 2R , be the parameter domain of the surfaces, with boundary  . Let  be the given 3D

curve defined over  . The Plateau problem is to find a parametric surface ( ) ( )r u v u v     , which is the solution of

the minimization problem:
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2min ( ) ( ) minu v
r r

r u v r u v dudv EG F dudv
 

      (1)

with ( )r u v     , where E F and G are the coefficients of the first fundamental form of ( )r u v .

As can been seen, the area expression in Eqn. (1) is in general complicated. A lot of approaches in numerical
approximation of minimal surfaces do not minimize the area functional directly. Instead, they try to minimize the
following functional called the Dirichlet functional (or thin-plate energy of surface ( )r u v in geometric modeling):

2 2( ) ( ( ) ( ))u vE G dudv r u v r u v dudv
 

      (2)

The area functional and the Dirichlet functional have the following relation:

2 1
( )

2
EG F dudv EGdudv E G dudv

  
     

Obviously, both functionals are the same if and only if E G and 0F  , which implies that the surface ( )r u v is a

conformal mapping. In addition, while the area functional is independent of the parameterization of the surface, the
Dirichlet one depends on the parameterization. However, the Dirichlet functional is easier to manage and there holds
an important result: both the area and Dirichlet functional have the same extremals in the unrestricted case [16]. In the
Bézier case (i.e., the minimal surfaces are restricted to polynomial surfaces), the Dirichlet extremals are an
approximation to the extremals of the areal functional [15].
The variational derivative of the Dirichlet functional corresponds to the Laplacian and can be expressed as

( ) uu vvr u v r r   

where  is the Laplacian operator. Therefore, if a surface ( )r u v is harmonic, i.e., ( ) 0r u v   , it minimizes the

Dirichlet energy. Furthermore, if ( )r u v is also conformal, then it is a minimal surface.

3. CONSTRUCTION OF OPTIMAL TRIANGULAR MESHES
We now describe our problem (the discrete version of the Plateau problem). Suppose that we are given a simple
polygon  with n vertices and an integer ( )m n that has the same parity as n . There are an infinite number of

triangular meshes with m triangles spanning  . Our task is to find one triangular mesh from the set of such triangular
meshes, which has the minimal area. Note that the requirement of the same parity of m and n is due to the Euler-
Poincaré formula. In addition, though we can construct a triangular mesh with 2n  triangles for the given boundary
 , we should in general have sufficient number of triangles to make the mesh look smooth. Therefore in this paper we
ignore the case of 2m n  and always assume that m n . When m n , the triangular mesh will contain some

vertices other than the given ones of the boundary. The coordinates of the new vertices provide degrees of freedom for
optimizing the shape of the triangular mesh. Number m can also be viewed as a control for levels of detail in
approximation of a continuous minimal surface.
A triangular mesh contains two aspects of information: geometry and connectivity. Geometry is defined by the
coordinates of vertices of the mesh and it tells the location of the mesh in 3D space. Connectivity defines how the
vertices are joined to form the mesh. Our objective is to create a triangular mesh which is optimal in both geometry
and connectivity. Optimizing geometry and connectivity simultaneously is a very difficult problem. Our strategy is to
separate geometry and connectivity. For given connectivity of vertices of the mesh, we optimize geometry (i.e., the
coordinates of vertices) and for fixed vertices of the mesh, we find an optimal triangulation. In the paper the former will
be implemented by the processes of area minimizing and Laplacian fairing and the latter by the process of edge
swapping. These three processes are the main ingredients of our proposed algorithm. Below they will be explained first
and then the algorithm is presented.

3.1 Area Minimizing
Let a triangular mesh M be represented as a triple I P T    , where {1 2 }I N   is its vertex index set,

3P I R  is a mapping from the vertex indices to their locations in 3D space, T is its triangle set, and each triangle

t T is represented as an ordered vertex index triple t i j k    meaning that the triangle is defined by vertices

( ) ( )P i P j and ( )P k . Without causing ambiguity, we use iP to replace ( )P i for simplicity. In triple I P T    , we

assume that the first n vertices 1iP i n    are the given vertices on the boundary  .

The area A of mesh M is just the sum of all triangles’ areas:
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21 1
( )

2 2
j k j i j k j i

t i j k T t i j k T

A P P P P P P P P
       

      (3)

With the boundary vertices fixed, area A is a function of vertices 1n NP P   . The process of area minimizing is to

find appropriate positions for 1n NP P   such that the area functional A will be minimized.

Let ( )NT i T be the set of all the triangles that contain vertex iP and
( ) ( ) ( )

T

h h x h y h z

A A A A

P P P P

               
. By some

simplification, we have for 1h n N   

2

2

2
( )

2

2
( )

1
( )

2

( )1 1

2 2 ( )

( ) ( )1

2 ( )

h

j k j i
h ht i j k T

j k j hP

t h j k NT h j k j h

j k j h j k j h j k

t h j k NT h j k j h

A
P P P P

P P

P P P P

P P P P

P P P P P P P P P P

P P P P

   




   

   

 
 

 






 










(4)

Setting all these derivatives to zero leads to ( )N n equations with ( )N n variables. The solution renders us an

optimal mesh. However, the equations are non-linear. It is difficult to solve such a non-linear system. For a mesh with
a large data set, the situation even becomes worse.
Here we propose a local mechanism and iteratively approximate the solution. Rewrite Eqn. (4) as

2

2
( )

( ) ( )1 1

2 2 ( )

j k j j k j k j
h

h t h j k NT h j k j h

P P P P P P P PA
CP

P P P P P   

 
 

 


where

2

2
( )

1 0 0

( ) 0 1 0 ( )( )

0 0 1

( )

T
j k j k j k

t h j k NT h j k j h

P P P P P P

C
P P P P   

           





is a 3 3 matrix. Letting 0
h

A

P





, we have

2
1

2
( )

( ) ( )

( )

j k j j k j k j
h

t h j k NT h j k j h

P P P P P P P P
P C

P P P P



   

 
 




The above equation cannot be considered to be an explicit solution for hP because the right-hand side of the equation

also contains hP . However, it gives us a way to update vertex hP in the fashion of signal processing [21]. That is, we

compute the new vertex hP from the old hP and its 1-ring neighboring vertices by
2

1

2
( )

( ) ( )

( )

j k j j k j k j
h

t h j k NT h j k j h

P P P P P P P P
CP

P P P P



   

 
 


 (5)

When formula Eqn. (5) applies to all the interior vertices 1n NP P   once, this completes one iteration. The process

continues until the area change by one iteration is smaller than a prescribed tolerance.

3.2 Laplacian Fairing
We can also examine the Dirichlet approach. Since the Dirichlet functional Eqn. (2) depends on the parameterization
of the surface, it cannot be used directly for a mesh model. However, we can consider its variational derivative—the
Laplacian. For a triangular mesh, a discrete Laplacian should be used. Let ( )N i I be the index set of the 1-ring

neighboring vertices of vertex i . The Laplacian operator () can be approximated at each vertex by the umbrella

operator:
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( )

( ) ( )i ij j i

j N i

P w P P


  
where the weights ijw are positive numbers that sums to one for each i . There are many ways to choose the weights

based on the neighborhood structures. In this paper, we choose

( )

ij
ij

ik

k N i

S
w

S





where ijS is the area of the two triangles that share the edge connecting iP and jP .

Now for all interior vertices 1iP i n N     of mesh M , let their Laplacian ( )iP equal zero. This results in

N n equations with N n unknowns. Unfortunately, the equations are non-linear due to the fact that our chosen
Laplacian operator is non-linear. Then we take a similar approach that we used in Section 3.1. We update iP to iP

by averaging its old neighboring vertices:

( )

ij ji

j N i

w PP


 

where ijw are computed from old iP and jP . When all the interior vertices are updated, this completes one iteration.

Similarly, the iteration continues until the area change is smaller than the prescribed tolerance. Since the above
updating is similar to Laplacian filtering, the process is called Laplacian fairing.

3.3 Edge Swapping
Given a set of points in 3D space, there are many ways to connect them to form a triangular mesh. Obviously, the
number of possible triangulations is huge. Not all of them possess equally pleasing shapes and for a particular
application some will be much more acceptable than others. This suggests that we need to find an optimal triangulation
in some sense.
Here we intend to improve a given mesh by changing its connectivity via a simple local transformation, called the edge
swapping. Refer to Fig. 2. The edge swapping transforms two triangles sharing one edge shown on the left into another
two triangles shown on the right. Note that during this transformation, the four vertices remain unchanged. What has
changed is the connectivity among the vertices. The edge swapping should only be performed if it improves the mesh.
For our application, the improvement is measured by the area reduction.

Fig. 2: Edge swapping.

For given mesh M , our edge swapping algorithm is performed using Lawson’s local optimization approach [8]. It
visits each interior edge of M and checks whether the edge swapping reduces the area of the mesh. If an area
reduction does result, the algorithm swaps the edge. After the algorithm visits all edges in this way, it completes one
iteration. If the algorithm made any swaps during the first iteration, it conducts a second iteration of edge visits. This
process continues until no swap is made in one iteration.
This process is simple and fast. It always terminates in a finite number of iterations. However, it is essentially a “best-
first" algorithm, which usually has the drawback that it may return a local optimum. To get globally optimal solutions,
simulated annealing technique may be considered [2], but the computational cost is much higher.

3.4 Algorithm
Note that area minimizing, Laplacian fairing and edge swapping cannot be applied to our boundary condition directly
because these three processes all assume that there has already existed a triangular mesh. Therefore we need an
initialization step to create an initial triangular mesh from our input.
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Here we give a simple way to create our initial triangular mesh. Given the boundary 1 nP P and a triangle number

m , we first compute the central point of the polygon by averaging the vertices:
1

n

c i

i

P P n


  . Then for each vertex

iP , we connect it to cP and also add s interior vertices j
iP along line segment i cPP :

( ) 1 2
1

j
i i c i

j
P P P P j s

s
       




where 2
m n

ns     stands for how many rings will be added. Next, for each j , we join 1 2
j j j

nP P P   by the order to

form a polygon. This results in a mesh which contains triangles and possibly quadrilaterals. For the quadrilateral facets

such as 1 1
1 1

j j j j
i i i iP P P P 

  , we split them into two triangles by inserting a diagonal edge such as 1
1

j j
i iP P 

 . So far we have

created a triangular mesh which consists of (2 1)s n triangles (refer to Fig. 3(a)). If (2 1)s n does not equal to m ,

we need to further insert (2 1)m s n  triangles to match m . This can be done by arbitrarily choosing

( (2 1) ) 2m s n   triangles (for example, those on the outer ring) and split each of them into 3 sub-triangles with a

new vertex at the center of the triangle (see Fig. 3(b)).

(a) (b)
Fig. 3: (a) Creating an initial mesh with 2s  and (b) refining an individual triangle.

It should be pointed out that this initialization method is simple and easy to create a mesh with required triangle
number, but it is not optimized and can be improved by taking the shape of the boundary into consideration and/or
employing some optimization criteria such as those used in Delaunay triangulation. The current initialization method
may generate an initial mesh which is far from satisfactory, but our subsequent techniques are able to correct it. The
experimental examples have demonstrated that our proposed algorithm can always return the triangular meshes of
minimal area. Fig. 4 shows one of such examples, in which the initial mesh contains self-intersection. In addition, the
initialization step also sets the topology of the final minimal surface besides providing an initial mesh. This is because
the subsequent processes do not change the topology of the mesh as a surface. Therefore if a special topology is
expected, a different initialization is needed.

Fig. 4: Left: the input boundary; middle: the generated initial mesh; right: the final minimal area surface.

Once an initial triangular mesh is created, the edge swapping, Laplacian fairing and area minimizing are used to
improve the connectivity and positions of vertices. It can be observed that Laplacian fairing works as a filtering and its
numerical performance is much more stable than that of area minimizing. This suggests that we should apply Laplacian
fairing first and then use area minimizing. Therefore we propose our algorithm as follows:
Step 1. Initialization

Edge swapping
Step 2. DO {
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Laplacian fairing
Edge swapping

} WHILE (area change 1 )

Step 3. DO {
Area minimizing
Edge swapping

} WHILE (area change 2 )

In the above algorithm, 1 and 2 are two prescribed tolerances that control when the iterations should stop. Step 1

creates an initial mesh with the given boundary polygon. Step 2 is kind of discrete Dirichlet approach which gives a
good approximation to the solution. Step 3 further refines the approximation by minimizing the area functional. In all
these steps, the edge swapping is added to improve the connectivity of the mesh.

4. EXPERIMENTAL EXAMPLES
This section provides some examples to demonstrate the algorithm. In particular, the first two examples are designed to
check the validity of the algorithm. Their input boundary polygons were generated from the classic Helicoid and
Catenoid minimal surfaces. In addition, we also examine the mean curvature of the resulting triangular meshes. The
concept of mean curvature for a mesh surface and its computational formula are from discrete differential
geometry [13]. The absolute value of mean curvature ik at vertex iP on a mesh is computed by

( )

1
( )( )

4
i ij ij j i

i j N i

k cot cot P P
A

 


   

where iA is is the sum of areas of triangles that contain vertex iP , and ij ij  are two angles corresponding to edge

i jPP (refer to Fig. 5 for illustration).

Fig. 5: Illustration of symbols in the mean curvature formula.

The input polygon in the first example is shown in Fig. 6(a), which consists of 186 points. There points were obtained
by sampling the boundary of a patch of the Helicoid surface. The patch is defined by parametric equations

cos sin ( ) [2 10] [ 1 10]x u v y u v z v u v           

and has an area of 536 7 . Now we use our algorithm to find an open triangular mesh with the input polygon as

boundary. The triangular mesh should contain a required number of triangles and have the minimal area. In this
example, we let the triangle number be 2050 and two tolerance 1 2  be 0 01 . The results are shown in Fig. 6, where

(b), (c) and (e) are the outputs of Step 1 (initialization), Step 2 (Laplacian fairing) and Step 3 (area minimizing),
respectively. The areas of the triangular meshes in Fig. 6(c) and (e) are 536.17 and 536.07, which are even smaller
than the actual area of the Helicoid patch. This can be explained by the fact that our input polygon is only an
approximation to the exact patch boundary. The maximum absolute values of mean curvature of the meshes in Fig.
6(c) and (e) are 0.1 and 0.0007. Fig. 6(d) and (f) are the mean curvature images of (c) and (e), in which color blue
stands for low mean curvature and color red for high mean curvature. It is clearly seen from the curvature images that
the mesh shown in Fig. 6(c) is further improved by area minimizing which outputs Fig. 6(e). Both the area and the
mean curvature indicate that the triangular mesh in Fig. 6(e) is a good solution.
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Fig. 6: Reconstructing the Helicoid surface from a polygon.

Fig. 7: Reconstructing the Catenoid surface from a polygon.

The second example is to reconstruct the Catenoid surface from a given polygon as boundary. The polygon contains
156 points that were originally sampled from the boundary of a Catenoid patch defined by

cosh cos cosh sinx v u y v u   ,  3 3
5 5( ) [ 2 2]z v u v            The area of the patch is 58 98 . We apply our

algorithm to the polygon with the triangle number of 2040 and 1 2 0 01    . The results are shown in Fig. 7, where

(a) is the input polygon, (b) is the mesh outputted from Step 1, (c) is the result from Step 2, which has an area of
58 95 and the maximal mean curvature of 0.23, (e) is the final mesh outputted from Step 3, which has an area of
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58 2 and the maximal mean curvature of 0.004, (d) and (f) are the mean curvature images of (c) and (e), respectively.
These statistics demonstrate the effectiveness of the algorithm.
Two more examples are shown in Fig. 8, where the left column shows two input polygons consisting of 160 and 97
vertices, respectively, the middle and right columns show the final minimal area meshes of different triangle numbers.
The statistics are shown in Tab. 1 and Tab. 2. It can be seen that the area of output triangular meshes decreases when
the level of detail increases.

Fig. 8: Construction with different levels of detail.

resulting mesh on the middle resulting mesh on the right

triangle number 800 2400

area 9.9 9.87

max mean curvature 0.004 0.001

Tab. 1: Statistics for the example shown in the top row of Fig. 8.

resulting mesh on the middle resulting mesh on the right

triangle number 485 1455

area 1191.3 1187.8

max mean curvature 54 8 10  51 1 10 

Tab. 2: Statistics for the example shown in the bottom row of Fig. 8.

5. DISCUSSION
In this paper, we have proposed an algorithm to construct triangular meshes of minimal area from all possible
triangular meshes with the prescribed boundary and number of triangles. The core techniques of the algorithm are
three processes: area minimizing, Laplacian fairing, and edge swapping. They are combined to provide an automatic
approach. The algorithm has been shown by the examples to be reliable and effective. On the other hand, since these
three processes can be done very fast, they can be used in interactive environments. Especially in digital geometry
modeling, after users sketch the boundary and specify the level of detail, the three processes can then be interactively
performed in various orders to achieve users’ specific requirement.
Although the paper focuses on the construction of triangular meshes from a single contour, it is possible to extend the
idea and the three processes to finding the minimal surfaces from multi-contours or with other constraints. Fig. 9 shows
one example, where the input consists of two contours and the minimal surface interpolating the contours is
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constructed using our algorithm. Here we only need one extra process. That is to generate an initial triangular mesh
from the given contours. Applications of the algorithm to other fields are also possible and we are currently studying
the application to mesh fairing.

Fig. 9: Left: two input contours; middle: the resulting mesh; right: the shading image.

This research also generates some theoretical problems, one of which is the convergence analysis of the algorithm.
Though the algorithm succeeds for all our testing examples, we do not know exactly what conditions guarantee the
convergence. Meanwhile, this problem is also related to the existence and uniqueness properties of our minimal surface
problem. The existence of triangular meshes of minimal area can be proved. In fact, the area functional Eqn. (3) can

be considered as a continuous real function defined on 3( )N nR  since we have N n free vertices 1n NP P   and

each vertex has three coordinates. The area cannot be negative and thus it is bounded from below. Furthermore, when
we look for a minimum, we can restrict the function to a suitable compact subset such that if a vertex goes outside of
the compact subset, then the area functional becomes greater than some bound. Thus we affirm from calculus that a
minimum exists and it is attained. However, the uniqueness of minimal area triangular meshes is generally not true.
This can be seen from a special situation where the given polygonal boundary lies on a plane. Then the area of the
region bounded by the polygon is minimal. If a triangular mesh reaches the minimal area, it must lie on the plane. If
we move one vertex of the triangular mesh on the plane a little bit, obviously we obtain a new triangular mesh but we
do not change the total area. This implies that we could have many triangular meshes which all have the minimal area.
These theoretical properties of our minimal surface problem suggest that our algorithm should be improved such that it
converges not only to a minimal area triangular mesh, but also to one that possesses a good quality connectivity in
some sense. This is a challenging and worthwhile goal.
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