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ABSTRACT

The optimal path problem has many applications in engineering such as robotics motion planning
and UAV path planning. A popular solution of the problem is to express the domain environment in
terms of a graph and search for the optimal path between two nodes. This approach only includes
the topological information of a path. The geometric information is omitted. This paper presents a
new approach to generate an optimal path by using the space-time geometry. The environment is
expressed in terms of index of refraction which determines the space-time geometry. Hence, both
geometric and topological information of the environment are considered. A geodesic is computed
on the space-time geometry to yield the optimal path.
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1. INTRODUCTION
The optimal path is basic to the solution of many problems in communications, navigation, robots, control,
optimization, and enterprise planning. These are basically boundary value problems. The path is the geometric
connection between two points. Instead of having a unique path, multiple paths may exist; hence, an optimal path is
most desirable in such situation.

The index of refraction characterizes the velocity in a region. For example, on a highway, if the maximally allowed
speed is c and if the instantaneous velocity of the vehicles is v , then that portion of the highway may be said to have

an index of refraction
v

c
 for the “flow of traffic” at that time. In machining applications, the maximal feed rate of a

machine tool may be limited to c while the instantaneous feed rate may be cv  ; the portion being machined can be
said to have a certain index of refraction.

It is well known that light seeks the most efficient path in space and in time since it travels along the geodesic of the
space-time. The geometry of a geodesic is affected by the geometry of the space-time which can be featured by the
spatial flow velocity in the space.

A unity index of refraction ( 1 ) implies a constant velocity field which gives a flat space-time with zero Gaussian

curvature. As a result, the geodesic on the space-time geometry is a straight line. When the index of refraction is not

one ( 1 ), then the space-time geometry is non-flat and results a curved geodesic. This paper presents an approach

to generate an optimal path by modelling the space-time geometry, computing the geodesic and projecting it onto the
space.

2. RELATED WORKS
Two major applications of path planning are for robotics1-3 and unmanned aerial vehicles4-6 (UAV). Both refer to seek a
path between two points in a domain with some no entry regions. A popular approach is to use a graph to represent
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the environment of these no entry regions which can be obstacles and/or threat regions. A graph search algorithm such
as Dijkstra algorithm, breath-first search, A* search algorithm7 are commonly employed to find the optimal path. The
path usually makes a detour around the no entry regions. Efficiency and effectiveness are the major concerns in this
approach. Furthermore, the graph just describes the topology (possible connections) of the environment which is
considered as discrete. Fast marching algorithm8 is similar to Dijkstra’s algorithm but it is consistent in a continuous
domain.

In order to have the detail geometry of path such as the curvature and distance, the geometry of the environment must
be considered. This paper presents a graphical approach for solving a boundary value problem and yielding an
optimal solution. The environment of the domain is expressed in term of the index of refraction instead of a graph. The
space-time geometry embedded with the index of refraction is modeled. An optimal path between two given points
subject to various indexes of refraction due to the environment is obtained by projecting the geodesic onto the space.

3. SPACE-TIME GEOMETRY WITH UNITY INDEX OF REFRACTION
Consider a particle moving in a region R with constant velocity v . At time t , the position of the particle is

 )(),( 022011 ttuuttuu  , hence the distance traveled and the time of flight is 2
2

2
1 uur  and

v

r
tt  0

respectively (where 0t is the delay). Rearranging the time of flight yields rttv  )( 0 . The geometry of the space (r)

and time (t) is represented by an inverted cone  with a half angle of
4


as depicted in figure 1. Under constant

velocity condition, the particle is traveling along a geodesic on the space-time geometry. Projecting this geodesic onto
the space gives the optimal (in time) path. Since the velocity is constant, the Gaussian curvature of the cone is zero and
the space-time geometry is flat.

Fig. 1: Flat space-time geometry with 1 .

4. TWO REGIONS WITH NON-UNITY INDEX OF REFRACTION
When the original point op and the target point tp are located in two regions 1R and 2R with different constant

velocities 1v and 2v respectively. Assuming that 00 t , then time of flight is rewritten as
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where
2

1

v

v
 is the index of refraction; 1r and 2r are the distance traveled by the particle in region 1R and 2R

respectively.

Let the intersection of the path and interface of the two regions be an intermediate point ip , then point ip is the

secondary target point of the path section in region 1R and it is also the secondary original point of the path section in

region 2R . Therefore, cone 1 with half angle of
4


and vertex at point op ; and cone 2 with half angle of 

(where  tan ) and vertex at ip are used to represent the space-time geometry as shown in figure 2. Note that the

vertex of the cone 2 representing the space-time in region 2R is not on point ip . It has a delay for the particle to

travel from the original point op to the secondary target point ip at the interface.

Fig. 2: The particle path across regions with index of refraction.

Hence, a complete space-time plot for two regions with an index of refraction  can be obtained by sweeping the

cone 2 along the intersection curve 12c between the cone 1 and the region interface as depicted in Figure 3.

The geometry of the space-time provides an optimal solution to a boundary value problem of the following kind:
finding the path with minimum time of flight between the original point in region 1R and the target point in the other

region 2R .

The first part of the problem is easy. Since the Gaussian curvature of a cone is zero, the solution is simply straight line
connecting the original point to the points on the interface. The second half is slightly harder: it involves traversing in a
direction in the other region.

With the given locations of the original op and the target point tp , the approach is to trace from the target point tp

back to the original point op along the geodesic on the space-time geometry. Starting from the target point tp , project

it onto the space-time geometry to obtain point tq as shown in figure 4. The point iq can be found along the

geodesic on the cone 2 from the point tq . The path is the projection of the geodesic iqp0 and tiqq on both cones

onto the plane  21,uu .
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Fig. 3: The space of two regions with straight boundary at the interface.

Fig. 4: Graphical solution for the boundary value problem.

5. APPLICATION EXAMPLE – PATH PLANNING FOR UAV
Path planning for an unmanned aerial vehicle (UAV) is a typical boundary value problem since it involves the path
between two points: original point and target point. A region R is characterized by a spatially dependent threat
parameter per unit distance traveled by the aircraft. The threat is mainly due to the adversarial equipment such as
radar. In such situation, the parameter refers to the rate of detection of the aircraft (UAV) per unit length of the path.
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Once the aircraft is detected, the radar initiates tracking and, after some response time, launches a missile. Tracking
requires continuous observation of the aircraft during a response time interval. If the number of detection is too low,
then the track is lost. The aircraft must be reacquired and new track must be initiated. Hence, the aircraft will be safe
after entering the threat region provided the time interval is short enough.

Hence, the problem is formulated as to search for a path  in a region jR with rate of detection j per unit distance

along the path from the original position op to the target position tp such that the time of flight is minimum.

Consider an aircraft traveling with velocity v from the original point op in region 1R with threat parameter 1 to the

target point tp in region 2R with threat parameter 2 , the apparent velocity of the aircraft in these two regions are

1

v
and

2

v
respectively. The index of refraction is expressed as
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Fig. 5: The space-time of two regions with circular boundary at the interface.

In many cases, the threat region is finite and has a closed boundary at the interface. In figure 5, op is the original point

in region 1R with threat parameter 1 . An adversarial radar is located at point o which covers a circular region 2R

with threat parameter )( 12   . There are two extreme points ap and bp for the aircraft to enter region 2R such that

aopp and bopp are tangent to the boundary of region 2R . These two points divides the boundary into two parts:

abR and baR where abR consists of a set of intermediate points. The space-time of region 1R is represented by a

cone 1 with vertex angle of
4


. With the introduction of region 2R , the cone 1 is trimmed by the boundary abR

and the space-time of region 2R is obtained by sweeping a cone 2 with vertex angle of  (where  tan ) along

the trimmed edge of the cone 1 .
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Figure 6(a) shows the space-time geometry within the circular region 2R . For any point p in region 2R , there exists

another point q which is the projection of point p along the vt axis onto the space-time geometry. This point q lies

on the surface of a cone 2 with the vertex iq at the trimmed edge. The line iqp0 is a geodesic on the cone 1 .

The optimal path from the original point 0p to point p is obtained by projecting the geodesic iqp0 and qq i onto

the space  21,uu . Figure 6(b) plots the optimal paths from the points in region 2R to original point 0p in region 1R .

Note that there are two (white) zones in region 2R such that their corresponding space-time geometries are two

conical surfaces with vertex at point aq and point bq on the trimmed edge. This implies that point ap and bp are the

entrances for the optimal paths to enter these two zones respectively.

Fig. 6: The optimal paths from point 0p to the points in region 2R .

A mission considered here is to fly from an original point 0p to a target point tp in the region 1R through a waypoint

p in the region 2R . The region 2R is guarded by radar at point o. The threat parameters for the region 1R and 2R

are 1 and 2 ( 1 ) respectively. The path planning is to seek an optimal path so that the mission is completed.

Since the paths between two points are reversible, two families of optimal paths are developed with respect to the
original point 0p and the target point tp . Hence, every point within the region 2R corresponds to an intersection of

two optimal paths from the point 0p and the point tp respectively as depicted in figure 7. Therefore, for every

waypoint p in the region 2R , there exists two optimal paths from the points 0p and tp in the region 1R such that

the combined path tp p tp is the optimal for the mission.
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Fig. 7: The paths from original point to target point through a waypoint in region 2R .

6. DISSCUSSION AND SUMMARY
The UAV path generated by this approach is optimum in time. However, the radar cross section of an aircraft has not
been counted. Furthermore; the safety is not directly considered. Suppose the path consists of n segments, then the
theoretical number of detections at time t in region jR is )( 1 jjjj ttr where 1jt is the time when the aircraft

crosses the interface between the regions 1jR and jR , and jr is the distance traveled in the region jR . Let the

probability of detection at time t in region jR be )( jP  , then the aircraft will be detected at time t if )( jP  is high

enough (for example )( jP  >0.8). Hence, the velocity of the aircraft is important. It must be maintained above a

minimum value so that the traveling time in a threat region is short. Hence, the probability of detection is low. In fact,
even the aircraft is detected; it is still safe provided it leaves the threat region within a time interval less than the missile
launching time.

The notion of the optimal path, in space and/or in time, is of interest to UAV path planning under the situation of
multiple regions with different threat parameters. Likewise, for machining when the material is not homogeneous or
isotropic and for motion planning in robotics, in the presence of other active agents, “traffic” manifests. The index of
refraction between two adjacent regions implies the existence of forces which distorts the space-time. Importantly, the
space under consideration is often not “flat” or Euclidean. It is the hope that CAD/CAM researchers will find the
techniques developed in this paper useful, in particular non-Euclidean domains and its applications fruitful.
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