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ABSTRACT

An interpolation technique with the capability of local shape control for meshes of arbitrary topology
is presented. The interpolation is a progressive process which iteratively updates the given mesh,
through a two-phase Doo-Sabin subdivision scheme, until a control mesh whose limit surface
interpolates the given mesh is reached. For each iteration of the progression, the two-phase scheme
works by first applying a modified Doo-Sabin subdivision to the input mesh and then applying the
regular Doo-Sabin subdivision to the resulting mesh. The modified Doo-Sabin subdivision carries a
parameter for each face of the input mesh. These parameters provide required freedom to adjust
the interpolating subdivision surface at the user’s command. Local shape control is possible. It is
proved that the progressive interpolation process converges for any parameters between 0 and 1.
Therefore, this is a well-defined process. The progressive interpolation process satisfies both the
local and global properties. Hence, the new technique can handle meshes of any size and is very
faithful and efficient. Test cases that show the effectiveness of the new technique are included.
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1. INTRODUCTION
Subdivision surfaces are becoming popular in areas such as computer animation, geometric modeling, and computer
games, because of their capability in representing any complex shape with only one surface. A subdivision surface is
generated by repeatedly refining (subdividing) a given control mesh until a limit surface is reached. Therefore, a
subdivision surface is determined by the subdivision scheme. Subdivision schemes in general fall into two categories:
approximating schemes and interpolating schemes. An approximating scheme generates a smooth limit surface that
approximates the original mesh. Catmull-Clark subdivision scheme [1], Doo-Sabin subdivision scheme [4] and Loop
subdivision scheme [13] are typical approximating schemes. An interpolating scheme generates a smooth limit surface
that interpolates the original mesh. The famous butterfly subdivision method [5] and its modified version [21], and
Kobbelt’s subdivision scheme for quadrilateral meshes [8] are interpolating subdivision schemes.

Interpolation is a frequently used technique in shape modeling and design. The idea is to construct a surface to
interpolate the vertices of a given mesh (sometimes also the derivatives or normals at the vertices) so that the shape of
the surface, guided by the mesh, would be close to the shape that we want to design or model. Traditional
interpolation techniques can not handle design or modeling of objects with complicated topology because of restriction
imposed by the rectangular domains of the surface representations. One usually needs to decompose the objects into
several components and perform interpolation on these components separately. Subdivision surfaces do not have such
a restriction. Therefore, interpolation using subdivision surfaces is a more promising design and modeling technique.
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An intuitive approach to interpolate using subdivision surfaces is simply performing an interpolating subdivision
scheme such as [21] or [8] on the given mesh. In this approach, new vertices are defined as local affine combinations
of nearby vertices only. Therefore, this approach possesses properties of a local method and, consequently, can
handle meshes with large number of vertices. However, since no vertex is ever moved once it is computed, any
distortion in the early stage of the subdivision will persist. This makes interpolating subdivision very sensitive to
irregularity in the given mesh. In addition, it is difficult for this approach to interpolate normals or derivatives.

A less intuitive approach is to use approximating subdivision schemes in the construction of the interpolating surfaces.
This approach is a global method because it needs to solve a global system of linear equations to find control mesh of
the interpolating surface [16], [7]. Therefore, it can reproduce the shape of the data mesh faithfully, but can not
handle meshes with large number of vertices. To avoid solving a large system of linear equations, several alternatives
have been proposed such as quasi-interpolation [12], similarity based interpolation [9] and two-phase subdivision
scheme [19]. However, a subdivision based interpolation method that has the advantages of both a local method and
a global method is not available yet.

In this paper, we present a new subdivision based interpolation technique with the capability of local shape control for
meshes of arbitrary topology. The construction of the interpolating subdivision surface is through a progressive process
which iteratively upgrading the vertices of the given mesh, through a two-phase Doo-Sabin subdivision scheme, until a
control mesh whose limit surface interpolates the given mesh is reached. For each iteration of the progression, the two-
phase scheme works by first applying a modified Doo-Sabin subdivision to the input mesh and then applying the
regular Doo-Sabin subdivision to the resulting mesh. The modified Doo-Sabin subdivision carries a parameter for each
face of the input mesh. These parameters provide required freedom to adjust the interpolating subdivision surface at
the user’s command. Local shape control is possible. It is proved that the progressive interpolation process converges
for any parameters between 0 and 1. Therefore, this is a well-defined process. The limit of the progressive process has
a global form while the vertex upgrading process is a local operation. Therefore the progressive interpolation process
enjoys advantages of both a local method and a global method. Test cases show that the new technique is indeed
faithful and efficient and can handle meshes of any size.

The remaining part of the paper is arranged as follows. The new two-phase Doo-Sabin subdivision scheme is
introduced in Section 2. A progressive interpolation process whose updating step is built on top of this scheme is
introduced in Section 3. Convergence of the progressive interpolation process is proved in Section 4. Implementation
issues and test results are discussed and presented in section 5. Concluding remarks are given in Section 6.

2. TWO-PHASE DOO-SABIN SUBDIVISION SCHEME

Given a control mesh 0M with arbitrary topology, a Doo-Sabin subdivision surface is generated by iteratively refining
the control mesh until a smooth limit surface is reached [4]. The limit surface is called a subdivision surface because the
mesh refining process is a generalization of the quadratic B-spline surface subdivision scheme. Therefore, Doo-Sabin
subdivision surfaces include quadratic B-spline surfaces as special cases.

If iM is the resulting mesh after the i-th refinement step, the (i + 1)-th refinement step is performed as follows. For each

face 1 2 fF VV V  in iM , a new vertex '
iV is generated for each old vertex of the face iV through the following

formula:

'

1
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where ij are defined as follows:
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The new vertices are then connected to form faces of the new mesh 1iM  using the following rules.
1. New vertices generated for each face are connected to form an F-face;
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2. New vertices generated along an old edge of the mesh iM are connected to form an E-face;

3. New vertices generated around an old vertex of iM are connected to form a V-face.

(a) (b) (c) (d)

Fig. 1: Limit surfaces with different shape parameters for two-phase Doo-Sabin subdivision scheme: (a) the initial
mesh; (b) limit surface with all shape parameters set to 0.8; (c) limit surface with all shape parameters set to 0.4; (d)
limit surface with the shape parameters of the upper part set to 0.8 and others to 0.4.

The valence of each new vertex is four. But side numbers of new faces are usually different (except that E-faces which
are always quadrilaterals). However, once a face is created, all the F-faces subsequently created within that face will
always have the same number of sides. An important property of the new faces is that the centroid of each new face
lies on the limit surface. This property is frequently used in the construction of an interpolating Doo-Sabin subdivision
surface.

Typical subdivision based interpolation techniques do not provide the user with the option of shape control. To add
freedom for shape control, we propose a two-step scheme for Doo-Sabin subdivision. A two-step scheme for Catmull-
Clark subdivision was first used in [3] to design an always working interpolation method, where a single
parameter was introduced in the first subdivision step. The two step Doo-Sabin subdivision scheme to be introduced

here is more general and has the ability of local shape control. The new subdivision scheme carries a shape parameter
for each face in its first subdivision step. These parameters provide the required freedom in shape control at the user’s

command. Assume the faces of the mesh 0M are ordered from 1 to F . For each face 1 2 fF VV V  of iM , a new

vertex '
iV is also generated for each old vertex of the face iV . However, the generation of the new vertices depends on a

parameter assigned to that face as follows.
' (1 )i iV V A    (1.2)

where is a parameter between 0 and 1, andA is the centroid of the face:

1 2 fV V V
A

f

  




F- Faces, E-face, and V-faces of 1M are then created following the same rules as those specified above. Once the new

mesh 1M is created, phase-one subdivision is done. We then perform regular Doo-Sabin subdivision on the new

mesh 1M iteratively to generate a limit surface. The surfaces in Fig. 1 are generated using the new two-phase scheme.
The limit surface would resemble the initial mesh closely if shape parameters attached to the faces of the initial mesh
are close to 1.

3. PROGRESSIVE INTERPOLATION

Given a rectangular mesh 0M to be interpolated, by viewing 0M as the control mesh of a B-spline surface, one can

compute the distances between vertices of 0M and corresponding points on the B-spline surface. If these distances are

added to the vertices of 0M , one gets a new mesh 1M whose B-spline surface is closer to the vertices of 1M . By

computing distances between vertices of 0M and the corresponding points on the B-spline surface of 1M , and adding

these distances to the vertices of 1M , one gets a new mesh 2M whose B-spline surface is even closer to the vertices

of 0M . Iteratively repeating this process, one gets a sequence of meshes iM whose corresponding B-spline surfaces

converge to a limit surface that interpolates 0M . This is the basic idea of progressive interpolation originally proposed
for B-splines [10], [17]. An attempt to use this technique to interpolate meshes with arbitrary topology using Loop
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subdivision surfaces was recently made in [14]. However, it couldn’t prove convergence of the corresponding
progressive process. In the following, we present a progressive interpolation technique for Doo-Sabin subdivision
surfaces. The vertex upgrading process is driven by the two-phase subdivision scheme defined in the previous section.
Therefore, a user can control the shape of the interpolating surface by adjusting values of the shape parameters carried
by phase-one subdivision. Proof of convergence of the progressive process is given in the next section.

Fig. 2: Neighborhood of vertex V.

Give an initial mesh 0M with arbitrary topology, one gets a new mesh 1M by performing a phase-one Doo-Sabin

subdivision on 0M . For each vertex V of 0M , there is a corresponding V-face in 1M . The centroid of the V-face lies on

the limit surface of 1M . Hence, centroids of the V-faces can serve as limit points of 0M ’s vertices. Fig. 2. shows the

neighborhood of V. V has n adjacent edges and faces. The adjacent edge points are denoted 1 2, , , nE E E . Vertices in

the i-th face are denoted 1 2 3, , ,
i

i i i
fF F F  , where if is the number of vertices in the i-th face. '

iW denotes the new vertex

in the i-th face after one subdivision that is corresponding to V. Then ' ' '
1 2, , , nW W W are the vertices of the V-face

corresponding to the vertex V. The limit point of V can be computed as follows.
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

 
From Eqn. (1.2), we can expandV  as follows.
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(2.1)

In general, let kM be the resulting mesh after the k-th iteration, and kS the limit surface of the two-phase Doo-Sabin

subdivision process. For each vertex kV of kM , first compute the corresponding limit pointV  on kS by Eqn. (2.1),

then compute kD , the difference between the vertex 0V in the initial mesh andV  .
0kD V V   (2.2)

This distance is then added to the vertex kV to get the new vertex 1kV  for 1kM  .
1k k kV V D   (2.3)

As the iteration proceeds, the updated mesh converges to a mesh whose limit surface interpolates the initial mesh. The
computation of limit points is the key operation in each iteration. This computation process, according to Eqn. (2.1), is
direct and is a local operation. Thus the progressive interpolation process has the advantages of a local method, like
the ability to handle large meshes. On the other hand, since the limit of the modified meshes is a global system, the
progressive interpolation process also has the advantages of a global method. Hence the new progressive interpolation
process has the advantages of both a local method and a global method. We next show that the new progressive
interpolation process converges as long as the shape parameters are between 0 and 1. Hence, this is a well-defined
process.
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4. CONVERGENCE OF THE PROGRESSIVE INTERPOLATION METHOD

From Eqn. (2.1) and Eqn. (2.2), we have the following relationship between kD and 1kD  .
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Eqn. (3.1) can be put in a compact matrix form as follows.
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where m is the number of vertices in the given mesh, I is an identity matrix and B is an m×m matrix
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Each row of matrix B is computed from the Eqn. (2.1). B is the matrix used for computing the limit points on the limit

surface. B can be decomposed as the product of a diagonal matrix  and a symmetric matrix S as follows

B S 
where
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And [ ]ij m mS B  , with ijB are defined in Eqn. (3.3). Note that the relationship between two edge vertices or two face

vertices is symmetric. Hence, it is easy to see that S is symmetric. Actually, S is positive definite.

Proposition 1 The matrix S is positive definite if (0,1), 1,2, ,i i F    .

Proof: Considering the quadratic form of the matrix S:

( ) Tf X X SX
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if ( ) 0f X  holds for any nonzero X, then the symmetric matrix S is positive definite. From Eqn. (2.1), face point in the

j-th face surrounding V has coefficient
1 j

jf


and edge point of V has coefficient 1

1

1 1j j

j jf f

  



 
 when the edge is shared by

the j-th face and the (j − 1)-th face. Note that these coefficients depend on the face only. Then we have
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Since the parameter j for each face is between 0 and 1,
1

0j

jf


 and 0

1

n

i
i

 
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always hold. Thus ( ) 0f X  holds for

any 0X  . Hence, the matrix S is always positive definite if shape parameter for each face is in (0,1) . The diagonal

matrix is obviously symmetric positive definite. Then the fact that the eigenvalues of B are positive follows from the

following lemma.

Lemma 1 Eigenvalues of the product of positive definite matrices are positive.

The proof of Lemma 1 follows immediately from the fact that if P and Q are square matrices of the same dimension,

then PQ and QP have the same eigenvalues (see, e.g., [15], p.14).

Convergence of the progressive process can be proved easily now.

Proposition 2 The progressive interpolation process driven by the two-phase Doo-Sabin subdivision scheme is
convergent if (0,1), 1,2, ,i i F    .

Proof: First, it is clear that 1B   . Thus every eigenvalue μ of B satisfies 1  . We also know that the eigenvalues

of B are positive. Therefore, the eigenvalues of B satisfy the condition 0 1  . Then the eigenvalues

of I B ,1  , satisfy 0 1 1   . Hence the progressive interpolation process is convergent.

5. RESULTS
The parameters carried by phase-one subdivision provide the freedoms to control the shape of the interpolating
surface. These parameters act as a tension parameter when their values are close to 1. Therefore the shape of the
interpolating surface resembles that of the given mesh when the shape parameters are close to 1. Fig. 3(b) shows an
example with shape parameter set to 0.8 for each face. The resulting interpolating surface is visually very pleasing
when the shape parameters are around 0.5. Fig. 3(c) shows an example with shape parameter set to 0.4 for each face.
With two-phase subdivision, local shape control is also possible. Fig. 3(d) shows an example where shape parameters
of the four faces defining the north angle are set as 0.8 with all the other shape parameters set to 0.5. At the same time,
the progressive interpolation process is very efficient and can handle large meshes easily because only local affine
operations are required in each iteration. Our test cases show that the progressive interpolation process indeed
converges quickly.

(a) (b) (c) (d)

Fig. 3: Interpolating surfaces with different shape parameters using two-phase Doo-Sabin subdivision scheme: (a)
given mesh; (b) interpolating surface with all shape parameters set to 0.8; (c) interpolating surface with all shape
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parameters set to 0.4; (d) interpolating surface with local shape control: shape parameters of the upper part set to 0.8
and others to 0.4.

Several examples are presented in the following figures, showing both the given mesh and the resulting interpolating
surfaces in each case. We use relative error, instead of absolute error, to define the threshold in stopping the iteration.
The threshold is set to 0.01% of the bounding box diagonal of the initial mesh in all the test cases. Tab. 1. gives the
comprehensive data of these examples.

Figures # of vertices # of iterations Max Error Ave Error

4(b) 520 4 3.48051e-006 2.39273e-007

4(c) 520 15 1.06938e-005 1.04466e-006

4(d) 520 8 8.51077e-006 9.14787e-007

5(b) 314 4 0.0147411 0.0047881

5(c) 314 10 0.0160123 0.00624637

5(d) 314 10 0.0160123 0.00386015

6(b) 956 4 5.43858e-006 1.42327e-006

6(c) 956 10 6.23132e-006 1.60614e-006

7(b) 1590 4 5.69258e-006 1.02823e-006

7(c) 1590 10 6.37943e-006 1.20608e-006

8(b) 1200 4 6.00313e-006 1.46748e-006

8(c) 1200 10 6.85102e-006 1.68769e-006

Tab. 1: Progressive iterative interpolation: test results.

(a) (b) (c) (d)

Fig. 4: Interpolating surfaces with different shape parameters using two-phase scheme for Doo-Sabin subdivision: (a)
given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpolating surface with all shape
parameters set to 0.4; (d) interpolating surface with local shape control: shape parameters of the bottom part set to
0.85 and others to 0.4.

(a) (b) (c) (d)

Fig. 5: Interpolating surfaces with different shape parameters using two-phase Doo-Sabin subdivision scheme: (a) given
mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpolating surface with all shape parameters
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set to 0.5; (d) interpolating surface with local shape control: shape parameters of the upper part set to 0.85 and others
to 0.5.

(a) (b) (c)

Fig. 6: (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpolating surface with all
shape parameters set to 0.5.

(a) (b) (c)

Fig. 7: (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpolating surface with all
shape parameters set to 0.5.

(a) (b) (c)

Fig. 8: (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpolating surface with all
shape parameters set to 0.5.

6. CONCLUDING REMARKS
A novel progressive interpolation process driven by a two-phase Doo-Sabin subdivision scheme is presented. Phase-
one subdivision of the two-phase scheme carries a shape parameter for each face of the given mesh. Therefore, in
addition to having the advantages of both a local method and a global method, this technique also allows a user to
control the shape of the interpolating surface interactively. Actually, since the shape parameters are independently
defined, shape control can be done both locally and globally. The progressive interpolation process converges for
shape parameters between 0 and 1. So we finally have a well-defined subdivision driven progressive interpolation
process with the capability of both global and local shape control. Currently, the presented technique is designed for
closed meshes only. A future research direction is to consider this technique for open meshes.
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