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ABSTRACT

A comprehensive method for automatically constructing a 3D solid model from
orthographic views obtained by a moving sensor is suggested. The views are
constructed from sensors, e.g. distancemeters or cameras, in an automatic fashion
using estimation techniques. The raw distance measurements are processed via a filter
that generates estimates of the part dimensions and position. The fact that the
outcome of the estimation (measurement) process is a set of explicit contour
equations is suitable for the second step, which is creating a 3D model from the
orthographic views through a graph theoretic approach. The process is implemented
by using variational geometry representation and graph theoretic tools that enable us
to construct a composite graph representing the 3D object. Results of the composite
graph are translated into a boundary representation object.
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1. INTRODUCTION
The work deals with creating a 3D geometrical model of an object based on automatically generated
2D orthogonal views. Theoretically, not only can one reconstruct the full model directly from
measurements, but moreover, both the object and the sensor may be moving at the time the readings
are taken. However, a typical scenario is a stationary object and measurements taken from orthogonal
directions. The measurements can be made by an in-plane laser, an orthogonal laser or a camera.
The main idea when creating the views is that the object consists of primitives with known shapes but
with unknown parameters, such as a cylinder with unknown dimensions etc. Other unknowns are the
object position and orientation. Such problems are of interest for quite some time and different
approaches were suggested e.g. [4], [5], [9], [21], [24]. The problem bears also some similarities to
simultaneous location and mapping (SLAM) [8]. The methodology of the identification used in this
paper follows the one in [2].
With the raw measurements provided by any type of sensor, the construction of the object in the pre-
specified shape space becomes a non-linear estimation problem. This is one of the most addressed
problems in the literature with numerous approaches ranging from standard Least Squares, through
Gradient Weighted Least Squares [1], to the more robust M-estimators [12]. The most common
approach for estimation from a sequence of measurements is using a Kalman Filter, which is the
optimal estimator for linear problems, on a linearized model about the prior estimate. This is the
Extended Kalman Filter (EKF) [18]. The Iterative Extended Kalman Filter (IEKF) [13] uses repeated
linearizations to increase accuracy. The recent Noise Updated Iterative Extended Kalman Filter (IEKF)



Computer-Aided Design & Applications, 6(1), 2009, 103-114

104

[2] goes one step further and uses the identified noise in the linearization. This is most effective in
cases where the noise effect is strongly non-linear.
A number of approaches have been developed over the past decades to interpret user-supplied
orthographic views. The two main reconstruction approaches are the wireframe – B-rep bottom-up
approach [16-17], and the volume-solid oriented approach [3-4], [8], [17-18].
The stage of constructing a wireframe model and translating it into a 3D solid model in a bottom-up
approach has caused many errors and raised various research issues. Spatial configurations involving
lines and planes containing primitives in an automatic way is detailed in [10]. The automatic procedure
for 3D reconstruction mimics trained human experts, which is achieved by combining elements of
variational geometry, and graph theoretic methods [14,20]. In particular, the main novelty in the
approach is its use of understanding the nature of 2D engineering drawings. This understanding is
translated into an actual algorithm by means of topological relations and dimensional scheme analysis
[14, 23].

2. CREATING THE 2D VIEWS
We assume that the measurement is planar. One possibility is an in-plane laser measurement shown
schematically in Fig. 1 that is taken at several levels, which is geometrically expressed as planes
intersecting the object. At each measurement instant the sensor is in a known position and orientation,
up to small uncertainty, which is modeled as noise. Then the distance to the contour of the object is
measured, again with a certain noise. In [3] the most general situation in which the situation is 3D and
the object is moving as well was considered, but here we assume that the problem is planar and that
the object is stationary, but in an unknown position. Treating the position of the object as unknown is
appealing from a practical point of view because it eliminates the need for registration and\or
initialization.

Fig. 1: General setting of the object and the
sensor.

Fig. 2: A rectangle represented by four functions.

The general shape of the object, or parts of the object, is assumed to be known, but not its parameters.
This assumption is in line with many real life cases where the object is made of standard elements
such as cylinder, plane phase, box ect. In body coordinates (see Fig. 1), the contour is given by


g(x1

b,x2
b ,)  0 , (2.1)

where  is a vector of parameters. For example, in a circle this vector includes the two coordinates of

the center and the radius, and in an ellipse it includes the two coordinates of the center and the two
radii. g may be only piecewise continuous or a vector of several functions, e.g. for multi-facet objects,
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as is the case in Fig. 2. The four functions in this case are


g1  x2

b, g2  x2
b B, g3  x1

b, g4  x1
b A,   (O1

b ,O2
b,A,B) . (2.2)

Alternatively, the four lines can be described by the single function that is their product,


g  x2

b (x2
b B) x1

b (x1
b A) . (2.3)

The advantage of this form is the automatic calculations without the need for logical operations that
determine which facet is active. Dealing with simpler functions, on the other hand, is better from a
statistical point of view.
To relate the local (2.1) to the actual measurement, a coordinate transformation is required. While this
can be done by means of standard geometry, the derivation is more structured and pseudo-linear when
homogeneous coordinates are used. The body coordinates system and the global coordinates system
are related as
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where

Rb(

b )and 1( )b
bT O are the rotation and translation transformation matrices from the body

coordinates, respectively. On the other hand, a point on the contour, from the sensor’s point of view, is
given by
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where ( )s
sR and 1 2( , )s s

sT O O are the transformations from the sensor coordinates. Combining the two

relationships we have
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Substitution into the contour (2.1) gives the k th measurement reading of a point on the contour, in
terms of the measured quantities as


g(xs ,r,)  0 , (2.7)

where


x s  O1

s O2
s s
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. (2.8)

So far the derivation has been purely geometric, assuming perfectly accurate measurements. In reality
each of the measured quantities contains noise. The k th measurement point is described by
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where kz are the actual measurements and the elements of kv represent the corresponding noises. With

this notation, (2.7) becomes


yk  g(zk ,,vk )  0 . (2.10)

Eqn. (2.10) is an implicit measurement where the artificial output is always zero but the actual

measurements, in particular the distance r, appear as coefficients. The equation is nonlinear in its

measurements, and consequently, in the noise as well. Since there is uncertainty about the sensor
position and the orientation, these quantities, which in general change from one measurement to
another, need to be estimated in addition to the object parameters. Define the vector
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. (2.11)

The overall measurement is, therefore,



zk
s

0


















I o



 xk  vs

g(xk ,zk ,vk )



















. (2.12)

Or generically
( , )k k ky H x v  . (2.13)

Notice that although only the parameters  are of interest, they cannot be separated from the rest

of kx ; one has to estimate s
kx as well. The implicit measurement is non-linear. One way to overcome

this is to use the extended Kalman filter (EKF), which uses a linearized version of the measurement. For
the sake of brevity, we present only a general statement of the estimation scheme; the details can be
found in [2].

ˆ ( ( ,0))k k k k kx x K y H x      (2.14)

( , )k k k kK K C D   , (2.15)

where kC and kD are the coefficients of the state and the noise after linearization, which are given by
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Since the EKF is based on linearization about the a priori estimation kx , a natural extension is a

recursive procedure with k̂x replacing kx and so on. This is the iterative extended Kalman filter (IEKF)

[13]. A further extension is given in [2] with the introduction of the noise updated iterative extended
Kalman filter (NUIEKF). The key idea is that better estimation of the state variables can be obtained if
the measurement noise is updated iteratively as well. In general terms, the estimation in the ith
iteration of the k th time step is given by
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where the gains 1,k,iK and 2,k,iK are calculated based on the iterative linearization , ,,k i k iC D  .

Overhead measurements are somewhat simpler as they directly produce points that are, apart from the

noise, on the contour

g(x1

b,x2
b ,)  0 . The estimation process then follows along the same lines as in

(2.8)–(2.10) but with (2.10) as the only measurement, i.e. kx  and Eqns. (2.12) and (2.16) are reduced

to their lower parts.
The situation is somewhat different when the measurement is made by a single, or repeated, camera
picture. The details of that case are omitted for the sake of brevity and we will only mention that edge
detection methods are used to define points that, apart from noise, lie on the contour. The situation
then is similar to taking overhead laser measurements, and the estimation problem is that of fitting
unknown parameters into a known function.
At the end of the measurement process, regardless of its technology, we have two or three orthogonal
views. In the next section we outline the procedure for creating a 3D object out of these views.

3. TOPOLOGICAL RELATIONS AND DIMENSIONING ANALYSIS USING VARIATIONAL GEOMETRY
The input at this stage is a 2D view, which goes through a constraint evaluation process resulting in a
2D view constraint set. Dimensions define geometric constraints, such as distance between two points,
distance between a point and a bar, and an angle between two bars. Spatial relations define topological
constraints such as tangency, parallelism, and perpendicularity [23]. The constraints extracted from
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each 2D view represent relations among explicit and implicit characteristics. Each dimension is
formulated as a constraint. There are two kinds of constraints: one, defined by a single equation, and
the second, a compound constraint, which requires two or more equations.

Each constraint equation is a function of points in the geometric dimension scheme. Eqn. i, denoted fi ,
is formulated as follows:

 1 1 2 2, , , ,..., ,n nf x y x y x yi  , (3.1)

where n denotes the number of points constraints by the geometric entity.
For the complete 2D view, a set of constraints, denoted as F, is given as follows:

 1 2, ,..., mF f f f . (3.2)

As an example, a distance from a point to a line is presented. To constrain the distance D between a

point Pa and a line P Pcb , two vectors must be defined: a unit vector Û from Pb to cP and a vector V

from Pb to Pa ; the distance D is a cross product,Û V .
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and


V  x

b
x

a ̂i  y
b
y

a ĵ , (3.4)

where i and j are unit vectors in the x and y directions, respectively.
The point-to-line constraint is formalized as

   1 0x b a y b af U y y U x x D      . (3.5)

The system constructs a knowledge base of variational geometry rules for constraining the
dimensioning scheme and the relations between the geometry sites in the view [15,23]. Constraining
the dimensioning scheme is done by positioning a selected point, called the anchor point, at the origin
in order to prevent solid body translation. All points are defined relative to this anchor point. To
prevent solid body rotation, a bar is defined to be horizontal, i.e., parallel to the x axis. For the
dimensioning and the constraint set to be valid, the Jacobian constraint matrix should meet two
requirements. First, the number of constraints must be equal to twice the number of vertices, and
second, the rank of the matrix must equal the number of constraints. Meeting these requirements
indicates that the matrix is non-singular and hence there is neither redundancy nor lack of dimensions
and definitions of the constraints. The constraint set F{Front}, for the front view in Fig. 3 is formalized
in (3.6).

4. GRAPH REPRESENTATION AND DEPENDENCIES MATCHING 2D VIEW CONSTRAINT SET
The graph representation of a constraint expresses the relationship and connections among
parameters. Moreover, a graph representation of a constraint set is a declarative structure that
expresses the existence of relations among the parameters of more than one constraint. The
motivation of this conversion is to find the minimal set of relations that fully represent the 2D view.
The 2D pair representation provides a compact quantitative and qualitative mapping of the relations
among the parameters for each view. The process of converting the constraint set into a 2D pair graph

goes through the following stages:
 Representing the constraint set as a full undirected graph. The nodes represent the parameters

and the arcs represent the existence of the constraint between the parameters. The arcs are
labeled according to the constraint.

 Obtaining a bipartite graph from the complete undirected graph and finding a maximum
matching for the bipartite graph. This is done by applying a matching process yielding a mach
set.

 Transforming the complete undirected graph into a minimal graph using the dependencies
found in the previous step. Using the results of the matching process, the undirected graph is
transformed into a minimal graph by the following rules: For a matching pair (v,fi) the
undirected graph is modified such that all arcs labeled other than fi and incident on v are
removed.
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 Converting the minimal graph into a pair graph is done by combining two single nodes into a

one-pair node. For nodes labeled xi and yi, for example, i=j, a new pair node labeled  ,x yi i is

defined. All other arcs are removed.

4.1 Graph Representation Example
The following example illustrates the construction of the minimal undirected graph process from two
2D dimensioned orthographic views.

Fig. 3: Front view (F) and side view (S) of a triangular prism

A triangular prism is described in Fig. 3 by two orthographic views: the front view (F) and the side view
(S).
In this example we used the following parameters for the vertices found in the two 2D views. For the

front view we defined the three vertices      1 1 1 2 2 2 3 3 3, , , , ,P x y P x y P x y and for the side view we defined the

four vertices        1 1 1 2 2 2 3 3 3 4 4 4, , , , , , ,P x z P x z P x z P x z . Two rules from the variational geometry rule base

described in Section 3 were used:
 Rule #1 – Euclidian distance between two points, and;
 Rule #2 – Perpendicularity.

To prevent solid body translation, the anchor point was fixed as the origin (0,0). All the points were
defined relative to this anchor point. To prevent solid body rotation, we chose a particular bar to be
horizontal, i.e., parallel to the horizontal axis.
For the front view of Fig. 5 we formulated the following six constraints:

2 2 2
1 2 1 2 1: ( ) ( ) 0f x x y y b    

2 2 2
2 6 1 6 1: ( ) ( ) 0f x x y x a    

3 1 2 6 1 1 2 6 1: ( )( ) ( )( ) 0f x x x x y y y y     

4 1: 0f x d 

5 1: 0f x e 

6 2 1: ( ) 0f y y  (4.1)

From this set of equations we obtained a 6x6 Jacobian matrix. The rank of the matrix was calculated
and the dimensioning was found to be proper and equal twice the number of vertices.
For the side view, eight other constraints were formulated as follows:

2 2 2
1 2 1 2 1: ( ) ( ) 0f y y z z d    

2 2 2
2 8 1 8 1: ( ) ( ) 0f y y z z b    

2 2 2
3 4 8 4 8: ( ) ( ) 0f y y z z d    

2 2 2
4 4 2 4 2: ( ) ( ) 0f y y z z b    

6 1 2 8 1 1 2 8 1: ( )( ) ( )( ) 0f y y y y z z z z     
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8 1: 0f y e 

8 1: 0f z a 

8 2 1: ( ) 0f z z  (4.2)

As before, we calculated an 8x8 Jacobian matrix from the set of equations. The rank of this matrix was
found to be 8, indicating proper dimensioning and constraint definition of the side view as well.
Fig. 4 describes the complete undirected graph constructed from the set of constraints in (4.1). The
graph was constructed by the method described in [20]. For example, the edge between 3x and 3x is

labeled 3f because the parameters are connected through the formulation of constraint 3f . Another

example is the edge connecting 1x and 2y , which is labeled 1f and 3f , indicating that these parameters

are connected by the two constraints, 1f and 3f .

Fig. 5 is a bipartite graph, which was also obtained from the set of constraints in (4.1). The match set
found from the maximum procedure is indicated by the thick lines connecting the parameters and the

constraints. It consists of the edges:             1 4 1 5 2 1 2 6 3 2 3 3, , , , , , , , , , ,M x f y f x f y f x f y f . Fig. 6 represents the

minimal graph for the front view, obtained from the complete undirected graph of Fig. 4 and the
corresponding bipartite graph of Fig. 5.

Fig. 4: Full undirected graph for the constraint set in 4.1

5. 3D RECONSTRUCTION APPROACH
Once the 2D pair graph for each orthographic view is obtained, a 3D object can be reconstructed. This
process consists of three major stages [20]:
1. Initial matching
2. Complete matching
3. Graph-to-object conversion

The processes of initial matching and complete matching use the set of separate 2D pair graphs for
each 2D view. These graphs are analyzed for matching and merging conditions. Fig. 9 schematically
illustrates the starting point, in which each 2D view has an independent pair graph representation
(left). The right scheme illustrates a complete graph generated by adding new edges (the dashed lines)
that connect vertices in the various 2D pair graphs.
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Fig. 5: Bipartite graph for the front view. Fig. 6: Minimal graph for the front view.

Fig. 7 represents the pair graph constructed from the minimal graph. Fig. 8 describes the pair graph for
the side view, [22].

Fig. 7: Pair graph for the Front View. Fig. 8: Pair graph for the Side View.

Fig. 9: A schematic illustration of the composite 3D graph representation [20].
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Matching the first 3D vertex is based on searching each one of the 2D projections for different plane
representations of the vertex. These vertices from the projections are matched simultaneously in the
representation graphs.
Fig. 10 represents the initial matching for the triangular prism in Fig. 4. The figure shows only a partial
initial matching of the composite graph. As indicated by the brown circle, the initial matching in the
graph represents the coincidence of p

1
on the front view and p

1
on the side view. This is a

representation of the same first 3D vertex in two different 2D views.
The initial 3D vertex serves as a starting point for the matching completion. Each link represents both
the connecting related parameters and the nature of the link (e.g., parallelism, dimensions, etc.). The
procedure of complete matching starts from the initial point on the initial composite graph and
proceeds by searching the connected edges of the initial 3D vertex, while checking two criteria:
connectivity and constraint type. Edges having the constraint type of Euclidian distance between two
points are chosen first, followed by a matching criterion of topological connections represented in the
graph or equality of coordinate values in the relevant planes. The complete matching process yields a
composite graph, where all 3D vertices in the 3D object are represented by the triplet of two nodes and
an edge linking them.
The complete composite graph is converted into a 3D object by translating the links, connections and
constraint types into geometry and topology. The 3D object is represented by boundary representation
(B-rep). This process is based on using graph theory tools, search models and heuristics for retrieving
information from the composite graph and then using the high level understanding of the 2D views.
The Chinese Postman Problem (CPP) algorithm is used for arc routing of all vertices in the graph and
traversing all edges by the criterion of minimal total distance. A short introduction to the stages of the
algorithm, which is used for the 3D reconstruction process, is presented. The postman, prior to
starting his route, must pick up the mail from the post office. He then delivers the mail along each
block on his route, and finally returns to the post office. To make the job easier, he does it with
minimal walking.
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Fig. 10: Partial composite graph for the top and side views.

Given a graph ( , )G V E , which consists of a set of nodes  ,1 2V v v  and a set of edges

{ 1, 2, }E e e  , this problem is equivalent to finding a cycle in G that traverses each edge at least once

in minimal total distance.
Definition: Any cycle in a graph that crosses each edge exactly once is an Euler tour.
Definition: An undirected graph is a Euler graph if and only if all vertices have even degrees.
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Constructing Euler graphs and Euler tours is detailed in [8]. Solving the CPP for any undirected Euler
graph is described below:
A Euler tour maintains a list of vertices (1), (2),..., ( )Lx Lx Lx k to the next visit, when vertex x is reached

the thk time.
Step 1: Select any vertex 0x . Let 0v v and 0kx  for all vertices x . All edges are labeled

"unused".
Step 2: Randomly select an unused edge incident to vertex v . Mark this edge "used". Let y be

the vertex at the other end of the edge. Set 1kv kv  and ( )Lv kv y . If the vertex y has

any incident, unused edges, go to Step 3; otherwise vertex y must be 0v . In this case, go

to Step 4.
Step 3: Set v y and return to Step 2.

Step 4: Let 0v be a vertex that has at least one used edge and one unused edge incident to it. Set

0v v and return to Step 2. If no such vertex exists, go to Step 5.

Step 5: To construct the tour, start at 0v . The first time vertexx is reached, leave it by going to

vertex ( )Lx kx . Set 1kx kx  and continue, each time going from vertex x to

vertex ( )Lx kx .

Implementation of the CPP assists in defining tours in which each triplet (two nodes and a connecting
edge) is translated into the geometry of the 3D object, depending on the constraint type and value.
This procedure is composed of the following steps: The first tour is defined by starting from the initial
matching, a 3D vertex represented in the composite graph and the contour loop defined in the high
level understanding. This step has the following sub-processes:

 Choose the initial 3D vertex representation for the selected view and label it "selected node".
 Check the edges connected to the "selected node" for a tuple (edge or node) so that the node

represents a vertex on the contour loop. If more than one node is found, select one randomly.
 Traversing to the node found in the selected view, check the composite graph for connecting

edges in the remaining views.
 Translate the vertex node representation and relevant constraint type represented by the edge

to the geometry and topology. In cases where more than one constraint is represented by the
edge, each of them is checked for feasibility by checking the loop content value found in the
high level understanding stage.

 Implement sub-processes 2-4 until the first "selected node" is reached for the second time.
Stopping condition: Translation from the 3D composite graph is completed when all loops found have
been covered.
The 3D boundary models indirectly represent a solid through a representation of its bounding surface.
Boundary representation models are a collection of faces representing a solid object. The 3D object
reconstruction from three engineering drawings representing orthographic views yields a boundary
representation of a solid. Fig. 11 is the geometrical example of the results of the 3D reconstruction of
two simple examples, Figure 12 is an example of a complex 3D reconstruction. The full detailed
process of the 3D reconstruction, and more examples, are found in [20].

Fig. 11: A simple examples of the 3D reconstruction process.
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Fig. 12: Two Simple examples of a 3D reconstruction.

6. CONCLUSION
A comprehensive method for automatically constructing a 3D solid model from orthographic views
obtained by a moving sensor was reported and described. It is assumed that the shape of the object
body, actually sub-objects of the entire body, is known but its parameters are not. Also, the position of
the body need not be known in advance. The raw distance measurements are processed via a filter that
generates estimates of the part dimensions and position. Since the formulation leads to implicit
measurement equations, standard extended Kalman filter techniques usually fail to converge to
accurate values. A new method, called a Noise Updated Iterative Extended Kalman Filter, was
developed and used.
Solving the problem of 3D object reconstruction from 2D dimensioned orthographic views combines
elements drawn from the experienced human mind. The process is implemented by using variational
geometry representation and graph theoretic tools to construct a composite graph representing the 3D
object. In the stage we translate the graph into an explicit geometric model. These elements are
amenable to automation, and the complex procedure described in this work, therefore, serves as a
means for reliable and accurate 3D reconstruction of solids.
The fact that the outcome of the estimation (measurement) process is a set of explicit contour
equations is suitable for the second step, which is creating a 3D model from the orthographic views
through a graph theoretic approach. In previous applications these equations had to be built from the
views as a preliminary step. The match between the output of the Kalman filtering approach for 2D
reconstruction, and the starting point for the graph theoretic approach for 3D reconstruction is the key
advantage of the integrated approach.
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