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ABSTRACT

A structured computational framework to efficiently detect collision between
deformable B-spline shapes and calculate reactive forces and deformation based on
mass spring system in a virtual reality environment is described in this paper. The
proposed technique utilizes the fact that the transformation matrices used to
discretize the B-spline surface are independent of the position of the control points
and, therefore, can be pre-calculated. The density of the points is dynamically
increased at lower levels of detail. Finally, the regions which are likely to undergo
collision are tessellated using these points. The algorithm is compatible with a mass
spring system to calculate forces and deformation of the model, based upon its
physical material properties. The algorithm is ideally suited for virtual sculpting and
validating conceptual design models before extensive product detailing is performed
using readily available commercial CAD software. A comparison based on the worst
case scenario is presented and used to prove the computational efficiency of the
proposed algorithm.
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1. INTRODUCTION
At the early stages of product design, the specifications and constraints have not been fully
established. The industrial designers and engineers need the freedom to change and modify the
product configuration and mechanical behavior to investigate a wide range of alternative solutions.
Virtual reality (VR) technology can provide the environment and freedom needed to enhance the
creativity of a designer. The need for a VR-based concept design tool has been supported by several
studies [6, 28]. Any CAD system that seeks to support and enhance conceptual design must, therefore,
enable natural and haptic modes of human-computer interaction.
A fast, efficient and robust collision detection algorithm is essential for realistic simulation of
deformable bodies. The algorithm should be capable of handling complex surface models, a large area
of contact, multiple contacts and high deformation. It should also work in tandem with a physics
based system so as to realistically calculate reactive forces and resultant deformation of the model.
The algorithm should also allow the user to use more than one model and a variety of rigid and
deformable tools in the virtual reality environment. A broad selection of tools would augment the
creativity of the industrial designer or artist working in a virtual reality environment. The hand can
also be represented as a deformable B-spline tool and used for sculpting.
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Tessellated surfaces have been widely used in geometric modeling because of the inherent simplicity
of triangle-triangle collision detection and hardware compatibility for rendering. However the
resolution of the surface cannot be dynamically changed during haptic interaction. Furthermore, as the
model deforms during haptic interaction, the ‘quality’ of the triangles deteriorates. This makes
collision detection, computationally extensive and inefficient.
Recently, B-spline representation has become the standard for many CAD/CAM applications, because
complex surfaces can be represented with minimal information storage. Thus it is imperative that any
concept design module uses a B-spline surface virtual model to streamline the exchange of
information with existing CAD/CAM systems. However it is computationally costly to continuously
find the new equation of a B-spline surface while the model is deforming during haptic interaction.
Thus the majority of the algorithms find the contact information of only a point-based tool with a
parametric/B-spline/NURBS surface [7, 24, 27]. These algorithms cannot be efficiently used for implicit
surface- or parametric surface-based tools. Gao [10] has presented an algorithm which can use implicit
surface tools but this algorithm cannot be used for a point- or B-spline surface-based tool. As a
consequence, a haptic based concept design module cannot use these or similar algorithms without
restricting the creativity of the user.
Shape modification of a virtual object can be simulated using either geometric- or physics-based
algorithms. Geometric techniques typically use Hooke’s law and haptic tool penetration to determine
the reaction force and adjust the vertices of the underlying mesh model in response to external forces
[3]. Unlike geometric techniques, computationally intensive physics-based techniques can yield real
material behavior of a multiple-material/non-homogeneous virtual model [18]. Physics-based
deformation models give the designer, more opportunities to try different types of materials during
the concept design phase and validate product models in real-time. The algorithm presented by
Pungotra [26] can be further extended for physics-based simulation of B-spline surface-based model
and tool. The transformation matrices used to discretize the B-spline surface can be used for
generation of nodes for the mass spring system.
This paper describes a fast algorithm to detect collision between two or more single patch B-spline
surfaces having a complex surface, a large area of contact, multiple contacts, and model deformation
based on mass spring system. The proposed method takes advantage of the parametric representation
of the surface and efficiency of a triangle-triangle intersection test. No assumption regarding the
complexity, degree, and number of control points of the B-spline surface representing the model or the
tool has been considered. Both the model and the tool can have elastic or plastic properties. The nodes
of mass spring system are independent of the discrete points generated for collision detection. As a
special case, the tool can also be represented as a point- or implicit surface-based tool. The paper
presents both a quantitative and qualitative comparison to prove the computational efficiency of the
proposed algorithm.

2. PREVIOUS WORK
The problem of collision detection has been extensively studied in literature [16, 20]. Most of the
collision detection algorithms are based on various bounding geometries and spatial decomposition
techniques to speed up the response of the system by performing a ‘rejection test’. Spheres as
bounding volume have been used at different levels of detail [23]. Gregory [12] used a pre-computed
hybrid hierarchical representation consisting of uniform grids and trees of tight-fitting Oriented
Bounding Box (OBB) Trees. Ehmann [8] presented a unified approach to perform a set of proximity
queries for rigid polyhedral objects. Krishnan[19] used shell tree to speed up the collision detection
process. Klosowski [17] introduced k-dop as bounding volume for objects moving within highly
complex environments. The bounding geometry techniques work very well with rigid bodies but when
applied to deformable bodies, the computational cost of updating these geometries as the object
deforms slows down the collision detection response. Two-level layered model representation
techniques have also been investigated to develop a compromise between accuracy and the need to
improve the robustness of the collision detection algorithm [9, 21].
Patoglu [24] presented an algorithm that can determine the closest point on a convex parametric
surface patch to a given point. Dachille [7] used polyhedral representation which makes it easier to
search for the nearest point on the surface, unlike the complicated NURBS surface intersection task
proposed by Thompson [27]. In all these techniques the interaction with the virtual model is only at a
point through a point-based tool. This limits the utility of the approaches, particularly where the
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sculpting is required to be done by hands or other surface-based tools. Gao [10] uses a B-spline to
represent the surface of a virtual model and implicit surface (up to degree of two) to represent a virtual
tool. The collision detection procedure is done by inputting discretized points on the B-spline surface
in the equation of the implicit surface of the tool. This collision detection technique does not allow a
point- or parametric/B-spline-based tool, which limits the scope of sculpting. Greß [13] used GPU based
collision detection technique for parametric surfaces. Hughes [15] presented an algorithm for a
surface-surface intersection test for Bezier and B-spline surfaces. However, the method needs to
update the Axis Aligned Bounding Box (AABB) tree for each sub-patch and find a solution of many
algebraic equations. This algorithm tends to fail, when the area of contact is large.

3. B-SPLINE SURFACE
A B-spline surface with r and s number of control points in u and v directions, respectively is given by
the equation [25],



S(u,v) B
ik
(u)B

jl
(v)P

ij
j0

s1


i0

r1

 (1)

where P
ij

is the control points vector, B
ik

(u) and B
jl

(v) are the blending functions of the surface with
degree k and l in u and v directions respectively, and in general 0 ≤ u, v ≤ 1. The blending functions
depend upon whether the surface is periodic or non-periodic (in u or v or both directions), knot vector,
the degree of the surface and the number of control points in u and v directions. The blending
functions are independent of the position of the control points. This surface can be discretized into a
set of a parametrically uniform grid of nodes for various values of u and v as shown in Fig. 1.

Control points set Pij

of the B-spline surface

Set of discretized points M
for the B-spline surface

B-spline surface

Fig. 1: Discretized B-spline surface.

The set of nodes M is given by the equation,

u ij v
M A P A (2)

The equation can be re-written to find the position of control points as:
1 1[ ] [ ]T T T T

ij u u u v v v
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where
u

A and
v

A are transformation matrices and their values depend upon blending functions and u

and v parametric values only. The transformation matrices and their inverses ( 1[ ]T

u u

A A , 1[ ]T

v v

A A )

are not effected by the positions of the control points and, therefore, can be pre-calculated and stored.

4. PROPOSED ALGORITHM
In this section the proposed algorithm for haptic manipulation and sculpting of deformable B-spline
surfaces is discussed in detail. The deformation and haptic force response is estimated using a mesh-
based model.
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4.1 Overview
The proposed algorithm has two phases: the pre-processing phase and the run-time phase. During the
pre-processing phase the transformation matrices of the given B-spline surfaces, along with their
inverses, are calculated and stored. A convex hull is generated from the control point set.
The run-time phase starts by checking for the intersection of convex hulls of the B-spline surfaces. If
the convex hulls are intersecting, then the corresponding minimum and maximum values of u and v
parameters, associated with the control points of these surfaces, are determined. Within this range of u
and v, sparse points are generated on the surfaces of the model and the tool by using intermittent
rows and columns of the transformation matrices. These points are used to generate spheres on both
the model and the tool and the spheres are then checked for intersection. More points are generated
within these intersecting spheres. This process of generating spheres, at the lower levels of detail,
continues until all the rows and columns for the transformation matrices have been used. The process
of generating lower levels of detail is terminated if, at a particular level of detail, all the spheres on the
model and the tool are intersecting. This is possible if the curvature of the model and the tool is
similar in the region of probable collision. Fig. 2 shows the flow chart of the proposed collision
detection algorithm. The graphical rendering and haptic force response system are also shown.

Fig. 2: Flow chart of the proposed algorithm.

The points within the intersecting spheres at the lowest level of detail are subsequently used to
generate a triangulated mesh. The triangle-triangle intersection test is then carried out to find out the
parts of the surfaces which are intersecting. This information is used to map the forces, applied by the
user, to the nodes of the mass spring system. The physics-based model then determines the resultant
deformation and the reactive forces to be sent back to the user. Using the inverse transformation
matrices, new positions of the control points are determined and the convex hull for the B-spline
surface is updated. The major steps of the algorithm are elaborated in detail in following subsections.
Illustrations show the steps of the collision detection process for only the model, to maintain clarity.

4.2 Generation of Transformation Matrices
During the pre-processing phase, transformation matrices are calculated based upon the blending
functions of the B-spline surface and the maximum number of points to be generated and then stored
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along with their inverses. Two transformation matrices for generating points on the B-spline surface
are needed for each B-spline surface. Similarly, two transformation matrices are needed to find
tangents at each point generated. These are computed and stored along with their inverses. The
tangent information is necessary for modeling realistic properties such as friction. These tangents are
also used to calculate the surface normal at the generated points.

4.3 Bounding Volume
The property of positivity ensures that the B-spline curve or surface always remains within the convex
hull of the control points P

ij
[4]. This makes the convex hull a good choice as a bounding volume. The

position of the control points is always known and their number is limited which ensures that the cost
of updating the bounding volume (convex hull) is minimal.
The algorithm used for the generation of a convex hull is similar to the Quickhull Algorithm [2]. For the
worst case scenario the computational cost of this algorithm is O (n log n) where n is the number of
control points. Once the physics-based force response system determines the deformation, the new set
of control points is calculated using Eqn. (3). Since the inverses of transformation matrices are already
stored, the computational cost during the run-time phase is substantially decreased. The convex hull is
regularly updated as the positions of the control points change.

4.4 Surface Discretization
When two convex hull surfaces (or edges or an edge and a surface) intersect; the vertices (control
points) of the surface (edge) are identified and noted. The corresponding u and v parametric values
associated with these vertices (control points) of the intersecting surfaces are calculated. These
minimum and maximum values of u and v (u

min
, v

min
; u

max
, v

max
) set the limits on the surface to be

discretized. Limiting the area for discretization lowers the computation cost. Intermittent rows and
columns of the transformation matrices are used to sparsely generate points within these limits of
parametric values of u and v. Fig. 3 illustrates the generation of sparse points within the region of
probable collision.

Fig. 3: Illustrations showing discretization of the region of probable collision of the model surface.

4.5 Generation of Lower Levels of Detail
The region of probable collision detection, as calculated in Section 4.4, is initially large. By using lower
levels of detail, the region is further refined and simultaneously the intensity of points are increased to
enhance the accuracy of collision detection. Spheres have been used to generate lower levels of detail.
The algorithm to generate spheres starts from the point at u

min
, v

min
. It compares the diagonal distance

between an array of four consecutive sparse points in u and v direction. Two points of longer diagonal
distance and one of the two remaining points are selected to generate a unique circle in space. The
sphere is generated with the same centre point and radius as the circle. This ensures that the fourth
point lies on or within the boundary of this sphere and the size of the sphere is optimal. This process
continues with the points at next values of u and v until all the points have been used. Fig. 4 illustrates
the various steps for generating lower levels of detail.

(a) Tool intersecting the convex hull
(triangle) of the model

(b) Points generated within the minimum
and maximum u and v parametric values
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Fig. 4: Illustrations showing generation of lower levels of detail.

Once the process of sphere generation from sparse points is complete for the model and the tool,
these spheres are used for determining intersection. The points associated with the non-intersecting
spheres are discarded and more points are generated within the intersection spheres. These points are
again used to generate more spheres. This process of generating lower levels of detail continues until
all the rows and columns of transformation matrices have been used.

4.5.1 Interaction of Flat Surfaces
A computationally expensive situation will emerge during the interaction of two flat surfaces. There is
always a strong possibility of encountering a flat surface when both the model and the tool are
deformable. In such situations, the area of contact will be large. Many of the algorithms discussed in
literature [9, 15], cannot tackle a large area of contact. All the spheres generated at any particular level
of detail or lower levels will be intersecting. Thus, generating lower levels of detail will only add to the
computation cost. In the proposed algorithm the loop for generating lower levels of detail is
terminated, if at a particular level, all the spheres generated for both the tool and the model, are
intersecting. In such a case the next step of tessellation of the surface is carried out.
The algorithm proposed in this paper uses a novel method to reduce the number of triangles generated
on the surface in such situations. It compares the normals of the points being generated in the region.
If the normal of a point being generated is within the limits of that of the previous point by a small
angle  , this point is not generated. This ensures that the number of points, to be used for
triangulation of the surface, is minimal and the accuracy of the surface is also not compromised.

4.6 Triangulation of Surface
Fig. 5 illustrates the triangulation of a surface by using the points of intersecting spheres.

(a) Intersecting spheres at the lowest
level of detail

(b) Triangulation using the points
associated with the intersecting spheres

Fig. 5: Illustrations showing triangulation in process.

(a) Intersection test for
spheres generated from the
discretized points

(b) Expanded view of the
points generated within
intersecting spheres

(c) Spheres generated from
the points at lower level of
detail



Computer-Aided Design & Applications, 6(1), 2009, 43-54

49

The triangulation of the surface starts by using the points within the u and v parametric values of
intersecting spheres. These points are parametrically uniform, but in Cartesian space the distance
between the points may not be uniform. If any algorithm from literature based on the Delaunay
triangle is used, it mostly fails to tessellate some regions of the surface and sometimes wrongly
tessellates a cavity. The method of generating spheres can be easily and efficiently adapted as an
alternate procedure. According to one of the definitions of the Delaunay triangle, “All interior edges of
a triangulation Δ of a point set are locally optimal if and only if no point from this point set is interior
to any circum-circle of the triangle in Δ” [22]. The spheres are generated in such a way that three points
are always on the sphere surface and the fourth point will be on or within the sphere. This information
is then used to generate two optimal triangles within an intersecting sphere. If there are many
intersecting spheres with common points, the same process will result in a triangulated mesh. This
method of triangulation of the surface ensures that there are no ‘holes’ in the triangulated mesh.

4.7 Triangle-Triangle Intersection Test
The simplest approach for testing all the triangles of the model against all the triangles of the tool
requires an immense number of triangle-triangle intersection tests. The proposed algorithm limits the
number of triangles of the model and the tool requiring intersection test. Only those triangles, whose
bounding spheres are intersecting, need to be checked for intersection. As the computational cost of a
sphere-sphere intersection test is far less than that of a triangle-triangle test, the overall computational
cost is reduced. Many efficient algorithms are available in literature for a triangle-triangle intersection
test. An algorithm, similar to that developed by Guigue [14], is used for a triangle-triangle intersection
test. One major limitation is that it cannot tackle degenerate cases. The dynamic generation of points
in the uniform grid of parameters u and v, substantially reduces the chances of degeneracy.

4.8 Mapping of Forces and Deformation of Model
The forces acting on the points of contact, as determined in Section 4.7, are mapped on to the nearest
nodes of the mass spring system. The force is computed as weighted bilinear interpolation of the
distance of the nearby four nodes of the mass spring system to the point of contact in the parametric
domain. Since the parametric values of nodes as well as of the points of contact are known, the virtual
forces can be easily calculated. Fig. 6 shows a case in which the intersection is happening at a point.

(c) Mapping of forces to nodes of mass
spring system

ui+α,vj
ui,vj

ui,vj+β
ui+α,vj+β

uc,vc

Dynamic
surface

Nodes generated for
mass spring system

Nodes generated for
triangulation and
collision detection

Sculpting force

Virtual force

Point of contact

(a) Uniform grid of nodes
for mass spring system

(b) Nodes connected by
springs and dampers

Fig. 6: Mapping of force acting on B-spline surface to nodes of mass spring system.
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When two surfaces are in contact, there may be many points on which the forces are acting. The total
virtual forces will then be the vector sums of the virtual forces calculated for each point of contact.
Once the forces acting on the nodes of the mass spring system are known, Lagrangian equations of
motion are used to find out the new position of the nodes and the subsequent deformation of the
model. The system dynamics are given by the second-order differential equation




i
x
i
(t) 

i
x
i
(t) g

i
(t)  f

i
(t) (4)

where
i
 is the point mass of node i,

i
 is the velocity-dependent damping coefficient which dissipates

kinetic energy in the lattice through friction, ( )
i

g t is the total internal spring forces, and ( )
i
f t is the

external force vector applied to node i. At each time step Δt it is necessary to evaluate the current
nodal forces and accelerations, the new velocities, and the new node positions using the explicit Euler
time-integration procedure [18]. From Eqn. (4) it is possible to compute acceleration at node i as


x
i
(t)  (f

i
(t) 

i
x
i
(t)g

i
(t))/ 

i
(5)

and the new velocity can be computed as


x
i
(t t)  x

i
(t)tx

i
(t t) (6)

The new position of node i, is then calculated using the equation:


x

i
(t t)  x

i
(t)t x

i
(t t) (7)

Once the user applies force on the model through the tool, eqn. (4-7) determine the deformation of the
model. Fig. 7 shows the hexahedron mass spring mesh of the model and its deformation in response
to the force applied on the model.

(a) The hexahedron mass
spring mesh generated for the
model.

(b) Mass spring mesh before
application of force.

(c) Mass spring mesh after
application of force.

Fig. 7: Deformation of the mass spring system of the model due to the force acting on B-spline surface.

4.9 Special Cases
The algorithm described above is for collision between two or more B-spline surface model(s) and/or
the sculpting tool. In special cases a tool can be represented as an implicit surface tool or a point-
based tool. This algorithm is capable of handling these special cases efficiently.

4.9.1 Implicit Surface Tool
In the special case of an implicit surface representation of the tool, only a part of the algorithm is used.
First the tool is checked for intersection with the convex hull of the B-spline. Once the implicit surface
intersects the convex hull, the algorithm determines the corresponding values of u and v parameters
for the intersecting surfaces which lie within the convex hull. It then generates points on the surface
within these limits using the transformation matrices. These points are then inputted into the implicit
surface equation to detect collision. If the points lie on or inside the surface, collision is detected and
penetration depth is determined. Since the points are generated only within a small region which has a
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high probability of collision, the overall computational cost for determining collision detection is
nominal.

4.9.2 Point-based Tool
In case of a point-based tool, the process discussed in previous subsections is followed for the model
only. More points are generated in a sphere with which the point-based tool is intersecting and the
process of generating lower levels of detail continues until all the rows and columns of the
transformation matrices have been used. Finally, two triangles will be generated within the intersecting
sphere at the lowest level of detail. The intersection test of the point with these two triangles then
determines the point where the tool is colliding with the model.

5. COMPARISON AND PERFORMANCE
The proposed approach is to exploit the advantages of the B-spline surface representation and the
computational efficiency of a triangle-triangle intersection test. In the following subsections the
algorithm is compared quantitatively and qualitatively to prove its efficiency and robustness.

5.1 Quantitative Comparison
Bordegoni [5] relied on the algorithm of Baraff [1] for the intersection test of a tessellated deformable
surface. Gottschalk [11] has proposed that his algorithm can be adopted for deformable bodies. The
worst case scenario, represented as Big ‘O’ notation, can be used to compare the results of the
proposed algorithm with that of a tessellated surface model used by [5, 11]. For comparison, OBB is
used as the bounding box [11] for a deformable model represented as a tessellated surface.
For a tessellated model the total cost of computation is comprised of the cost for generation of the
bounding box for t number of triangles, O (t log t); the cost of collision prediction of bounding boxes,
O (1); and the cost of octree subdivision O (cd2) (for subdividing the model into c regions having d
number of triangles). For the proposed algorithm, the total cost of computation includes the cost for
the bounding box (convex hull with n control points) generation, O (n log n); the cost of collision
prediction, O (n); the cost of discretization of the B-spline surface with m points, O (n2m); the cost of
generation of spheres O (m); the intersection test of spheres, O (m2); tessellation of the region of
probable collision, O (m log m) and the cost of collision detection, O (m2). The Fig. 8 shows the
comparison of the computation cost of the tessellated surface model with that of the proposed B-
spline surface model for various control points. The results are for an ‘area of contact’ of two percent
of the model surface area, assuming an even distribution of triangles on the surface of the model.
Large area of contact is considered which is typical of the application in virtual sculpting during
conceptual design.
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Fig. 8: A comparison of total computations required in the worst case scenario for collision detection
of the tessellated model versus the B-spline model using the proposed algorithm.
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The X axis shows the number of triangles for the tessellated model and the equivalent number of
triangles for the B-spline surface model. The Y axis shows the number of computations required for
the worst case scenario. It is clear from the graphs that the computational cost of the proposed
algorithm is much less than that of a tessellated model. This reduction in computational cost is more
pronounced for a higher resolution.
Another aspect of sculpting is that during the early phase, the contours are not very sharp but the area
of contact is very large. As the sculpting process progresses further, the details get finer and the area
of contact is reduced. The proposed algorithm can aptly take advantage of this fact.
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Fig. 9: Maintaining a lower number of computations by changing resolution of the surface.

Fig. 9 shows the total computation cost of collision detection for different areas of contact for a 10 ×
10 control point B-spline surface model. The number of points generated on the surface can be
decreased by using fewer rows and columns from the transformation matrices as discussed in previous
sections. Thus, in the beginning when the surface to be sculpted does not have finer details but a large
area of contact, the user can specify a lower resolution. This will reduce the number of points
generated and therefore the computational cost will be lower. It is shown by the dotted horizontal line
in Fig. 8. By changing the resolution of the model (using a fewer number of rows and columns of
transformation matrices) a lower number of computations can be maintained. As the sculpting process
progresses to the finer details, the number of points generated and hence the resolution and accuracy
of collision detection can be increased without increasing the computational cost because the area of
contact is simultaneously reduced.

5.2 Qualitative Comparison
During the haptic interaction with a tessellated surface model the quality of the triangles deteriorates
as the model deforms. This makes the collision detection algorithm somewhat inefficient. In the
proposed algorithm the points, and consequently the triangles, are generated ‘on the fly’. Thus the
quality of the triangles is maintained even if the model experiences high deformation.
Most of the collision detection algorithms for parametric surfaces are based on subdividing the surface
into patches and further sub-patches until these are sufficiently plane. This is done during the pre-
processing phase or the run-time phase. These sub-patches are then bounded by bounding boxes,
mostly Axis Aligned Bounding Boxes (AABB) [15]. If this process is carried out during the run-time
phase, it is time consuming and computationally very intensive. Alternatively, if it is done during the
pre-processing phase, the subsequent deformations of the model make the subdivision prone to large
errors and inefficient collision detection. The proposed algorithm is capable of efficiently detecting the
collision for any type of B-spline surface and any subsequent deformation does not affect the accuracy
of collision detection.
Most of the previously published algorithms [9, 15] also tend to fail when large surface areas are in
contact. The novel technique of terminating the loop for generating lower levels of detail and
comparing the normals of the points generated, as discussed in Section 4.5.1, ensures a lower cost of
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computation even for large areas of model contact. The user is also given the freedom to control the
number of points generated. The computational cost can also be decreased by choosing lower
resolution when the area of contact is large. This increases the robustness of the system.
Gao [10] used an implicit surface to represent the tool and used points generated to discretize the B-
spline surface to detect collision. At any time, all the points are input in an implicit surface equation of
the tool to determine if the surface is colliding with the tool. The minimum diameter of the sphere has
to be more than the maximum distance between the discrete points on the B-spline surface. This
largely limits the applications of the technique because it cannot handle a B-spline surface- or point-
based tool. Another advantage of the proposed algorithm over the collision detection algorithm
presented is that it uses the points only in the region of probable collision and not on the entire
surface of the model. This reduces the cost of collision detection. Furthermore, if the tool and model
are apart (convex hull of B-spline model not intersecting with implicit surface), there is no need to
input a large number of points in the equation of implicit surface to detect collision.

6. CONCLUSION
In this paper a novel method for collision detection for physics based model simulation has been
described and verified for computational efficiency. This method utilizes the combined advantages of
parametric surface representation and the ease and efficiency of a triangle-triangle intersection test.
The proposed method of storing pre-calculated transformation matrices lowers the cost of
computation during the run-time phase. The transformation matrices are also independently used to
generate nodes for the mass spring system. Both the model and the tool can have complex shapes,
elastic or plastic properties, and multiple contacts. This allows the user to use rigid or deformable
tools with complex shapes with greater ease and productivity during the sculpting or concept
validation in a virtual reality environment. The ‘on the fly’ generation of points and triangles helps
maintain the quality of triangles. At the same time, resolution of the model can be varied during haptic
interaction, as needed, thereby reducing the overall computational cost. The collision detection
algorithm is independent of a physics-based model used to calculate deformation. The number of
nodes of the mass spring system is determined solely based on the accuracy of the force response and
is independent of the number of points generated for collision detection. This allows graphical
representation of the model, collision detection and haptic force response through the mass spring
system, independent of each other. This also makes the proposed haptic design module, suitable for
parallel processing, thereby reducing the computation time.
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