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ABSTRACT

Shape deformation is an important problem in CAD. In this paper, we look at the
problem of modification of a given surface such that its surface area is changed by a
user-specified amount. A differential geometric approach is adopted, and a non-linear
constrained optimization formulation is proposed. A numerical technique for solving
this problem is developed. The approach has been implemented as a prototype
program, and some simple examples are presented.
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1. INTRODUCTION
Shape deformation has numerous applications in design and graphics. In this paper, we address the
issue of modification of a surface with constraints on the surface area after the transformation. The
problem was motivated by an issue arising in architectural design. Several modern buildings have
complex, curved skins, especially forming skylights or canopies around the main building (see Figure
1). Typically, the architects design the shape guided strongly by aesthetic concerns. Subsequently, the
shape is modified in order to meet specific engineering requirements. The cost of the canopy increases
proportionally with its area. In some green buildings, the skins may be used to collect heat or light, or
reduce convective losses – all of these issues are related to the surface area of the skin.

[Source: Foster and Partners]
Fig. 1: (a) Outdoor canopy (Beach Road, Singapore) (b) A Curved Skylight (Patent office building,
Washington DC).
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An informal problem description for such applications is: given a 3D surface, modify it in some user-
specified region(s) such that the new shape is similar to the input, but has a given, specified area.
Figure 2 shows examples of typical input surfaces to our problem (Figure 2 is based on two real
architectural designs, courtesy of GT Asia Ltd.). In the next section, we discuss related past work and
approaches on shape deformation, and also give a formal definition of the problem we shall solve.

Fig. 2: CAD surface models of (a) a domed skylight for a mall (b) a portion of the canopy of a hotel
building.

2. BACKGROUND

2.1 Past Work
Shape deformation and manipulation is useful in many engineering applications, including design of
curved objects, manipulation of graphics objects etc. Technically, the simplest way to modify the shape
of curves or surfaces is by explicitly moving one or a set of control points or curve points [17]. In such
cases, the implicit constraint is for the deformed shape to maintain specified level of continuity at all
knot points. However, in many applications, especially where the control mesh has a very large number
of points, there is need for a higher level of abstraction. Various techniques for curve and surface
manipulation including user-defined constraints on points, tangents and normal directions have been
developed [10, 4, 13]. For higher level geometric control, several extensions of the Free-Form
Deformation [19] technique have been used with success; Sederberg’s original technique encapsulated
the solid within a simple lattice of points, one or more of which could be translated in space. By
associating the lattice points with the surface control points, a function that mapped each lattice
motion to unique surface deformation was achieved. The extensions of this approach, including
Extended FFD, Rational FFD, Axial Deformation, Space Deformation and direct FFD [13] have been well
summarized in different reviews including [2, 6]. Some recent examples of Free Form Deformation of
NURBS surfaces for engineering applications with point and tangent constraints include [14, 3, 16].
Several researchers have reported methods for surface deformations with volume-constraints. Sheffer
[18] fixed the volume of each tensor product solid which together composes an object model in the
model deformation. The method mainly works for solid primitives assembling process, but is not an
independent deformation tool. In [1], a volume-preserving method based on space deformation model
called DOGME is presented. Hirota et al. [12] preserved the total volume of a solid under free-form
deformation using discrete level-of-detail representations. They start from triangle volume preserving
deformation and then use multi-level-of-detail representations extending the method to general
objects. The Augmented Lagrangian method is applied to solve the constrained minimization problem
for the deformation. There have also been numerous surface deformation methods that use various
types of multi-resolution models of the surface (including subdivision models, wavelet-based
approaches as well as multi-level grids). An excellent survey on past work on shape deformation in
general and on constrained shape deformation using multi-resolution techniques in particular is found
in [11].
Broadly, it appears that multi-resolution methods may suffer from lack of precision, but are fast; on
the other hand, differential geometry based methods tend to suffer from poor computation times and
potential convergence issues. This can be averted in some cases due to special properties of the
problem. For example, [8] uses the property of convexity of area enclosed by a B-Spline with respect to
the control points to solve for constrained curve deformation; [20] also demonstrate that a large class
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of 2D curve deformation problems can be modeled in a convex optimization form, allowing the use of
specialized solvers such as second order cone programming to speed up the differential geometric
techniques. We are not aware of differential geometric approach in area-constrained surface
deformation.

2.2 Problem Statement
Given: A B-Spline surface, S, (namely, knot vectors U and V and control points, CP), a subset Q  CP,
and a target area, A

f
, find a least cost dislocation of Q to yield a new surface, S* having area = A. Here

we define the cost by the least squares measure. Let the new location of the point(s) Q be denoted by
the set P, then we can write the problem as:

1
( ) ( )

2

. . Area( )

T

f
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3. METHODOLOGY
In section 3.1, we provide some basic definitions for completeness. Following this, we then transform
our constrained optimization problem to an unconstrained one, and propose a modified Newton’s
approach to solve it. Section 3.3 shows some initial results of our approach, and in section 3.4 we
discuss some possible extensions as well as potential techniques to improve our method.

3.1 B-Spline Definitions, Surface Area and its Derivatives
A B-Spline surface is defined as a tensor product of B-Spline curve equations over two parameters, u

and v. The control points,  0,0 0, ,0 ,, , ,m n n mCP P P P P    form a rectangular grid of (n+1) ×

(m+1) points in 3D Euclidean space. This allows the use of common knot vectors along each parametric
direction. The iso-parametric curves along u-direction have degree p, while those along the v-direction
have degree q. Given two knot vectors U (r+1 knots, where r = n+p+1) and V (s+1 knots, s=m+q+1), and
the set of control points CP as above,
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the B-Spline surface is defined as:
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i jP is the W-coordinate of control point P
i,j

[17].

Using [9] and [15], the area, A, of a parametric surface can be computed from: u vD
A dudv  r r ,

and ( , ) ( , ) ( , ) ( , )u v X u v Y u v Z u v   r r i j k ; ( , )u vr is the position vector of surface points, X,Y,Z are

Cartesian coordinates, and the u, v subscripts denote the corresponding partial derivatives. So:
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From the above, the problem formulation may be re-written as:
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In order to solve the above non-linear constrained optimization problem, we shall need a numerical
approach, and therefore it will be necessary to compute the gradient, i.e. the rate of change of the area
with respect to the (coordinates of the) control points. According to the definition of B-Spline surface
area, we denote function f as:

     2 2 2
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For a specific point’s coordinate ,
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For the second derivative computations, there are two situations. The first is when the two coordinates
share the same dimension (e.g., they are both X):
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The second case is when the differentiation is with respect to two different coordinates (e.g. x and y):
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Substituting (5) and (6) in (3), (4) respectively, and subsequently performing a numerical integration, we
can compute the required derivatives.
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Since the iterations of the optimization function will require repeated computation of the area, we
shall also use a simplified numerical computation for the area by adopting Fubini’s theorem [7] and a
Gaussian quadrature method [5]. The details are omitted here.

3.2 The Penalty Method
We first transform the constrained optimization problem into an unconstrained problem, (MI), via a
standard penalty formulation, as:

21
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2
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where N is a positive penalty parameter, and 21
( ( ) )

2
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equality constraint. As N increases, the solution of problem (MI) approaches the exact solution of

problem (2). Thus generally it is required that N  to assure that ( ) 0fArea P A  . In our

examples, we experimentally determined a reasonable large value for N from some examples, and this
value was used as an unchanging constant subsequently. Let
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We adopt the Newton’s method to solve the equations. For simplicity, the searching direction is given
without line search:
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The above formulation can be directly programmed as an iterative numerical method. Unfortunately,
the function F(P) is not convex with respect to any of the control point coordinates in general (the
proof is omitted from this version of the paper). Therefore, in practice we find that the algorithm fails
to converge for many cases, especially when the dimensionality is high (i.e. many control points are
simultaneously allowed to move in arbitrary direction). This is especially true if the starting point of
the iterations uses the initial control point mesh as its input. There are several ways to potentially
alleviate this issue. In this paper, we have implemented only one simple method: the initialization of
the iterations is changed to points that satisfy the area constraint first, which would better “push” the
iterations into the area close to the solutions. The following figure shows the modified Newton’s
algorithm.

Fig. 3: The modified Newton’s approach for the constrained surface modification problem.

3.3 Examples
The above algorithm is programmed using MATLAB, and several cases were tested for the hotel canopy
example shown in figure 2(b). Figure 4 shows the original surface, and its control mesh. In this case, a
single variable, Z(P1,2), was allowed to move, and the area constraint required the total surface area to
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be increased from 5014.36m2 to 5139.72m2 (2.5% increase in area). Figure 5(a) and (b) show two views
of the corresponding new surface superposed on the original one (the isoparametric lines show how
the surface shape is changed). Figure 6(a) shows the effect of reducing the original area by 2.5% via the
same variable, and Figure 6(b) shows this surface with the original one superposed over it.

Fig. 4: Canopy surface; original area: 5014.36m2; dashed lines show control mesh.

Fig. 5: (a) Modified surface (transparent blue) and the original one (green) (b) another view.

Fig. 6: (a) Same surface with area reduced by 2.5% (125m2) (b) modified and original surfaces.

In the second example, six of the control points were allowed to be moved to give a 10% increase in
area (from 5014.36m2 to 5515.81m2). First, we limit the program to change only the Z-coordinate of
each of these six control points; Figure 7 shows two views of the resulting surface displayed
superposed over the original one. Next, all coordinates of all of these six control points were allowed to
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be free (i.e. 18 variables), with an area increase of 5% (from 5014.37m2 to 5265.08m2); the results are
shown in figure 8(a) and (b).

Fig. 7: (a) 10% increase in area moving Z-coords of 6CPs; (b) modified surface (blue) and original (green).

Fig. 8: (a) 5% increase in area freely moving 6CPs; (b) modified surface (blue) and original (green).

3.4 Discussion
These initial results are encouraging and indeed yielded some useful surfaces for a real world
application. We are now looking at several important issues that emerge. From a theoretic view, we are
yet using a relatively straightforward Newton’s method for solving the non-linear optimization
formulation with a moderate number of variables. Unfortunately the problem is not convex, therefore
we are still exploring which particular non-linear solver may best solve a problem with this structure.
Some past experience with curve shape manipulation indicates that Uzawa method may not work well
for this problem. We are exploring other variations of the Newton’s method, in particular, the damped
Newton method to provide a more robust implementation. Another issue is that of convergence. Our
current implementation uses a rather costly numerical technique to solve the double integrals for
equations (3) and (4), resulting in fairly slow convergence time (ranging from two minutes for single
variable to over 60 minutes for the 18 variable case). The third and very practical issue is to
incorporate aesthetic considerations as constraints. In several examples where the control point was
free to translate along any axis resulted in the shape of the surface changing far from the original. One
potential solution is to restrict each control point to a single degree of freedom, e.g. along the normal
to the control mesh at that point (this can be computed as the mean of the normal vectors of all
triangular facets surrounding the control point, for example).

4. CONCLUSIONS
In this paper, we present a simple Newton’s method variation to solve a constraint shape modification
problem with non-linear integral constraints. The problem has practical applications in many fields of
engineering apart from our motivating field, architecture design. The initial results we obtained show
that the operator can be successfully developed and used as an application program linked to a typical
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CAD system. The approach we have used appears promising enough for us to devote continued effort
in improving the method in stability and speed.
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