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ABSTRACT

Three-dimensional (3D) models are basis of modern digital manufacturing systems. It
has attracted much attention in research and industrial applications to build 3D
product models efficiently and cost-effectively. One of promising developments is
product models reusing through sharing. The efficient retrieval of 3D product shapes
can speed up 3D modeling for product design and manufacturing but it remains a
technical challenge to search for similar 3D models or parts in a model set. Traditional
text-based search engines fail in 3D model searching as the lack of detailed
descriptions. This paper reviews current research and development in shape
distribution-based 3D model retrieval methods. The methods are evaluated by the
comparison of their efficiency and accuracy using examples. The further research is
proposed based on solutions found.

Keywords: content-based, shape distribution, 3D shape retrieval.
DOI: 10.3722/cadaps.2009.721-735

1. INTRODUCTION

1.1. 3D Shape Retrieval
Three-dimensional (3D) product models are basic elements of digital manufacturing systems. The
number of product models can easily go over 10,000 in any manufacturing business [26]. Traditionally,
3D object modeling is a complex and time-consuming task. World Wide Web provides a mechanism for
the wide spread distribution of 3D models, which makes sharing and reusing product models possible.

Product design and virtual environment construction can benefit from this mechanism. A design
process can be accelerated by inspiration of shared models. A modeling process can be quickened by
reusing shared models. For instance, 3D models on the web can be used as elements in “Modeling by
Example” [7], which is a data-driven approach to constructing new 3D models by assembling parts
from previously existing ones.

Although these developments have made the ubiquitous 3D shape database possible, looking for
useful 3D models or parts in a model or part set is still a technical challenge. Traditional ways to
search non-textual objects are based on text information. These approaches are proved very effective
for some non-textual objects, such as images or video clips. Unfortunately, the text-based search
engine fails in many circumstances for 3D models retrieval. The reason for this is simply lack of
descriptions. Therefore, it is necessary to have an efficient way for the 3D shape retrieval to meet the
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need of model reusing and sharing. This paper will review and evaluate the current research on the 3D
shape retrieval.

1.2. NNS and k-NN Approaches
Numerous architectures of 3D shape search engines in different forms have been suggested in recent
years [6], [16-18], [25], [29]. However, there are only two fundamental activities in their frameworks:
indexing and matching. As shown in Fig. 1, the indexing activity is usually an offline process of
analyzing models to generate measurable features, whereas the matching activity is an online
operation. The matching process is a typical nearest neighbor search in the feature space.

(A) Offline Indexing Operation (B) Online Matching Operation

Fig. 1: (A) Offline indexing operation, and (B) Online matching operation.

Nearest neighbor search (NNS), also known as the closest point search, is an optimized process to find
closest points in a metric space [2]. For a given set S of n data points in a metric space X , the task of

the NNS is quickly finding and reporting the points nearest to a given point q X .

Precisely, the classification approach proposed by Ip et al [10] is a k-nearest neighbor (k-NN) algorithm
rather than a NNS approach. The k-NN algorithm is an application of NNS in pattern recognition field.
It classifies objects by a majority vote of their neighbors. In other words, the method in Ip et al [10] is
a 3D shape classifier rather than a 3D shape search engine. It implies another potential application of
3D shape matching method: the shape-based product classification. The 3D shape information can be
incorporated with other features, such as design features and machining features to index parts and
part families, which can be used to facilitate process planning and cell-based manufacturing.

1.3. Feature Measures
Both of 3D shape search engines and 3D shape classifiers have to be based on effective feature
measures. A lot of approaches are mainly on hunting for an ideal feature measure. Most traditional
methods focused on finding a way to directly calculate the distance between models. Alt and Guibas
surveyed on several 2D shape matching methods [1]. The distances between 2D shapes are described
as the distances between corresponding points. Similar methods were used in 3D shape matching.
Unfortunately, the challenge of these methods is how to find corresponding points. It is intricate and
usually time-consuming. As a result, most recent research in this field is motivated to find descriptors
as feature representations of 3D shapes.

Tangelder [29] classified these approaches into three categories: feature-based methods, graph-based
methods, and geometry-based methods. As the detailed categorization shown in Fig. 2, global feature
distribution-based methods are in the category of feature-based methods. The approaches in this
group [9], [10], [15], [19-21], [23], [24], [26], [27] focus on representing 3D models with the feature
distributions. Each distribution is regarded as one or more tuples of vectors, a high dimensional vector
or a point in a multi-dimensional space. Accordingly, the problem of finding k most similar 3D shapes
is then transformed into finding k-nearest points in the multi-dimensional space.
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Fig. 2: Detailed categorization of content-based 3D shape retrieval.

1.4. Shape Distribution-Based Methods
The shape distribution method was first proposed by Osada et al [23], [22] and then was improved by
Ip et al [9], [10], Rea et al [26], Ohbuchi et al [20], [21] and Liu et al [15]. The shape distribution-based
methods dominate the global feature distribution-based category. The remarkable advantage of
original shape distribution method is the low computational cost. As a trade-off, the original shape
distribution method has somewhat a low discriminating capability. Because the information carried by
64 vectors is a little insufficient, very different shapes may have close distances in many application
scenarios. However, the original shape distribution method is still a good candidate for a coarse
filtering. Many other practices focused on improving the discriminating capability of shape
distribution methods by slightly increasing computational cost, nevertheless the methods proposed by
Ip et al [9], [10] are computationally intensive.

Although the diverse and heterogeneous representation formats for the shape information could be a
barrier, the surface-based 3D shape representation can be simply classified into two main categories:
ill-defined models and well-defined models. Most CAD models are well-defined solids and manifolds,
while VRML (Virtual Reality Modeling Language) models are usually ill-defined as “polygon soup”.
Some methods, such as Ip’s methods [9], [10], Angle and Distance (AD) method in [20] can only solve
the problem in well-defined models, as the others can also be applied to “polygon soup”.

The rest of this paper is organized as follows: In Section 2, we will describe shape distribution-based
methods in detail, and compare the performance of the relevant techniques used in these methods;
the overall methodology of shape distribution-based methods is discussed in Section 3; and the
conclusion will be given in Section 4.

2. SHAPE DISTRIBUTION-BASED METHODS

2.1. Background
Osada et al [23] empirically proposed five shape functions:

 A3: Measures the angle between three random points on the surface of a 3D model.
 D1: Measures the distance between a fixed point and one random point on the surface. We use

the centroid of the boundary of the model as the fixed point.
 D2: Measures the distance between two random points on the surface.
 D3: Measures the square root of the area of the triangle between three random points on the

surface.
 D4: Measures the cube root of the volume of the tetrahedron between four random points on

the surface.
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D2 was experimentally proved having better performance than other four functions.

The shape distribution method is an orientation invariant method, and it roots in a branch of
mathematics known as geometric probability. Geometric probability involves geometric problems
about probability distributions of length, area, volume, and etc. for geometric objects under stated
conditions. A typical case is that the average distance between a pair of random points in an n-

dimensional unit cube is
6

n . Another known solution is the probability of the length between the

pairs of random points on the perimeter of a circle [5]:
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(1)

Fig. 3: “Circle Line Picking” problem in geometric probability.

Where  P s is the probability function and s is the distance between the two random points. It is the

analytical solution of the D2 distribution of Circle (perimeter only) presented by Osada et al [23] as
shown in Fig. 3. In this case, D2 distribution can be regarded as a Monte-Carlo method for this
geometric probability problem.

Shape distribution-based methods are based on descriptions. They map features of 3D shapes into a
fixed dimensional vector space to avoid computational complexity of correspondences. Generating
descriptors is a process of extracting features. During the descriptor generation, alternatives of the
features should be considered. For instance, the position, orientation and scale of an object may be
important features for the image recognition, but these features should be eliminated from the
descriptor for 3D shape retrieval. Although there are some descriptors which are sensitive to
orientation, a pose normalization has to be applied to these methods in order to eliminate the
orientation’s effect.

The Principal Component Analysis (PCA) method is usually applied for the pose normalization, but it
is not robust enough in some circumstances [14]. The reflective symmetry can be applied for a better
performance than PCA [12], but it can only be used when the models have distinctive reflective
symmetries. Unfortunately, whenever a pose normalization fails, the orientation sensitive methods fail
as well.

Generally speaking, there are five fundamental techniques or steps for implementing shape
distribution-based methods: triangulation, sampling, generating distributions, normalization, and
obtaining distances. In the following sections, we will discuss these techniques in detail.

2.2. Triangulation
A sampling method is crucial for shape distribution-based methods because any biased distribution of
sample points will cause an evident distance between shape distributions of same 3D models. For
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explanation, we will use following two different methods to generate sample points on a sphere. In the
first method, we use two random numbers to generate samples:
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(2)

Where  is a random number between 0 and 2 , and  is a random number between 0 and  .

In second method, we use three random numbers to generate sample points:
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Where 1r , 2r and 3r are three random numbers between 0 and a positive real number.

Fig. 4: Comparison of two different sampling methods on a sphere.

As shown in Fig. 4, both of the samples points generated by the methods 1 and 2 are located on a unit
sphere. However, the former sample set has a higher density of sample points near the poles, whereas
the latter one does not have evident bias. Obviously, D2 distributions of the two sample sets located
on the same 3D shape have a distinct distance between them. Actually, the sampling method was
elaborately designed to generate uniformly distributed sample points.
Although there are some ways to generate uniformly distributed sample points for some specific
curved surfaces respectively, such as sphere surfaces and cone surfaces, it is hard to find a unified
sampling method for arbitrary curved surfaces. Consequently, in order to adapt to a specific universal
sampling method, surfaces are meshed into polygons, and are further split into triangles. For most
complicated surfaces, increasing the polygon or triangle counts will improve the precision, but as a
trade-off, the computational cost of sampling process will also be increased, or even worse, for some
methods, e.g. Ip’s method [9], [10], the computational cost will dramatically soar.

Because polygon vectors are not in clockwise or counter clockwise order in some conditions, Ip et al [9]
introduced an approach of breaking up quadrilaterals into triangles by taking a vertex of
quadrilaterals and making three vectors. Whenever the vectors forming the largest angle between them
are found, the remaining vector is the vector used to split with. As shown in Fig. 5, this method will
not work properly when the quadrilaterals are concave. However, Chazelle et al [3] proposed a method
to triangulate any simple polygon (convex or concave polygon without holes) in linear time.
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Fig. 5: Triangulating a quadrilateral.

2.3 Sampling
The Pseudo-Random Number Sequences (PRNS) sampling method used by Osada et al [23] can be
summarized as follows: a random number is first generated to randomly select a triangle with respect
to the area of the triangle; a pair of random numbers 1r and 2r are then generated. The generation of

the random points uses the following formula:

   1 1 2 1 21 1P r A r r B r r C     (4)
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Fig. 6: Sampling a random point in a triangle.

Where 1r and 2r are two random numbers between 0 and 1 . A , B , and C are three vertices of the

triangle shown in Fig. 6. It is easy to prove that for any given:

 , 0,1
AR

AC
  

 , 0,1
BQ

BC
  

The probability of point P falling into AB C  is:

2 AB C

ABC

S

S
   



 (5)

In other words, the sample points are supposed to be uniformly distributed.

Ohbuchi et al [20], [21] used Sobol’s Quasi-random number sequence (QRNS) [28] as the sampling
method. QRNS, also called the low-discrepancy sequence, is a sequence of n-tuples that fills n-space
more uniformly than uncorrelated random points. Sobol’s QRNS was proved having better
performance than PRNS in Ohbuchi’s experiment. In our experiment, we tested three methods to
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generate sample points in a triangle as shown in Fig. 7: PRNS, Sobol’s QRNS and Halton’s QRNS [8], [4].
Both of Sobol’s QRNS and Halton’s QRNS are low-discrepancy sequence. They got similar quality of
uniformly distributed sample points in this specific case, and both of them have apparently better
distribution than PRNS. Another QRNS method, Niedereiter Sequence, was also suggested as a
candidate for further improving performance, for its well performance in computing volume and
surface area of solid models [21].

Fig. 7: Comparison of PRNS, Sobol’s QRNS and Halton’s QRNS.

2.4. Generating Distributions
Osada et al [23] empirically found that using 10242 samples to generate 64 vectors yields a shape
distribution with the low enough variance and high enough resolution. Ip et al [9] extended this
method by classifying distances into three categories: IN, OUT and MIXED. The bin-width in their
experiment was based on 1/50 of the average distance between pairs of points. However, the samples
fall into IN, and OUT are quite few in Team and Team2, the OUT distances are only 0.79% and 0.93%,
respectively.

Accordingly, the OUT distributions of Team and Team2 are obviously unstable because of the
inefficiency of samples. In the method proposed by Ip et al [9], ALL distribution and MIXED
distribution are found very similar. However it is simply because MIXED distributions have
overwhelming population and the features carried by IN and OUT distributions are drowned.

2.5. Normalization
Osada et al [23] tried three normalization methods in their experiment: 1) align the maximum sample
values, 2) align the mean sample values (or similarly the median), and 3) search for the scale that
produces the minimal dissimilarity measure in each comparison.

In Osada’s experiment, Mean Normalization has a similar discriminability as that in Search
Normalization. But it is easier for offline indexing operation. Most other shape distribution-based
methods use the similar normalization method.

Ohbuchi et al [20], [21] proposed another normalization method: it not only aligns the average sample
values, but also aligns the maximum sample values. This means that distributions may have different
bin-widths in the domains above and below average sample values. Thus, the distinct characteristic of
this normalization method is that there might be a sharp change at the average values. The average
method outperforms other normalization methods in Ohbuchi’s experiment, and it is also suitable for
the offline indexing operation.

2.6. Obtaining Distances

Osada et al [23] experimented with eight dissimilarity measures: 2X statistic, Bhattacharyya Distance,
Minkowski NL Norm of the Probability Density Functions (PDFs) and Cumulative Distribution

functions (CDFs) for 1,2,N   .
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When the domain of f and g is a discrete set, the Manhattan Distance (Minkowski 1L Norm),

Euclidean Distance (Minkowski 2L Norm) and Chebyshev Distance (Minkowski L Norm) of PDFs can

be calculated as follows:
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In Osada’s experiment, the Manhattan distance has the best performance for comparing shape
distributions. Some of other Shape Distribution-based approaches experimentally conformed or simply
accepted Manhattan Distance except that Ohbuchi et al [20], [21] and Liu et al [15] adopted Euclidean
Distance.

Ip et al [9] used a distance based on Manhattan Distance. Their bin-width is 1/50 of the average
distance between pairs of points. The histogram for the model with fewer bins is padded with zero
value bins. They divided the Manhattan Distance by the number of the non-padding bins in the
histograms, trying to eliminate the effect caused by the different number of bins:
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Where k is the number of non-padding bins. Since the AD and AAD proposed by Ohbuchi et al [20]

have one more dimension of distribution, the PDF 1L and PDF 2L are used to calculate the distance

between the distributions:
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They also experimented with Elastic Matching Distance, which has been applied in speech recognition
extensively. Although its motivation is very similar as that used in the Search Normalization Method
proposed by Osada et al [23], it applies locally stretching and shrinking to the histograms instead of
globally scaling. In their experiment, the Elastic Matching Distance could not compete the simple
Euclidean Distance, and the latter one has the best performance in all distances they tested [20].

Ohbuchi et al [21] extended AD and AAD with 3D Alpha Shapes. In other words, the Alpha
Multiresolution Representation (AMRR) has three dimensions of vectors. They used weighted PDF 2L

as the distance between distributions:
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2.7. Examples
Tab. 1 shows processes of the shape-distribution based method using examples. We use a teapot, a
sphere and a mechanical part as sample models. We first triangulate these models into triangle sets.
Then, we use Halton’s QRNS to generate sample points. After then D2 distributions [23] and AAD
distributions [20] are generated based on these sample points.

A Teapot A Sphere A Part

3D Model

Triangle Set

Sample
Points

D2
Distribution

AAD
Distribution

Tab. 1: D2 Distributions and AAD distributions.

3. DISCUSSIONS

3.1. Discriminability
Shape distribution-based methods are easy for implementation, and easy for both of offline indexing
operation and online matching operation. Most of them have remarkable advantage of low
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computational cost. Accordingly, shape distribution-based methods are suitable for a coarse filter of a
3D shape retrieval system.

The obvious limitation of original Osada’s D2 Method is that very different 3D shapes may have close
distance, in other words, this method has not enough discriminating capability, because the features
carried by 64 vectors are too limit. Simply increasing the number of vectors by reducing the bin-width
and increasing sample counts accordingly may improve the discriminability, but it also increasing the
comparison cost and the storage.

All methods based on Osada’s D2 are engaged in increasing the discriminability of D2 with same
computational cost or by slightly increasing computational intensity. The Osada’s D2 is considered as
too simple and losing too many detailed features. As the result, the aim is to enhance Osada’s D2 with
additional dimensions of 64 vectors for more detailed features.

3.2. Sample Counts
The approach proposed by Ip et al [9], [10] is to classify the distances between pairs of sample points
into three categories: IN, OUT and MIXED. Both Rea and Iyer [11], [26] pointed out that its
computational cost is considerably high, because it involves a large number of intersection calculation.
This computational intensity may be sharply aggravated while increasing the number of polygons or
triangles.

The insufficiency of sample counts is also a problem in Ip’s method [9], [10]. Although the total
number of sample points seems adequate, the assignment of the sample counts in the three categories
(IN, OUT and MIXED) is extremely unbalanced. In order to solve this problem, one way is conditionally
sampling, but it is very complicated in this context. The other way is to increase the total number of
samples, but it will ulteriorly increase the computational cost and the total number of samples is not
able to be determined before the sampling process.

3.3. Weighted Distance
Another question is that if a feature is only carried by less than 1% population of samples, is it still a
major feature of this 3D model? For example, if we constantly reduce the diameter of the caves in the
cheese model shown in Fig. 8, the population of the OUT and MIXED will also be decreased. At the
same time, the re-entrant feature of this model will become less important, and finally become a trivia.

Fig. 8: Cheese Model [9].

Subsequently, the feature effects in 3D shape matching are dynamic, when the features are compound
together into a single descriptor. Both Ip et al [9] and Ohbuchi et al [21] were aware with this issue. Ip
tried three different weighting methods to adjust the effects of IN, OUT and MIXED distributions, but
these methods seems not working as well as expected. Ohbuchi also tried several different set of
weights to compound the features together, and chose the one with best performance as their result.

Ip et al [10] changed their tactics into using another method to determine the weights by training the
classification system. The weights of IN, OUT and MIXED distributions are same in one 3D shape
category and differs between categories. This is reasonable, because the shapes in one category are
supposed to have same major features, and one feature may have different importance in different
categories. For example, the concave feature is one of most important features in cheese-like models,
but for a cube, it is not important at all.
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3.4. Feature Redundancy
Rea et al [26] roughly stated how the distributions of faces can be combined together into a
distribution of 3D shape. For example, as qualitatively shown in Fig. 9, the probability distribution of a
cube can be viewed as a combination of the probability distribution of individual faces, pair of
orthogonal faces, and pairs of parallel faces.

Fig. 9: Constituent parts of cube D2.

Here we prefer to discuss it in a quantitative manner to infer another interesting topic. When we
consider two random sample points on the surface of a cube with edge length of a, there might be one
of three possible relationships between them: 1) they are located in a same face; 2) they are located in
different faces, and the two faces are orthogonal; 3) they are located in different faces, and the two
faces are parallel.

The probabilities of the three possible events are (1) 1
6

P  , (2) 2
3

P  , and (3) 1
6

P  , respectively. Then

we process a conditional sampling to get the D2 distribution of these three conditions, which are

denoted as (1)f , (2)f and (3)f . As shown in Fig. 10, these distributions are supposed to be normalized

with same bin-width: 3
64

a .

Fig. 10: Three probability distributions for the three given conditions.
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The probability distributions of orthogonal faces and parallel faces shown in Fig. 10 are different from
those shown in Fig. 9, because in Rea’s experiment [26], the events of two sample points in a same face
were not eliminated from the cases of orthogonal faces and parallel faces.

Fig. 11: (a) The compound distribution, and (b) D2 distribution of a cube.

We combine the three probability distributions with the weight as the three events probability,  1
P ,

 2
P and  3

P . The compound probability distribution denoted as  c
f can be calculated as:

           
3

1 2 3

1

1 2 1
, 1,2,...,64

6 3 6

c k k
j j j j j

k

f P f f f f j


     (11)

As shown in Fig. 11, we finally get the compound probability distribution which is utterly as same as
the D2 distribution of a cube.

As the sampling is area weighted, the formula (11) can be generalized to a uniform form. In a 3D

model, the area of a polygon  iS S is denoted as  iA , and  ij
f is the probability distribution when

the first random sample point is located in  iS and the second random sample points is located in
 jS . Then the D2 distribution of this 3D model can be expressed as:
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Where A is the total area of the polygon set S , m is the number of vectors and n is the number of

polygons.

In a specific case, when two subsets, G S and H S , are complement sets for S : G H , the total

area of G is GA , and the total area of H is HA . The distribution of the universal set S can be

calculated as:
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Where GGf is the D2 distribution of subset G , HHf is the D2 distribution of subset H , and GHf is the

D2 distribution when the first random sample point is located in G and the second random sample

point is located in H .

The formula (13) illuminates that the D2 distribution of any 3D model S , can be expressed as a linear

combination of the D2 distribution of the subsets of S . This formulation could be used to determine

the redundant feature, when we approach to increasing dimensions of descriptors by decomposing the
3D model into several subsets with specific features.

In some circumstances, we would rather express a distance between a linear combination of the
weighted distance between the subsets. This technique will substantially enhance the discriminability
by increasing the dimension counts of the descriptors. Yet, the ways to determine the weights have to
be concerned with.

3.5. Extending Dimension of Descriptors
The approach used by Rea et al [26] seems having a very close relationship to formula (13), but Rea’s
method is actually more likely a specific case of AMRR proposed by Ohbuchi et al [21]. Ohbuchi
incorporated weighted distances between the alpha shapes into the distance between original models
to increase the descriptor’s capability.

When there is only one level of alpha shape in Ohbuchi’s AMRR, and the parameter  is  , the case in

Ohbuchi’s AMRR will become the same as Rea’s method. Instead of combining the weighted distance
between the alpha shapes and the distance between the original models, Rea’s method is to subtract
the D2 distribution directly from the D2 distribution of the original models. The physical meaning of
Rea’s distribution is the distance between the distributions of the original 3D model and the convex
hull of its own, in other words, Rea’s distance is ‘distance between distances’.

This disposal actually does not increase the capability of the descriptors. It just transforms the
descriptors carrying some features into the descriptors carrying some other features. In an extreme
case, for instance, when the original model is a convex model, the CHD distribution will become value
zero. That is, the approach proposed by Rea et al [26] can only be applied to the models with re-
entrant features. And unfortunately, in Rea’s method, the negative values are ignored, but these
negative values also carry features with them and should not be rejected.

AD, ADD and AMRR proposed by Ohbuchi et al [20], [21] successfully extended Osada’s D2
distribution into a multi-dimensional space. However, they use inner products of the unit normal
vectors of triangles which the pairs of sample points are located on as another dimension, and it is
divided equally into 8 intervals.

Fig. 12: Angle intervals corresponding to the inner product intervals.

As shown in Fig. 12, supposing that the angles between pairs of faces are uniformly distributed in

 0, , because the cosine function is not a linear function, the assignment of sample counts in the 8
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intervals on inner products is not balanced. The intervals of  1.0, 0.75  and  0.75,1.0 will get more

samples than other intervals, and accordingly, some of the detailed features of the approximately
parallel triangles will be concealed.

Liu et al [15] used a statistical ‘thickness’ histogram as the descriptor of 3D shapes. Their method is
roughly similar as Osada’s D2, but when a distance between a pair of sample points falls into a
histogram bin, the bin’s value will be added with a weight W instead of value 1:

   1 2

2

, ,dot n n dot n n
w

d
 (14)

Where the  dot denotes the inner product of two vectors, and n is the unit vector along the line

segment between the sample points, 1n and 2n are the unit normal vectors of the triangles on which

the pair of sample points are located. It is hard to find out the physical meaning of this weight. The

factor of 2
1

d
causes the first bins in the histogram rather unstable.

4. CONCLUSIONS
Most methods of the shape distribution-based 3D shape retrieval are fast and efficient for 3D shape
matching. Although their discriminating capability cannot compete with the more elaborate features
(for instance, spherical harmonics in Kazhdan et al [13]), they are suitable for working as coarse filters
in 3D shape search engines because of their low computational cost. Several approaches were
proposed to increase the discriminability of Osada’s D2. By analyzing their work, we can indicate the
direction of future research for improving the performance of Osada’s D2.

First of all, the discriminating capability can be enhanced by increasing dimensions of vectors, because
the feature capability of the 64 vectors in Osada’s D2 is too limited. One way to increase the dimension
of vectors is to classify the triangles into several categories with different features. The other way is to
incorporate other features into the descriptors as additional dimension, as Ohbuchi did in the AD,
AAD and AMRR approaches.

Secondly, distances should be expressed as sums of weighted components along the dimensions. The
distance between 3D models should be a form of linear combination of features. The feature with
maximum weight is the major feature. Generally speaking, different categories might have different
weights of same feature because their major features are different from each other. Setting the
weights of these categories by using data mining methods should be considered.
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