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ABSTRACT

Sequences of parameterized Hermite curves following with their endpoints along two
guide rails are used to create “transparent” surfaces and tubular sculptures. This
parameterized set-up allows modeling a wide variety of shapes in a natural way by just
changing a few parameters. Potential applications range from mathematical
visualization models to architecture.
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1. INTRODUCTION
The concept of “ribbed surfaces” emerged from an attempt to reverse-engineer some of the tubular
sculptures created by Charles Perry [5]. As a specific example, Solstice [6], located in downtown
Tampa, Florida (Fig.1a), has a thick supporting “rail” in the shape of a (3,2) torus knot. The three
segments of this dominant curve, which pass through any radial section of the embedding torus, are
connected by curved “ribs” that roughly form a hyperbolic triangle. This triangle rotates through 240
degrees as it sweeps once around the major loop of the torus. Once this construction principle is
understood (Fig.1b), it seems natural to try to change some of the key parameters so as to
accommodate other types of (p,q) torus knots, and create different ribbed surfaces between different
segments of the dominant rail forming that knot. As an example, Figure 1c shows a similar sculpture
resulting from a rail in the form of a (2,3) torus knot. This surface was obtained by just changing the
(p,q) parameters that define the torus knot in the procedural description of the first sculpture.

Fig. 1: (a) Solstice by C. Perry; (b) emulation: ribbed (3,2) torus knot; (c) ribbed (2,3) torus knot.
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The study of variations of this and other tubular sculptures revealed the versatility of this way of
generating shapes with curved “surfaces” on a large scale, where shaping an actual surface by forging
steel plates or by casting bronze might be prohibitively expensive. Bending and assembling narrow
ribbons or thin tubular elements is a much more flexible and affordable approach.

Fig. 2: Models with transparent ruled or ribbed surfaces: (a) hyperboloid; (b) Boy’s surface; (c) string art
by Ray Schechter [8].

Also, this type of “ribbed representation” can provide surfaces with adjustable “transparency.” This is
of particular importance when providing visualizations for complex surfaces with high depth
complexity, where it is desirable to accommodate a look to the inside or to the backside of the
structure. Mathematicians have modeled ruled surfaces with a “ribbed” approach in the form of
“string-art” models to depict surfaces such as the hyperboloid depicted in Figure 2a. A sculpture
depicting Boy’s surface, a finite immersed model of the projective plane, uses metal bands to create a
surface of some transparency that allows one to look inside and see the internal lines of self-
intersection and the triple intersection point (Fig.2b). And many string-art sculptures make use of the
partial transparency that they can achieve for enhanced aesthetic results (Fig.2c). For large public
sculptures, a transparent look and feel is often preferred to a massive, solid shape that would cast
stark shadows. Tubular construction of ribbed surfaces can provide this airy realization, and it often
also reduces the overall weight and construction costs.

Fig. 3: Mathematical visualization models: (a) hemi-cube; (b) Steiner’s Roman surface; (c) (d) two virtual
views of a hemi-dodecahedron.

As an example of the added visualization power that ribbed surfaces can provide because of their
adjustable “transparency,” Figure 3 shows models of abstract polytopes that exhibit intersecting faces
when modeled in 3-dimensional space. Figure 3a depicts a physical model of a hemi-cube comprising 4
vertices, 6 edges, and 4 non-planar mutually intersecting quadrilateral faces. Figure 3b is a ribbed
model of Steiner’s Roman surface, the simplest and most symmetrical object of a single-sided, non-
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orientable surface of genus 1. Both these models were made on a Fused Deposition Modeling machine.
Figure 3c and 3d depict two views of a computer model of a hemi-dodecahedron consisting of six
pentagonal faces, 15 edges, and 10 vertices. These polytopes form the building blocks for the
construction of some intriguing higher-dimensional polychora of very high symmetry [2] [3] [9]. They
have been generated with an early precursor program in our family of ribbed surface generator
programs. They mostly just use straight ribs and thus depict models that are mostly bounded by
intersecting, piecewise ruled surfaces.

Fig. 4: Ribbed surfaces in the arts by Martin Puryear [4].

Expressibility greatly improves, if we do not just use straight line segments to create ruled surfaces,
but can obtain more intricate forms by controlling the shape of the ribs. This will then permit us to
make quite intricate mathematical models and intriguing art objects. Figure 4 shows sculptures by
Martin Puryear [4] that could be described most appropriately with ribbed surfaces.

Fig. 5: Use of ribbed surfaces in architecture.

Fig. 6: Further application areas for ribbed surfaces: (a) utility lights; (b) vases; (c) furniture.
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There are several other domains where a parameterized ribbed surface may be the natural choice for
modeling the objects to be designed. The examples that readily come to mind range from architectural
facades and balconies (Fig.5), through consumer products (Fig.6), to ship building (Fig.7). They include
utility lights (Fig.6a), artistic vases (Fig.6b), and furniture designs (Fig.6c).

Fig. 7: Ship building is another potential application area for ribbed surfaces.

2. BASIC SET-UP OF RIBBED SURFACES
Ribbed surfaces are a versatile generalization of the well-known ruled surfaces. In both cases the
generating principle is to slide some secondary curve, forming the “ribs,” along two primary curves,
which we call the “guide rails.” In the case of the ruled surfaces, the ribs are straight line segments; in
our case we allow the ribs to be more general curves, which have their end points located on two
different segments of the rail curve(s). Our prototype implementations include circular arcs and
Hermite splines. In each case a small set of parameters controls the behavior of the ribs as their end
points progress along the rails.

2.1 Parameterization
In order to create a ribbed surface, we need to define one or two parameterized guide rail curves and
the rail cross-sections that will be swept along the rail curve(s). For the ribs we have to specify: the
total number of ribs; their cross-section information; two parameter intervals [sb0, sb1] and [se0, se1],
for the beginning (b) and end (e) point locations on the appropriate guide rail(s); an application-
dependent set of geometric end-point parameter functions that define the shape of the individual ribs
as the sweep parameter s is running through the interval from s0 to s1. These parameters control
turning angle and embedding plane for circular arcs, or they specify the end tangents of cubic Hermite
rib curves in various ways. They may be enhanced in the future to also control the curvature values at
the rib ends in the context of quintic Hermite splines. The specified number of ribs is then generated
and uniformly positioned over the domain of s. Some extra higher-level control functions make it easy
for the user to create sets of rib end points that coincide or, alternatively, are evenly interleaved when
multiple sets of ribs are ending on the same rail. Different shape parameters are made available
depending on the application; these issues are discussed below.

Consider as a first examples the case of a single guide rail (Fig.8a), parameterized from s=0 to s=1,
starting from an arbitrary starting point. The beginnings of the ribs would then be placed uniformly
over the interval s: [0, 0.5], and the end-points over the interval s: [0.5, 1.0].

As a second example, we assume that we have two separate guide rails, Gb and Ge, for the rib end-
points (Fig.8b). The beginnings might be spread over the interval sb: [0, 0.5] on rail Gb and the end-
points over the interval se: [0, 1.0] on Ge.
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Fig. 8: Rib end-point placement: (a) on single guide rail, (b) on two separate guide rails.

2.2 Rib End Conditions
We have employed several alternative coordinate systems to specify the end conditions of the ribs, and
thus to define the shape of the ribs. When the ribs are represented as cubic Hermite curves, there are
the following constraints: two endpoint positions and two tangent vectors. The endpoints are simply
points along the guide rail curves, evaluated at the proper parameter values of the sweep parameter
for that rib. The end tangents might be oriented in any direction, and different coordinate systems
have different advantages for specifying the tangent directions, as will be discussed below. The
orientation angles of the end tangents in these rib-local coordinate systems may vary as a function of
the sweep parameter s. In the simplest case, the rib end-condition parameters are specified for the
start and end of the sweep and are linearly interpolated for all ribs in between. More complicated
functions can easily be introduced.

The most general coordinate system would simply use the Frenet frame of the rail curve(s) as the
coordinate system to define the rib end tangent vectors (Fig. 9a). A first parameter  specifies the
angle between the rail tangent and the rib tangent. A second parameter  specifies the rotation angle
around the rail tangent, starting from the osculating plane; thus the special parameter combination of
 =90 and  =180 would result in a rib that takes off perpendicularly to the rail curve in the outward
direction of its bend. This coordinate system is most convenient when we are primarily concerned with
the structuring of the rib ends around the rail curves. Hermite rib curves have an additional
(“velocity”) parameter to specify the length of the tangent vector (derivative) at each end.

Fig. 9: Coordinate systems to specify rib end conditions: (a) based on Frenet frame of rail curve, (b)
special reference frame for planar ribs, (c) oblique coordinate systems.
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Often we are more concerned with the overall shape of the ribs themselves than with their end
conditions. In this case we specify the geometry of the rib endings in a coordinate system that is more
intimately tied to the bulk of the rib. The chord that connects the two end points of the rib sliding
along the rails forms the dominant axis of such a coordinate system. A plane that passes through this
dominant axis is selected by a single angle parameter . The plane defining the zero angle depends on
the application. In many cases, it is desirable to keep the ribs planar and symmetric; in this case all
that needs to be specified is the orientation angle of the rib plane around the dominant coordinate
axis and the tangent angles  that the rib ends form with the chord (Fig.9b). Alternatively, the amount
of bending of the rib in the given plane could be specified as an offset distance d of the rib mid-point
from the chord mid-point.

As a third alternative we have used a mixture of these two paradigms, resulting in end-point
coordinate frames in which the three axes may not be mutually orthogonal (Fig.9c). For each end point,
the first axis is the vector along the chord from that point to the opposite rib endpoint. The second
axis is the tangent of the guide rail curve. The third axis is simply the cross product of the first and
second axes. Some default functions based on the length of the chord and on the angle between the
guide rail tangent and the chord may be used for setting the rib tangent direction and velocity; such
default functions may cover a large set of practical applications.

The proper parameterization of the rib end conditions is ultimately application-specific and may
reflect both aesthetic and pragmatic requirements. For example, if planar ribs approximating elliptical
arcs are the preferred solution, the second coordinate system described above might be used, perhaps
with a further abstraction to specify the rib shape in terms of elliptic eccentricity.

2.3 Rib Optimization
Hermite curves are mathematically smooth in their parameter domain, but they are not necessarily
geometrically smooth; cubic Hermite curves might still have loops, cusps, or folds. When the intention
is to realize a ribbed surface by bending physical materials, geometric smoothness is desirable. To this
end one can replace Hermite curves with optimized geometric Hermite curves or composite optimized
geometric Hermite curves that adjust the magnitudes of the curve end tangents so as to minimize
overall strain energy [11]. The initial endpoint tangents could be specified as detailed above, and then
sent to an optimization procedure to construct the energetically optimized and geometrically
smoothed curves.

2.4 Comparison to Other Sweeps
Ribbed surfaces bear some similarity to another kind of “swept” surface, often called “lofted surfaces”
or “skinned surfaces.” These latter surfaces are specified by a sequence of two or more cross-section
curves, called “profile” curves, and the surface is obtained by interpolating between each adjacent pair
of profiles. The Maya 3D modeling editor [1] generalizes this concept to a construct called “Birail”
curves. Profile curves are defined with two fix-points each, which can slide along two separate “rail”
curves, while the various profiles are properly scaled and oriented so that each of the two fix-point
remains on one of the rail curves. The surface is again obtained by interpolating point by point
between adjacent pairs of profiles, which are specified in with reference to the two guide rails. “Birail”
sweep surfaces require the explicit input of a discrete number of profile curves whose shapes are then
interpolated to generate intermediate ribs, and eventually the whole surface.

In contrast, our general ribbed surfaces permit the procedural generation of unique rib curves for each
value of the sweep parameter. Interpolation is not done in a low-level, geometrical manner between
adjacent curves, but rather in the parameter space that defines the ribs. This adds a level of
abstraction and extra degrees of freedom for the generated surfaces. It also reduces the amount of
data that has to be specified explicitly for a given surface. Consider the specification of a ribbed
surface with N ribs where the ribs are specified by M control points. The Birail specification would
require the transmission of O(M*N) data values, whereas the ribbed surface would require only O(M)
input parameters, if the ribs can be specified satisfactorily in terms of some constant number of
interpolated parameters to the rib generator function.
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Moreover, there is, of course, the obvious difference in that most traditional sweeps are continuous 2D
surfaces, while ribbed surfaces are composed of sequences of distinct “ribs” that suggest such a
surface. As has been discussed above, this feature is what makes ribbed surfaces amenable to some
novel uses in certain applications.

3. DEMONSTRATION PROGRAMS
In the following we describe in some detail a few demonstration programs that have somewhat richer
user interfaces and thereby allow the user to model a much wider range of shapes without having to
touch the source code of the ribbed-surface generator environment.

3.1 Perry’s Solstice Sculpture
As a first example, we will discuss a sculpture generator program based on Perry's Solstice sculpture
(Fig.1). The program is implemented in C++, using OpenGL for rendering and GLUI for creating the
graphical user interface. In the current implementation, when any parameter is changed, the entire
surface is regenerated. Despite this, performance remains interactive.

Fig. 10: Solstice program: screen shot of user interface.

All geometry generated will always have a guide rail that is a (P,Q) torus knot embedded in a torus that
is specified by its defining major and minor radii. Thus the first four parameters that the user can
control (Fig.10), "P" and "Q", "P Radius" and "Q Radius", specify the (P, Q) torus knot as well as the
dominant radius of the torus (P Radius) and the thickness of the toroidal arm (Q Radius). P and Q, of
course, must be mutually prime, lest the guide rail decompose into multiple, intertwined torus knots. A
parameter "Rail Radius" controls the thickness of the circle swept along the rail curve to produce the
rail geometry. In a similarly straight-forward manner the user can set the “Number of Ribs” and the
“Rib Radius.” The starting points of all these ribs will now be distributed uniformly along the whole
length of the torus knot; their endpoints are always 1/P ahead on the same torus knot rail in parameter
space. A particularly interesting parameter is “Rib Offset;” it shifts the endpoint of the rib forward or
backwards by an additional amount. For Rib Offset equal to zero, the ribs will always form 1/P P-gons
that lie in the cross-sectional slicing planes of the toroidal arm; they may be simple regular P-gons or
star-P-gons, depending on the torsion of the torus knot. If Rib Offset is changed by a small amount,
then these P-gons break open and become helical pathways. Some internal program logic guarantees
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that the Rib Offset always snaps to a value that guarantees that the end points of the set of ribs that
land on the same rail in the same neighborhood either match exactly or are offset by exactly ½ of the
rib spacing to obtain a regular interleaving.

In this program we restrict ourselves to symmetrical, planar ribs and thus use a local coordinate
system that is centered around the mid-point of the chord, using a default plane for the ribs that
passes through the special radial vector in the torus arm that points toward the chord mid-point.
Within this plane we now control the bending of the rib by adjusting the angle between the chord and
the rib endpoint tangent with the parameter “Rib Bend.” Figure 11 shows a more complex (5,4) torus
knot sculpture with fairly dramatic bending of the ribs.

Fig. 11: Solstice program: Self-intersection Moebius prism based on (5,4) torus knot.

3.2 Perry’s Early Mace Sculpture
We have also used the ribbed surface paradigm to emulate another one of Perry's sculptures, called
Early Mace, installed in Atlanta, Georgia (Fig.12a). Here the guide rails are pairs of simple semicircles
with two widely different radii. The ribs are almost quarter circles and are always connecting one of
the large hemi-circles with one of the small ones. In our emulation program, implemented with a TCL
module in the Berkeley SLIDE environment [10], the rib end conditions are specified using the more
general coordinate system in terms of the "velocity" vector, guide rail tangent, and their cross product
(Fig.12b). As a simple but intriguing variation we show what happens if we reverse the bulge of all the
ribs so that they form an overall convex, nearly spherical shape with two semicircular slots (Fig.12c).
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Fig. 12: Early Mace by C. Perry: (a) original sculpture; (b) our emulation; (c) a convex variation.

3.3 Ribbed Helical Arches
A third demonstration application generates hemi-elliptical arches traced out by a ribbed double helix.

The two guide rail curves form this double helix. The radius of the two helices at the endpoints and the
radius at the center may be adjusted independently. The double helix is curved to follow a hemi-
elliptical path, which is specified in terms of the parameters of interest for the overall arch structure:
the width of its base and its height. The rib end conditions are specified, as in the Early Mace
emulation of section 3.2, using the more general coordinate system of “velocity” vector, guide rail
tangent, and their cross product. The ribs take off in the direction of this cross product, and these end
conditions are specified for each endpoint of the arch to cause them to take off upwards at both ends.
The values are then interpolated for each rib in-between. Figure 13 shows one of the sculptures output
by this program, which was rendered in Pixie, an open-source RenderMan renderer.

Fig. 13: A ribbed double helix forming an elliptical arch.

4. SUMMARY AND CONCLUSION
The notion of “ribbed surfaces” has been introduced as a generalization of the well-known ruled
surfaces. Rather than just sweeping straight line segments between two generator rails, we may use,
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for instance, Hermite curves for the ribs, for which the end conditions are specified by parameterized
functions of the global parameter s that controls the iterative placement of all the ribs and their sweep-
progress along the generator rails. One of our prototype implementation uses cubic Hermite curves in
which we can control the first-degree derivative parameters at the end points of the ribs. Future
extensions could include quintic Hermite curves, which would allow us to control the curvature at
these points, or the use of optimized geometric Hermite curves, as described above.

In design applications such as those described in Section 3 or shown in Figures 2 and 3, it would be
quite useful, if the system could detect mutual intersections between ribs. This is particularly
important if the structure is to be realized from actual physical tubular elements. Mutual intersections
between any pair of geometrical elements could indeed be detected with well know but somewhat
computationally expensive collision detection modules.

For many applications, included those presented here, finding such potential intersections is not a
dominant concern. In the case of Perry’s sculptures, the ribbed surfaces do not actually intersect one
another. Thus a simple visual inspection is sufficient to make sure that a set of rib parameters has
been chosen that keeps the various parts of the ribbed surface from bulging into one another.

On the other hand, in some of the mathematical models, where the key goal is to present intersecting
surfaces with this ribbed implementation style, detecting intersections is often the easy part of the
problem. The much more difficult challenge is to find a set of rib parameters that avoids all
intersections between any two ribs, without breaking the regularity of the rib spacing along the
surface. Complicated search and optimization techniques might have to be applied to look through the
whole combinatorial space of parameter value combinations to find an acceptable solution. The models
displayed in Figure 3 were fabricated on rapid prototyping machines base on layered manufacturing
technology. Fortunately, these machines have no problem building mutually intersecting tubular
structures. To obtain truly intersection-free model, such as the one depicted in Figure 3b, requires a
higher-level understanding of the structure being designed and a careful planning of the positions of
individual ribs before the shape of the resulting surface is specified in detail.
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