
Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

125

Two-handed Haptic Manipulation for CAD and VR Applications

Renaud Ott1, Frédéric Vexo2, Daniel Thalmann3,4

1 EPFL-VRlab, renaud.ott@epfl.ch
2 EPFL-VRlab, frederic.vexo@epfl.ch

3 EPFL-VRlab and NTU-IMI, daniel.thalmann@epfl.ch

ABSTRACT

In this paper, we propose to increase realism and complexity of haptic applications for
Virtual Reality and CAD applications. To achieve this goal, we use a Haptic
Workstation which allows to acquire the posture and position of both hands, and to
apply forces on the fingertips and wrists. We propose techniques to calibrate and
improve the comfort of these kinds of devices in order to integrate them into Virtual
Environments. However, a two-handed haptic device does not present only advantages.
Indeed, It is much more complicated to compute forces on two hand models, than on a
single point or fingertip. For this reason, we propose a framework to optimize this
computation.

Keywords: two-handed haptics, hand model, collision detection, force feedback.
DOI: 10.3722/cadaps.2010.125-138

1 INTRODUCTION

To have only one hand able to manipulate objects shows how much the second hand is important. To
understand this fact, we refer to Guiard’s analysis of human skilled bimanual action [10].

• First, users can effortlessly move their hands relative to one another, but it requires a
conscious effort to move a single hand relative to an abstract 3D space. This is the case when users
have only one haptic device.
• Second, using both hands takes advantage of the user’s existing skills. Most tasks we perform
in our everyday lives involve using both hands in asymmetric roles, not one hand in isolation. This is
even true for tasks like handwriting.

A key concept of Guiard’s model is that the preferred and non-preferred hands (depending of
left/right-handed) act together, but not in the same way. This asymmetric division of the tasks allows
the hands to work with improved results, comparing to what either hand could achieve by itself. For
example, Guiard reports that “the writing speed of adults is reduced by some 20% when instructions
prevent the non-preferred hand from manipulating the page”. One might also argue that using two
hands to operate an interface only adds complexity and makes an interface harder. But there are many
compound tasks that uses a single cognitive chunk.



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

126

Several haptic research include the combined use of 3D graphical and haptic systems for
interacting with at least two single-point interfaces. Barbagli et al. present in [2] a multifinger (2
fingers) haptic interface made with 2 Phantom.

Thanks to a two-handed haptic device, we can create Virtual Environments in which an object is
graspable and dynamically animated by the laws of physics. When the object is seized by both hands,
the haptic rendering engine realistically computes the forces on both exoskeletons. The efficiency of
our rendering permits to apply these techniques to complex environments that have a significant
number of objects. But the existing visual Virtual Environments are much more detailed than the ones
seen in common haptic applications. In this paper, we aim at reducing this gap. One of the problems is
that these quality environments usually do not include specific haptic object properties, such as mass
or material. We thus propose a software allowing even non-professional to quickly and easily add this
information to an environment. Our results show that this haptic rendering engine does not suffer
from the large quantity of objects. They demonstrate that we have an efficient framework for
integrating a two-handed haptic interface into a generic virtual environment. In the second part, we
evaluate the potential of these kinds of Virtual Reality systems in more detail. While most applications
can in theory take advantage of haptic devices, the practice shows that it is not always the case.
Indeed, with experience, some metaphorical interaction paradigms remain more powerful than
realistic ones. We thus present and study the integration of our two-handed haptic interface in CAD
and VR applications. Evaluations show that depending on the application, it is not appropriate to
reproduce reality: in teleoperation, for instance, simulating a virtual haptic steering wheel is less
efficient than providing a force gesture interface. On the other hand, in virtual learning, the power of
two-handed haptic manipulation is fully exploited and presents great advantages over standard
techniques.

2 DEFINITION OF NEEDS

The role of the hands can be divided into two groups: feeling and interacting. In this paper, we will
focus mainly on interaction, i.e. on the action that occurs when one or two hands have an effect upon
one or more objects (and vice-versa). To enable the action of the hands on an object, we need:

• A system for acquiring the posture of the hands. Indeed, the posture is really important for
manipulation, because it allows specific grasping of particular objects.

• A system for tracking the position and orientation of the hands in the 3D space. The
orientation of the wrist is important and could even be considered as part of hand posture. If
we cannot orient the hand, some objects are impossible to grasp.

• A workspace allowing to reach any position of the space close to the chest.

To enable the second part of the assertion, i.e. the action of an object on the hands (which is also
related to feeling), we need:

• A system for simulating proprioception on the fingers and on the palm. Indeed, the force
feedback prevents user’s fingers to penetrate into the objects. Moreover, it provides added
information about the nature of a virtual object, and finally it eases the grasping by offering
the feeling of contact which is difficult to obtain only with visual/audio feedback.

• For the same reasons, we need a system for applying force feedback on the hands.

We believe that these are the minimal hardware requirements for performing realistic two-handed
interaction. We use the Haptic Workstation™ (see Figure 1), which is composed of four usual devices of
virtual reality:

• A pair of CyberGloves™used for acquiring hand posture.
• A pair of CyberGrasp™ used to add force feedback on each fingers.
• A pair of CyberForce™which is an exoskeleton used to convey force-feedback to both arms.
• A pair of CyberTrack™ encapsulated in the Cyber-Force™ device to get the position and the

orientation of user hands.



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

127

Fig. 1: The Haptic Workstation.

3 SYSTEM ARCHITECTURE

3.1 Software Organization

Our haptic software is composed of several components. Figure 2 presents the general organization of
the modules, and shows how they exchange information together. In this section, we explain this
diagram, and justify our choice about software organization.

Fig. 2: General Organization of the Haptic software.

On this diagram, the modules are presented in rectangles: the Haptic Thread, the Collision Engine,
the Dynamic Engine, and the Visualization Engine. Each module is in fact an infinite loop, running
until the application ends. The ovals are representing the data structure that simplifies the
communication between the modules. There is the Hardware Abstraction Layer, which guaranties the



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

128

consistency of the data coming and going to the Haptic Thread. The Haptic Hand Model is one of the
most important, as it manage the virtual interacting hands. It will be particularly detailed in section 4.
And finally, the Haptic Scene groups the objects of the Virtual Environment that are touchable and
manipulable. The arrows present the main messages and exchange of information between these
components (modules and data structure). The Haptic Thread embeds the optimization for increasing
the refresh rate of the data coming and going to the Haptic WorkstationTM. Basically, it gathers raw
input data (hand posture and position) and copies it into a shared part of the memory. It gives also the
force values to the output device. The forces result more or less from the computation of collisions
between the hands and the objects. However, these modules do not have a sufficient refresh rate.
Thus, we need to update force magnitude even if we do not have updated collision information.
Consequently, the only solution is to make it the Haptic Thread. We deal with the force computation in
section 4.3. Moreover, at this stage, if activated, there is the User Comfort Improvement function that
can add a vertical force component on the CyberForce.

The Collision Engine and Dynamic Engine are working together. It seems difficult to parallelize
them because one (the Dynamic Engine) needs the results of the other. They have many roles. First,
they detect the collisions between the hands and the virtual objects. This is essential for the force
computation and for user’s feeling. They also animate the grasped or touched virtual objects, which is
essential for interaction. Finally, they allow having a fully dynamic environment where each object is
able to act on another, which increases realism and possibly immersion.

The last module is the Visual Rendering Engine. Its role is of course to provide a view of the
Virtual Environment. Haptics without visual feedback is often used in the context of object
recognition. But, as mentioned in [9], the discrimination of shapes or curvature using a whole-hand
(multi-fingered) kinesthetic haptic device is as difficult as with single-point haptic device. Moreover, a
two-handed haptic device seems adapted to virtual manipulation or training. This suggests that
embedding a visual rendering system into a haptic framework presents advantages.

These modules are not running at the same refresh rate. They are separated into three threads.
The first one contains only the Haptic Thread and has a fixed refresh rate around 950 Hz. The second
one embeds the Collision and Dynamic Engine. Its refresh rate can be easily adjusted according to the
complexity of the Virtual Environment. And finally, the Visual Rendering Engine is in fact not running
in a thread, but in the main program which is instantiating the other threads.

3.2 The Haptic Node

As presented on Figure 3, a visual scene graph contains a root, and then different kinds of objects
organized in a tree. For instance, only the MVMesh objects should be considered because they can
potentially represent a tangible object. On the other side, we have scene graph that contains collision
and dynamic objects that do not have a truly visual representation. The role of the haptic node is to
provide a link between these two scene graphs. Such link is needed to ease the maintenance of
coherence between the two Scene Graphs. For example, if an actor is moved by the Dynamic Engine,
the corresponding visual object should be positioned accordingly. For this reason, a Haptic node is a
class that contains pointers on a visual mesh and on its dynamic alter ego. This class provides also
useful methods described below. The Haptic Scene is simply a collection of nodes, organized in a
simple list.

Fig. 3: The Haptic Node links visual meshes and dynamic actors.



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

129

3.3 Collision Detection

Collision detection is a broad topic dealing with a quite simple problem. It consists in determining if
two or more objects are intersecting. Moreover, we may also want to know when and where the
collision happens in order to properly adapt the force feedback response.

As shown in the previous subsection, directly testing the geometry of two objects for collision
against each other could be expensive. To minimize this cost, object bounding volumes could be
tested for overlap before the geometry intersection test. The choice of the bounding volume
characteristics is important. As shown in Figure 4, it is a trade-off between intersection test cost and
tight fitting of the volume. A large bounding volume could result in a false positive collision and thus,
reduce the performances. Our method uses axis-aligned bounding boxes because they are easy to
compute, easy to intersect and require less memory. In case of false positive collisions, it does not
strongly reduce the performances because we made the choice to approximate the objects with simple
primitives.

Fig. 4: Types of bounding volumes.

Second optimization is really simple. It comes directly from the fact that, in a normal realistic life
scene, only few objects are moving. Thus, every pair of “non-moving” objects that are not colliding at a
time t could not be colliding at a time t + t. Thus, during the animation process, we mark each object
that does not move. And then when we parse the pairs of objects, we do not even call the static
inference test if they are both disabled. This optimization is very efficient because it replaces the static
inference test, which can be complex by two simple bit tests. However, this method does not reduce
the number of pairs of object tested.

The third optimization is related to the fact that two relatively small and distant objects could not
intersect. So it is not useful to test these kinds of pairs. Two main approaches exist for classifying the
objects. First approach consists in organizing the objects in a Binary Space Partition Tree (BSP-trees)
[11]. This approach is efficient when the scene can be preprocessed. But, in our case, it is not possible
because a scene can possibly contain a lot of dynamic objects. We use a Spatial Partitioning. It consists
in dividing the space into regular regions and to test only the objects belonging to the same region.

3.4 Dynamic Animation

People are also used to diverse reactions of the objects when submitted to conditions toward the
violation of the non-penetration law. Some objects bounce on each other, some deform, some others
break; they generally produce sound when colliding, sometimes heat. In Virtual Reality, modeling
objects reproducing such phenomena is a big issue on increasing the realism of a scene. Moreover in a
context of realistic manipulation, it is absolutely necessary to provide such mechanism.

In our system, we use Forward and Inverse Dynamics these two kinds at the same time.

A Virtual Environment is composed of moving objects defined by 3 main parameters:
• the mass m, the center of gravity G, and the inertia tensor I, a 3 × 3 matrix, which represents

the angular moment of inertia.



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

130

• Forces acting on a body tend to move it (displacement and orientation). To calculate the
resulting change of position and orientation, we use the Newton-Euler laws to :

F  m x
..

G , and T  IA 
..

 where F and T are the forces and torque applied on the rigid body

and x and  are position and orientation of the rigid body.

To solve the equations 3.1, we can distinguish the approximate methods or the analytic methods.
One of the most frequently used in computer animation is the Euler Integrator which is explained in
[1]. In [12], Otaduy and Lin present a good review of these techniques when applied to haptic
rendering.

4 HAPTIC HAND MODEL

In the two previous sections, we presented a way to physically animate the virtual objects. The main
advantage of using this method is that when we exert external forces on virtual objects, we do not
need to provide specific behaviors (using scripts). But it means also that the virtual hands should be
modeled with respect to the same approach.

In this section, we present a powerful model of virtual hands in the context of haptic
manipulation. Several approaches have been primarily tested based on different methodologies. In this
subsection, we present the two techniques that were implemented and tested.

4.1 Direct Mapping

It consists in positioning a virtual interaction point at the same position than the device itself (hard
link). This is the most trivial solution, and seems also to be the easier to implement (but we will show
later that it is finally not the case). The calibrated position, rotation and posture of the hands are
directly mapped onto the virtual hand. The hand model is thus composed with collision geometries
and with a skeletal animated visual mesh that uses skinning techniques for increasing realism. The
idea behind this technique is to compute collisions between the hands and the virtual objects and to
apply a realistic force-feedback for avoiding the collisions.

As already mentioned, the collision detector returns if and where two objects collides. This second
information is used to compute the force feedback. For example, if the fingertip enters into a table,
two points are returned:

• The deepest point of the phalanx into the table (P
D

in Figure 5)
• Another point P

n
laying on the table surface that is the closest as possible of P

D

The vector P
D

P
0

determines the direction of the force feedback, and its norm is used to compute
the magnitude of the reaction force. This method gives the impression that an elastic with a zero rest
length is link between P

n
and the fingertip resulting in a force F = -k. As for every virtual elastics, it is

possible to change the spring constant k. In order to avoid the resonance, due to the fact that the
user’s fingertip is oscillating between a “inside-object”/“outside-object” state, it is also possible to add
a damping factor d for smoothing the force magnitude: F = -(k + d'). In fact, damping is critically
important, due to its role in counteracting the energy generation from errors introduced by sensing
and discrete time.

The first difficulty with this method is to deal with user’s movement. Figure 5 presents three
particular cases. The first one 5a, shows the resulting force feedback when the user displaces his hand
on the surface of a spherical object. We can observe that the force seems to be smooth and the
variation of direction gives the impression that the object is a sphere. However, the two other
examples presenting a hand moving on the surface of a table (see figure 5b and 5c) are showing force
continuity breaks at particular points P

i
. They are due to the fact that the collision detector returns the

closest point to P
i
laying on the object surface. We can imagine many solutions to avoid this specific

problem, but in fact, each solution will present an inconsistency in a particular context.



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

131

Fig. 5: Force feedback computation based on penetration distance.

The main source of problem with this solution comes from the Haptic Workstation itself. The
break sensation in force continuity increases with the penetration depth (because force magnitude is
greater), and our haptic device is not powerful enough to counterbalance the weight of an arm resting
on a table (or barely). Thus, penetration distances can become great and the perception of a break
increases.

Another problem to mention which is related to the Haptic WorkstationTM appears when the force
feedback could be applied on several actuators at the same time. Figure 6 presents an example when it
happens. User’s fingers are in contact with a cube. When the fingers penetrate into the cube, a resistive
force has to be applied. But, it raises a question: Where should we apply the force feedback? On the
CyberGrasp (at finger level), or on the CyberForce (at wrist level)?

Fig. 6: Where should we apply the force feedback?

In fact, it is impossible to answer to this question by examining a single frame at a single time. The
reason is that it depends of the muscular tension of the wrist and fingers. If the user locks his wrist
and that finger muscles are resting, the force feedback should be mainly sent to the CyberGraspTM (and
opposingly of course). If every muscles rest, force feedback should be applied on the two devices at
the same time. The same problem appears when two hands are grasping the same dynamic object. In
this case, it is not trivial to compute the force magnitude on the CyberForceTM, because each hand



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

132

transmit force through the virtual object to the other hand. As our Haptic WorkstationTM is a passive
device, we only know the position of the hands, and not the forces applied by the hands on the
system. This is the reason why it is impossible to answer to the question using a single state of
simulation. However, by examining many consecutive frames, we can get an approximation of hand’s
speed and acceleration. Then, because of the relation ∑F = ma, it is at least possible to approximate 
the force divided by the mass.

Finally, with the direct mapping method, there are visual inconsistencies due to the in-
terpenetration of hands and object resulting in a break in presence [14]. It does not satisfy the law of
non-penetration. Here again, the limited force of the Haptic WorkstationTM is the source of the
problem. Moreover, it does not ease the computation of the force feedback, and some specific
examples shows that it could introduce discontinuities in force direction. We present another solution
in the next paragraph. We choose it for avoiding these two problems.

4.2 Mass Spring Hand

Fig. 7: The three hand models.

This technique consists in using a proxy-based method [15]. A proxy is weakly linked to the
position of the device, i.e. the Haptic WorkstationTM. Basically, it is based on three hand models (see
figure 7):

• The Tracked Hand (shown in wireframe on the figure). It is in fact the virtual hand skeleton
created after calibration. It is supposed to be the exact representation of the real hand position
orientation and posture into the Virtual Environment. It is of course not the case, but we
assume that the matching is correct.

• The Proxy (Volumes shown on the figure), which is a mass-spring-damper system that has the
shape of the hands. Each phalanx and the palm is composed of a collision geometry, and has
also dynamic properties. These elements are linked together with motorized joints
parameterized with springs and damping coefficient.

• The Visual Hand. This is the hand that is visually rendered and the only one visible. It is easily
created using the visual rendering engine [13].

For each hand, the idea is to couple a proxy hand to the tracked hand using a set of virtual linear
and angular springs. As a result of the dynamic simulation, the spring-hand tends to follow the
tracked-hand. The visual hand displayed to the user reflects the spring-hand configuration.

This approach follows the “proxy” method proposed for the Phantom (a single-point interaction
device), extending it to the whole hand. It has been firstly described by Borst et al. [3]: they applied it
to the CyberGraspTM force feedback device which is also a component of the Haptic WorkstationTM.

It solves the problem of interpenetration between the visual hands and the environment because
the spring-hands adapt their pose on the surfaces of the objects. Spring-Hands have basically two
constraints:

• A soft constraint which is to match the best as possible the configuration of the tracked hands.
This is achieved by applying specific force and torques on the linear and angular springs
(Figure 8a).

• A hard constraint which is to avoid penetration within virtual objects. This is achieved simply
by activating the collision detection between the phalanxes/palm rigid bodies and the objects
of the Virtual Environment (Figure 8b).



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

133

Fig. 8: (left) soft constraint, (right): hard constraint.

The spring-hands are created using dynamic rigid bodies. To match the posture of the hands, we
use two kinds of geometrical primitives. For each hand, the phalanxes are approximated with capsules
and the palm with a flat box. Then, these rigid bodies are linked together using spherical joints (3
angular DOF). Some of them could be replaced by hinge joints (only 1 angular DOF) though we did not
notice any problem with this method. By linking the geometries together with those joints, we get an
articulated hand. Finally, an angular spring is attached to each joint. These springs will give a torque
to the phalanxes according to the angles of the tracked hand. As a result, the fingers of the spring-
hand will follow the fingers of the tracked-hand. The torque  applied by the spring on the articulation
made of an angular joint is computed as follow:

  k  s  t  d  s  t  (4.2)

where k, d are the spring and damping of the angular joint, t , 
s

are respectively the angles of the

tracked hand and of the spring-damper hand, s, t are angular velocities of the phalanxes on the

tracked hand, and on the spring-damper hand.

The spring constant defines how stiff the torque is applied to the fingers. An high value will
provide a more reactive behavior but will suffer from vibrations. The damping constant allows the
torque to be reduced according to the respective angular velocities of the joints. It avoids the
vibrations of the fingers but provides a smoother reaction.

By the same manner, to allow the translation and the rotation of the hands in the virtual world,
one linear spring (3 DOF) and one angular spring (3 DOF) are attached to the base of each hand.
Therefore, when the user moves the wrists, these two springs respectively apply a force and a torque,
allowing the base of the spring-hand to follow the base of the tracked-hand. The linear spring provides
a linear force F as follow:

F  kt ps  pt  bt vs  vt  (4.3)

where kt , bt are the spring and damping constants, pt , ps are positions of the tracked and spring

hands, vs, vt are velocities of the spring and tracked models.

The torque that is applied by the angular spring is more complex as it depends on the direction of
the hands. As a result the spring torque vector and the damping torque vector usually do not point in
the same direction.

It is possible to directly attach linear and rotational springs to the joints. The spring constant k
and the damping constant b are both parameterizable. It is preferable to adopt this solution than
computing the forces and torques and apply them manually to the phalanxes. The reason is that it



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

134

may be quickly instable for stiff spring and forces due to a limitation of the numerical integration
used to advance time from one time step to the next. Internally, the joints use a drive constraint in
which the springs are implicitly integrated within the solver. This is the best way to model stiff
behavior for stable simulation. We followed this recommendation as the spring constants are
necessarily very high to ensure that the spring-hands follow the user’s moves as close as possible.

In fact, it implies that the forces and the torques are not applied directly as presented previously.
Instead, we give angular orders to the drives (motors) of the joints and the Physics Engine integrates
these values to internally produce the forces and the torques. However, the model presented here is
still perfectly valid in our case and represents the real behavior of our simulation.

4.3 Force-feedback Computation

The mass spring hand model provides an elegant way to compute the force feedback. When a collision
with the hand occurs, it is indeed easily possible to compute the distance between the position of the
tracked hand and the position of the mass-spring system. Then, we send these two positions to the
Hardware Abstraction Layer, especially in the CyberForce and CyberGrasp data structure. Then, the
Haptic Thread get these data at a high refresh rate, and is able to compute a force for making the
tracked hand to match the position of the mass-spring hand. The force magnitude is of course propor-
tional to the distance between the two models. In Figure 9, we can see the difference between the two
positions of the tracked and mass spring hands. The resulting forces are represented by the arrows.
The advantage of the method is that the forces are refreshed according to the lastly updated positions,
near 1 KHz, whatever the speed of the collision engine. The disadvantage is that during the real hand
movement we can miss some collisions. This occurs only with small objects: for a hand speed of

−1ms 1, and at 300 Hz, the detector checks collisions every 3 mm. This is the concept of force feedback
computation.

Fig. 9: The computation of the forces for the CyberForceTM, and CyberGraspTM.

The CyberGrasp is an unilateral device. Thus some collisions could not be managed. To solve this
problem, when we compute the difference vector between the tracked and mass spring hands, we also
get the vector that is normal to the nail (the nail’s normal vector is aligned with the string of the
Cybergrasp). Then, if the scalar product of these two vectors (after normalization) is positive, it means
that the CyberGrasp should produce force.

4.4 Benefits for Manipulation using Two-hands

In this section, we will show that the mass-spring hands present many advantages in the context of
two-handed haptic interaction.

The first advantage concerns the visual feedback. We have seen that when using this system, the
visual hand do not penetrate anymore into the virtual objects. However, it induces a problem often
called visual-proprioceptive discrepancy. This problem occurs when the virtual hand is for example
stopped by a table. It is then possible that the real hand is not at the same position that the virtual one



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

135

(Position discrepancy). It is also possible that the real hand moves but the visual one does not (Motion
discrepancy). This is of course something that the user could notice. The question is then to know
which anomaly is noticed the first. In [4], Burns et al. investigate users detection threshold for visual
interpenetration and visual-proprioceptive discrepancy. Conclusions show that we are much more
sensitive to interpenetrations. We can thus conclude that the spring-hand model present an advantage
over the direct mapping technique in terms of presence.

The second benefit that we have presented concerns the computation of the force feedback. In the
case of interaction through a single-point device using for example a Phantom the force feedback
computation is greatly improved due to the proxy. As mentioned earlier, it removes the strange
behavior that usually happens when we compute forces according to the penetration distance.

Finally, this method has also a third advantage. It implicitly computes the forces applied by the
user on the virtual object, as illustrated in Figure 10.

These improvements strongly increase the realism and thus the immersion of the user into the
virtual environment. We try to simulate the best as possible the reality and its physic. This implies a
better learning curve of the manipulation system, and requires less adaptation from the user. The
efficiency of many applications is improved because users could focus on the simulated task only, and
not on the way to manage the simulation itself.

Fig. 10: The implicit force estimation process done by the mass-spring system.

4.5 Haptic Scene Creator

When creating various applications that have an extensive use of haptic features, the programmers
(creators of the application) often face an important problem: the lack of haptic information of the 3D
models. The common editing tools for creating Virtual Environments do not always provide the
adequate functionalities for adding this kind of information.

In this context, it appears to be necessary to give the opportunity to the haptic programmer to
augment the visual Virtual Environment using an authoring tool, the Haptic Scene Creator. The
complexity of a visual mesh requires its decomposition in low level primitives in order to speed up the
collision detection. Obviously, this decomposition cannot be done automatically, because it strongly
depends on the targeted application and desired level of detail. For this purpose, the Haptic Scene
Creator application is a graphical tool that supports the haptic augmentation of any Virtual
Environment loadable in our visual rendering engine. It is very intuitive, simple to learn and provides
useful automated features to simplify and accelerate the task.

The designer should be able to select visual objects in order to “augment” them. Once selected, the
user can manipulate information which is relevant for our dynamic engine and collision detection
system.

The dynamic engine needs information related to the “mass” of an object. We remind that the
“mass”, or body, includes the real mass (or density), the center of gravity and the inertia tensor. Of
course the mass/density is easily parameterizable in the editor, but we preferred to hide the inertia
tensor to the designer to keep the tool intuitive and accessible. In fact, the center of gravity and the
tensor matrix can be computed knowing the size, the position and the density of the geometries



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

136

linked to the object. Unless some special effects are desired, it provides a reasonable approximation.
By automating these computations, the designer will also be able to focus on higher level tasks.

The collision detection system needs to know the shape of an object. Of course, the shape is
clearly defined in its visual description. However, using this information only is by far too complex for
the computation of the collisions [8]. Thus, objects should be approximated with simple geometric
primitives (boxes, spheres, capsules). Later on we add more complex geometries such as convex
meshes and penetration maps. These geometries are not displayed during the simulation, but it is
necessary to visualize them in the editor. Moreover, for each collision geometry linked to an objet, its
material properties must be parameterizable. These parameters are the static and dynamic friction
coefficients and the coefficient of restitution (bounciness).

As shown previously, the Haptic Scene Creator includes many features aiming at simplifying the
task of a Haptic application designer. To evaluate it, a designer augmented a visual Virtual
Environment. The test scene is a quite complex. It represents a four-rooms house (kitchen, bathroom,
bed, office and living-room), and contains 398 visual nodes. It is presented in Figure 11. The main goal
is to use the Haptic Scene Creator to augment every touchable object with a good level of
approximation in order to manipulate objects easily. This task took almost three hours, time to create
612 geometries for 167 static objects and 114 dynamic objects. The advanced functionalities (copy-
pasting, vertex selection, PCA) were of course extensively used. We do not have performed the same
procedure on the full scene without using the advanced functionalities (and neither using a simple text
editor to write by hand the XML file). But, to give an idea of the improvements, augmenting a chair
without advanced functionalities took five (tedious!) minutes, whereas it took around 1 minute using
the PCA.

Fig. 11: The augmentation of the 3D House.

4.6 Interaction with Complex Virtual Environment

The PC running the simulation is a based on an Intel Quad-Core processor (2.4 GHz) and a NVIDIA
8800GTX graphics card. When loading the simulation, we remark that between 75% and 100% of the
microprocessor is occupied, which is as expected. At the beginning during few second, the program
lags. The reason is that every dynamic object is in the “moving state”, and that most of them are
colliding. Then, once they stop, the refresh rate is stable. The Haptic Thread is running around 900 Hz.
The Physics Engine has been limited to 300 Hz, and the display is also refreshed around 300 Hz. The
visual result is presented in Figure 12.



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

137

Fig. 12: Manipulation and Interaction with a haptic house.

When immersed into a large scale Virtual Environment, the user is not able to reach every object.
As (s)he is seated in the Haptic WorkstationTM, it seems difficult to propose a realistic displacement
method. Thus, a metaphor should be used to let him/her move aground the Virtual Environment. In
[5], authors presented an evaluation of 3 different techniques to achieve the interaction with objects
that appear bigger than the workspace of the haptic device. We used a method similar to the “bubble”
technique described in [6]. When the user moves his arms near the workspace limits, he enters into an
area that displace the virtual camera: arms to the front moves the camera forward, arms to one side
turns the camera. In addition, force feedback is applied to tell the user that he is entering to this area.
This convenient method is intuitive, and the displacement is really controllable. However, we remark
that a calibration has to be done to adapt the method to the user’s morphology. Indeed, the far limit of
the workspace is not at the same position for everyone.

The force feedback is efficient with most of the static objects. We were surprised that even the
thin tables produce a convincing resistive force due to the fact that the hand does not go through. The
main limitation comes from objets augmented with pMaps. Even the static ones produce unexpected
behaviors. It also occurs occasionally with dynamic objects that use convex meshes. Despite these
issues, the feeling of being there (presence) seems increased, mainly because of the 3D interaction
capabilities of the two-handed haptic device.

5 CONCLUSION

We believe that two-handed Haptic feedback is a wide topic which is still under exploration. When
Guiard analyzed human bimanual action, he proved that the vast majority of human manual acts
involve two hands acting in complementary roles [10]. However, in Haptics, the majority of undergone
experiments involve only one hand, or even one finger. In this thesis, we made preliminary studies on
two-handed haptic feedback focusing, on the one hand, on the realistic rendering for manipulation,
and on the other hand, on its applications.

As mentioned earlier in this conclusion, we believe that two-handed Haptics has a promising
future. The intuitiveness and efficiency resulting from the use of such technologies for the
manipulation of Virtual Environments allow us to think that two-handed devices will become the new
standard of Haptics in few years. We are conscious that, in 2008, such devices have a very high cost.



Computer-Aided Design & Applications, 7(1), 2010, 125-138
© 2010 CAD Solutions, LLC

138

However, situation was the same for the Phantom R 10 years ago, and today, some devices that imitate
it are commercially available for less than 300 dollars.

However, if we had to choose only one improvement of the Haptic WorkstationTM, it would be the
addition of a device stimulating the palm. This is one of the most common remarks that we had from
the dozens of users of the device. It is true that the grasping state usually provokes a pressure on a
part of the palm. We believe that a study on the importance of the palm pressure feeling could provide
interesting results.

Finally, in the same state of mind, the adjunction of tactile devices on the fingertips would greatly
increase the discrimination of shapes. It is really challenging to combine these two haptic perceptions,
but it has already be done on a smaller scale with success.

ACKNOWLEDGMENT

This work was supported by the Swiss National Research Foundation.

REFERENCES

[1] Baraff D.; Witkin A.: Physically based modeling: Principles and practice, Online Siggraph ’97
Course notes. ACM Press, 1997.

[2] Barbagli F.; Salisbury J.K.; Devengenzo R.: Enabling multi-finger, multi-hand virtualized grasping,
Proc. ICRA’03. IEEE International Conference on Robotics and Automation, 1(1), 2003, 809–815.

[3] Borst C. W.; Indugula A.P.: Realistic virtual grasping, Proc. 2005 IEEE Conference on Virtual
Reality (VR’05), IEEE Computer Society, 2005, 91-98.

[4] Burns E.; Razzaque S.; Panter A.T.; Whitton M.C.; McCallus M.R.; Brooks J.F.P.: The hand is more
easily fooled than the eye: Users are more sensitive to visual interpenetration than to visual
proprioceptive discrepancy, Presence: Teleoperators and Virtual Environments, 15(1), 2006, 1–15.

[5] Buxton W. A. S.: Chunking and phrasing and the design of human-computer dialogues, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1995, 494-499.

[6] Dominjon L.; Lécuyer A.; Burkhardt J.; Andrade-Barroso G.; Richir S.: The “bubble” technique:
Interacting with large virtual environments using haptic devices with limited workspace, Proc.
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems (WORLDHAPTICS’05).

[7] Dominjon L.; Richir S.; Lécuyer A.; Burkhardt J.: Haptic hybrid rotations: Overcoming hardware
angular limitations of force-feedback devices, Proc. IEEE conference on Virtual Reality (VR ’06),
2006, 164-174.

[8] Ericson C.: Real-Time Collision Detection. Morgan Kaufmann, 2005.
[9] Frisoli A.; Solazzi M.; Salsedo F.; Bergamasco M.: A Fingertip haptic display for improving

curvature discrimination, Presence: Teleoperators and Virtual Environments, 17(6), 2008, 550–
561.

[10] Guiard Y.: Asymmetric division of labor in human skilled bimanual action: The kinematic chain
as a model, Journal of Motor Behavior, 19, 1987, 486-517.

[11] Naylor B.; Amanatides J.; Thibault W.: Merging bsp trees yields polyhedral set operations, Proc.
SIGGRAPH, 17th annual conference on Computer graphics and interactive techniques, ACM NY,
USA, 1990, 115-124.

[12] Otaduy M. A.; Lin M. C.: High Fidelity Haptic Rendering, chapter 6 DOF Haptic Rendering
Methodologies. Morgan and Claypool Publishers, 2006, 23-34.

[13] Peternier A.; Thalmann D.; Vexo F.: Mental vision: a computer graphics teaching platform. In
proceedings of the 2006 Edutainment Conference, 2006, 223–232.

[14] Slater M.; Steed A.: A virtual presence counter, Presence: Teleoperators and Virtual Environments,
9(5), 2000, 413–434.

[15] Zilles C. B.; Salisbury J. K.: A constraint-based god-object method for haptic display, Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, 3, 1995, 146–151.


