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ABSTRACT 
 

In geometric constraint solving, constructing circles with indeterminate radius is an 
important sub problem.  Such constructions are both sequential, meaning that we seek 
a circle tangent to three known geometric entities, as well as simultaneous, when 
several sets of entities, among them variable-radius circles, must be determined 
together.   

In Part I, we investigate techniques to solve sequential construction problems of 
variable-radius circles, analyzing the case when at least one of the constraining entities 
is a Bézier curve. We consider first an algebraic solution in which we restrict to 
Pythagorean hodographs (PH).  However, the polynomial degrees become very large, 
rendering this approach impractical.  So, we develop an approach in which the needed 
computations are assisted by graphics hardware commonly available on PCs and 
laptops.  Here we achieve greater generality, allowing arbitrary curves, greater 
numerical stability, and extreme speed-ups. 
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1 INTRODUCTION 

Geometric constraint solving plays a pivotal role in computer-aided design (CAD) as well as in dynamic 
geometry software.  Practical solvers include graph-theoretic solvers in which the constraint problem is 
decomposed into sub problems of known structure, those sub problems subsequently are solved, and 
then the solution fragments are assembled into a solution of the original problem; e.g., [13],[19].  For 
2D solvers in particular, the construction phase becomes demanding when one considers placing 
variable-radius circles and extends the geometric vocabulary to include entities such as PH curves; see 
[5],[9],[11].  For such constructions, the dominant approach is algebraic.  This approach investigates the 
equation system that arises from the construction problem and, through algebraic and geometric 
transformations, changes it into an equivalent system that is triangular, so reducing solving the system 
to root finding.  In many cases, but not in all, this reduction is capable of delivering low-degree 
polynomials that can be solved efficiently and simply; e.g. [1].  Where the systems become algebraically 
complicated, the problem of finding a practical way to solve them arises.  In those cases, commercial 
solvers will either give up or else employ numerical approximations; e.g. [19]. Those computations may 
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not be stable unless special techniques are employed; e.g., [7],[17].  There is an extensive literature on 
geometric constraint solving, PH curves, and on Bezier curves.  We refer the reader to [24] for a recent 
survey. 

In this paper, we revisit the problem of constructing variable-radius circles where tangency is 
required to high-order entities.  In Part 1, we concentrate on the sequential case.  In [6], we derived an 
algebraic transformation that puts tangency to PH-curves into reach, considering combinations of PH 
curves with lines and known circles, and approaching the problem algebraically.  In this paper, we 
derive first the algebra for simplifying the equation systems that arise and making them solvable in 
principle.  However, as the algebraic degrees of such systems grow considerably, and since many of the 
solutions from such systems are unwanted on geometric grounds, we develop a purely geometric 
method for solving the equations that relies on graphics hardware assistance that is readily available in 
most personal computers and workstations, and even in many laptops.  This hardware-assisted 
geometric approach has significant advantages laid out later in section 4, including an expansion of the 
domain of tractable problems, as well as performing at blinding speeds. 
The remainder of the paper is structured as follows.  In Section 2 we define the problems we consider 
algebraically and review prior results needed to accomplish our task.  Section 3 develops the algebra 
for solving the constructions involving two or three PH-curves.  Section 4 then addresses the problem 
how to practically solve the associated equation systems.  Those solutions are based on using graphics-
card hardware, allowing a highly parallel solution that is numerically stable.  This section also 
considers generalizations that become possible because of this solution method. 
In Part 2, we extend the scope of our techniques by considering cluster merging in which one of the 
clusters is a variable-radius circle.  This problem was previously considered purely algebraically in 
[3],[14],[15] and leads to equation systems that, even after careful factoring, require solving univariate 
polynomials of relatively high degree. 

2 DEFINITIONS AND THEOREMS 

2.1 Planar PH Boundary 

The hodograph of a parametric plane curve is the locus described by the first derivatives of the curve.  
A Pythagorean Hodograph (PH) curve is a parametric curve that has a polynomial hodograph.  That is, 
if the curve is ���� � ������ 	���
, and its derivative is �′��� � �� ′���� 	′���� then the length of the derivative ��� � �� ′���� � 	′�����is polynomial. A PH has many properties, among them polynomial arc length, 
rational curvature and rational offset [10].  Moreover, the cyclographic map [5] of a PH has a 
polynomial form.  From [5],[6] we recall the following:   
 
Definition 1: (Complex representation) [9] 

A PH curve in the complex plane is a complex valued polynomial curve ���� of the form ���� � ���� ��	����� There must exist a complex polynomial����� � ���� � �����, such that the hodograph is � ′��� ������ � ����� � ����� � ����������� 
Although the hodograph so defined is in the complex plane, we can map the real and 

imaginary parts into the Cartesian x and y coordinates, respectively.  Thus, the hodograph of the PH 
curve ���� � ������ 	���
� can be represented as  � ′��� � ������ � ������ ���������
 , so that the polynomial ��� has the form ��� � ����� � ������ 
 
Theorem 1: Representing r’(t), x′(t), y′ (t) in Bézier form [6] 

Given two polynomials ���� and ���� of degree � in Bernstein-Bézier form, where ���� � � ������� ����  and ���� � � ������� ����  , we obtain the hodograph 
 � ′��� � �� ′���� 	′���� � ������ � ������ ���������
 � �� ��������� ���!� � � ��������� ���"�� (1) 

for a PH curve and its tangent length ��� � �� ′���� � 	′���� � ����� � ����� � � �������#������ ; where !�  
, "� �, 

and #� are: 
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Theorem 2: (PH curve in Bézier form) 
For the hodograph �$��� in Theorem 1, the corresponding PH curve is a polynomial curve of degree 
2µ+1. Given the choice of the point %� 

, the PH curve in Bézier form is ���� � � � ��&'���% ��&' �� , where the 
control points %�&'� are given by %�&' � %� � ( ��� � (��!� � "�
) , for k = 0...2µ.  
 
The theorem follows directly from the derivative property of Bézier curves. 

2.2 Cyclographic Maps 

Cyclographic maps have been used as early as 1929; [18]. We are not using the full generality of that 
concept, however.  For our purposes, the machinery developed in [14] suffices.  As illustrative example, 
the Apollonius problem for three given circles is to find the 8 tangent circles to the three circles. When 
the three circles are oriented and using cyclographic maps, we can divide the Apollonius problem into 
4 sub-problems, each determining two tangent circles [14]. Using a similar approach, we will solve the 
Apollonius problem for three geometric entities chosen from lines, circles, and PH curves. We consider 
lines, circles, and PH curves as rays (oriented lines), cycles (oriented circles) and oriented PH curves. We 
also call the cyclographic map of an entity L the γ-map of the entity, denoted *�+�. 
 
Definition 2: (The γγγγ-maps for a Ray) [3] 

An oriented line is called a ray. For a ray +,�-� � �	 � . � / in the xy-plane, the vector (A,B) is the 
normal vector on the left hand side of the ray, so the orientation of the ray is thereby assigned. The γ-
map of the ray L is the plane *�+�, -� � �	 � 0-� � ��1 � . � / and is a plane in 3-space inclined 45 
degrees against the xy-plane. 
 
Definition 3: (The γγγγ-maps for a Cycle) [3] 

An oriented circle is called a cycle. For a cycle 2,��� � 3�� � �	 � 4�� � �� in the xy-plane, r is called the 
oriented radius. If � 5 /, the cycle is counterclockwise, and clockwise for r < 0. The γ-map of the cycle c 
is the right-circular cone  *�2�,��� � 3�� � �	 � 4�� � �1 � ��� � / in 3-space whose generators are inclined 
45 degrees against the xy-plane. 
 
Definition 4: (Rotated normal vector fields of PH boundary) [5] 

For a 2D PH boundary ���� � ������ 	����/
 in the xy-plane, we let the orientation be induced by the 
parameterization. The normal vector field on the left hand side is given by �– 	′���� � ′���� /
.  Because of ����� � �� ′� � 	′�, the vector field 7��� � ��	′���� � ′���� ���
 is inclined 45 degrees against the xy-plane. We 
call 7��� the rotated normal vector field of ����, or vector field of ���� in short. 
 



 

Computer-Aided Design & Applications, 7(1), 2010, 17-32 
© 2010 CAD Solutions, LLC 

 

20

Theorem 3: (Rotated normal vector fields in Bézier form) 

By Theorem 1, given two polynomials ���� and ���� of degree �, we can express the rotated normal 
vector field of a PH curve in Bernstein Bézier form as: 7��� � � �������8������  where the control points 8� 
are 8� � ��"�� !� � #�
, for 9� � �/� � � ���, and the !� and "� are as in the Theorem 10 in the appendix.  The ���� and 7��� of Definition 4 define the ruled surface :�;� �� � ���� � ;7��� which has inclination angle of 
45 degrees against the xy-plane. The ruled surface is the γ-map *<����= � ���� � ;7��� � ����� �;	′���� 	��� � ;� ′���� ;���
. 

For a planar PH curve ���� on the z=0 plane, every point ��� 	� 1� of the rotated normal vector field 
of ���� is associated with a cycle tangent to ���� on the 1 � / plane that is oriented compatible with the 
curve. The cyclographic map for a set of 2D boundaries is a set of ruled surfaces. We can find the 
Medial Axis Transform (MAT) of those boundaries by restricting the ruled γ-map surfaces to the 
segments of the generators between the 1 � / plane and the first singularity of the surface above the 1 � / plane. Then the end points of the segments are points on the MAT [2].  The MAT for a PH curve ���� with a ray can be found in general by intersecting a ruled surface and a plane; the MAT for a PH 
curve ���� with a cycle similarly can be transformed to the problem of intersecting a ruled surface and 
a cone. 

2.3 The LP and CP Problem 

 
Theorem  4: (Ruled surface and plane intersection) [22] 

Assume that the ruled surface :�;� �� � ���� � ;7��� has the base curve ���� � � � >���% > ��   and ruling 
vectors 7��� � � � ?���8 ? ��   that are Bézier curves of degree @ and A and which have the control points % � � � /B@, and 8 � � � /BA. The intersection curve of the ruled surface and the plane -� � �	 � C1 �. � / is a rational Bézier curve C��� � �� D���?&>�����?&> �� � �� D���?&>���?&> �� �)  of degree A � @.   
 
Theorem 5: (Intersection of an implicit cone EF � GF– �H � I�F � J  and the γγγγ-map of a PH curve) 
[5],[6],[21] 

Consider a ruled surface :�;� �� � ���� � ;7��� whose base curve ���� � � � >���% > ��   is a planar PH curve 
in the xy-plane, in Bézier form of degree @, with control points % � � � /�B � @. Assume that the ruled 
vector field 7��� � � � >K'���8 >K' ��   is the rotated normal vector field of ����. Let the control points for 7��� be 8 � � � /�B � @– (. By theorems 1 to 3, 8  can be derived from ���). Then the xyz components of the 

ruled vector field form the Pythagorean triple <7L���=�
+ <7M���=� � <7N���=�

 where the superscript 
designates the coordinates.  Moreover, the ruled surface intersects the implicit cone �� � 	� � �1 � ��� �/  in the rational Bézier curve C��� � �� D���O>K'������O>K'��� �� D���O>K'����O>K'���)  of degree P@– (, with the 
weights D� and the control points �� are described, for 9 � /�B �P@– (, by: 
 D� � 4��>� 
 �� � <� <Q ��KR�>K'�>4 %�K � Q ��K �>�>K'2 8�K =� �� =S4��>�  
 TU � � VW�UKWX�XK'����UW�� �YWZ YW[ \� ] �^UKWZ ^UKW[ ^UKW_ �� ` � /�B ��a � (� (3) 
 bU � � VW�UKWX�XUW�� �YWZ YW[ \� ] �^UKWZ ^UKW[ �\�� ` � /�B ��a� 
 TU�X� � � � Vc�UKc�XK'�XVW�cKWX�XK'cW���XK'c�� �����YWZ YW[ \� ] �^cKWZ ^cKW[ ^cKW_ � 
 
Example 1: (The CP problem) 

Let C be the cycle �� � 	� � ��(/�� � / in the 1 � / plane. The oriented radius is -10, γ�C� is the cone �� � 	� � <1 � ��(/�=� � / . For the planar PH curve ���� , whose initial values are ���� �'� � �(/�P� , 

���� �'� � ��� �(�� �%� � ���/��P/�/� , we obtain %' � d(��� e�
O��f � %� � dgh

O � �(i�/f � %O � djg
O � ��/�/f�  and 
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8� � ��k/�lm�(/k�� 8' � �k�P���i�� 8� � �m�i�(/�. The MAT for ���� and C is the intersection curve of γ������ 
and γ�C�. By Theorem 5, the MAT is a rational Bézier curve of degree 8, and its control points �� and the 
associated weights D� are listed in Table 1.  Fig. 1 shows the circle and PH curve in 2D on the left with 
the associated bisector.  To the right we see the cyclographic maps of the circle and the PH curve.  
Their intersection projects to the bisector curve. 

      
Fig. 1: The MAT of PH curve ���� and circle C. 

control points weights 

�� � ��Pm/S(P��(n/S(P��/
 D� � �m�k/ 

�' � ��nl�Sil��(oliSil�PkiSil
 D' � �nPk/ 
�� � �mikk/S(nPnl���o//(iS(nPnl�kki�iS(nPnl
 D� � P/o(iSo 

�O � �k�mki/SPm(kl��ki(o(/SPm(kl�(lmoi/SPm(kl
� DO � o��liS�( 
�p � �((kmm(�Smo//P��mkok��Smo//P�noPPl�Smo//P
� Dp � �mi/(�S(/n 

�e � �PlnlkoS(iknm��k/�/oSm(n���(o/i(S(iknm
 De � (�P/kSo 
�g � �ilPilkSPkP�l��Pnm//S((kkP�nPmklkSPkP�l
� Dg � ��iimS�( 

�j � �in�l(S�no(�noPoS�no(�noi�(S�no(
 Dj � (o(kSP 
�h � �k(o(Si(�Pm(mS�kP�(/nlnS�kP
 Dh � ��(m 

 
Tab. 1: The control points and weights for Example 1. 

3 THE ALGEBRA OF PPP, PPC AND PPL 

3.1 The Algebra of P 

Let �q� r� s
 be the points on the cyclographic map of a PH curve with the base curve ������ 	����/
 and 
vector field ��	$���� �$���� �����
.  To simplify the notation, we just write ��� 	� /
 and ��	$� �$� �
 for the base 
curve and the vector field. By eliminating the s variable in equation �q� r� s
 �� � ��� 	� /
 �� �;��	$� �$� �
, we 
obtain �q� r
 �� � ��� 	
 �� �s ] ���	$Sσ���� �$Sσ�
. Note that if s is fixed, this equation is the offset of the base 
curve, and if � is fixed, then the equation generates the normal line of the base curve at �q� r
. 
3.2 The Implicit Form of the Cyclographic Map of P 

Theorem 6 [22]: Assume the ruled surface :�;� �'� � �( � ;��'��'� � ;����'� is generated by two space 
curves �'��'� and ����'� of degree A and @, respectively.  Then the implicit form of S has degree A � @. 
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The curves �'��'�  and ����'�  are called the directrices. Consider the cyclographic map for the 
polynomial PH Bézier curve ����.  Since the curve is PH, the rotated vector field 7��� is also polynomial.  
We use �'��'� � ���'� and ����'� � ���'� � 7��'�, as the two directrices of the cyclographic map ���� �;7���. Both curves have degree @, and there are no base points because the homogeneous variable is 
always 1.  So, from Sederberg’s paper, the implicit form has degree at most �@. Can the implicit form 
have a lower degree?  We prove the following theorem: 

 
Theorem 7:  The implicit form of the cyclographic map of a degree @ PH curve has degree �@ � (. 
Proof: In [22], Sederberg generates a family of planes +���, each plane containing the two directrix 
points �'��� � ���� and ����� � ���� � ;7����  +��� can thus be said to follow the generators of :�;� ��.  By 
finding two independent planes of the family +���, he generates a system of equations via �'��� t +��� �/ and ����� t +��� � /, and derives a matrix with @� � @' � �A � � rows and kA � k columns, where A is 
the degree of +���, @ �is the degree of � ���� � � (��. After this process, he finds the implicit form with 
degree @� � @' . For the implicitization of the cyclographic map of PH curves, we can generate the 
system of equations via ���� t +��� � / and ����� � 7���
 t +��� � /, which is equivalent to generating the 
system of equations for ���� t +��� � /  and 7��� t +��� � / .  By Sederberg’s work, the degree of the 
implicit form is the sum of the degrees of ���� and of 7���, which is �@ � (. 

♠ 
Note that the plane +��� passing through ���� has a normal perpendicular to 7���, which is also 

perpendicular to the generators of :�;� ��. 
To determine the degree of the cyclographic map, we can compute the implicit form.  We find the 

Gröbner Basis for the polynomial set u, �q � �L�v� � ;7L���� r � �M��� � ;7M���� s � ;7N���
  w.r.t. the 
lexicographic order with ; 5 � 5 q 5 r 5 s.  The Gröbner Basis of u will then contain the implicit form 
of the cyclographic map of the PH curves. 

 
Example 2: Consider the PH curve whose initial value are ���� �'� � �(�n� , ���� �'� � �n� (� ,  %� ���(i��n�SP�. Then the implicit form of its cyclographic map is of degree 5: 

F(X,Y,Z,W) = 144(X5-3X4Z+X3Y2+2X3Z2-3X2Y2Z+2X2Z3+3XY2Z2-3XZ4-Y2Z3+Z5) 
+(-21600X4+2784X3Y+36288X3Z-34344X2Y2-8352X2YZ+22032XY2Z+8352XYZ2 

-22464XZ3-17496Y4+12312Y2Z2 -2784YZ3+7776Z4) 
+(1186984X3-663984X2Y-851016X2Z+1155708XY2+425952XYZ-241512XZ2 

-676512Y3+34020Y2Z+238032YZ2+278792Z3) 
+(-31644144X2+22343688XY+6934320XZ-19335510Y2+657720YZ+4507776Z2) 
+(422619957X-247387284Y+12440925Z-2339604810) 

 

3.3 The Algebra of PP 

To simplify the description, we denote all of functions of the base curve and vector field without their 
parameter. That is, � �means � �� �, and the notation for, � � 7 � 	 �  � �$ � 	$  is analogous. 
 
Theorem 8 [12]:  Let � � �� � 	 � /�� � � (��, be two base curves and let 7 � ��	$ � �$ �  � be the vector 
fields of the cyclographic maps of two PH curves. That is, γ�� � � � � ; wx , � � (��. Then the intersection 
of these two surfaces satisfies: 

 y��'� ��� � z�� � �'7'7�
z � z�� � �' 	� � 	' /�	'′ �'′ '�	�′ ��′ �

z � / (4) 

 
Furthermore, the parametric form of the intersection points �q� r� s
 under the above assumptions is: 

 �q��'� ���� r��'� ���� s��'� ���
 � ��'�	'� /� � {|�M|KM}�
~L}′ L|′{} {|~

��	'′ � �'′ � (� (5) 
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Proof:  The theorem can be proved easily by the algebraic property of PH curves, namely �q� r
 ���'� 	'
 � s��	'′ ') � �'′ ') � � ���� 	�
 � s��	�′ �) � ��′ �) �.  The s value can be found by eliminating q and r, 
and the intersection of these two surfaces satisfies y��'� ��� � /, where y��'� ��� � / can be found by 
eliminating s. After finding s, q and r can be derived by �q� r
 � ��'� 	'
 � s��	'′ ') � �'′ ') 
. 

♠ 
Note that the vectors, ������ � �'��'�� 7'��'�� 7����� are linearly dependent, thus lie in the same plane. 

3.4 The Algebra of LPP and CPP 

We know the implicit and parametric forms of γ�+�� γ�C� and γ���. We know the parametric form of 
γ�+� � γ��� (Theorem  4), and of γ�C� � γ��� (Theorem 5).  We also know the parameter relationship of 
γ��'� � γ���� (Theorem 8).  Now we would like to find γ�+� � γ��'� � γ���� and γ�C� � γ��'� � γ����, so that 
we can determine all variable-radius circles tangent to a line or circle and two PH curves. 

Consider the LPP problem. Denote the three entities with +� �' and ��, where we may assume that 
the degree @' of �' is not greater than the degree @� of ��.  Assume that � �is the parameter of the base 
curve of � .  We can find γ�+� � γ��'� � γ���� as follows: 

1. Generate the intersection curve  � � γ�+� � γ��'�.  
2. Substitute the parametric form � into the implicit form of γ����. 
The degree of parametric form of � is �@' � (, and the implicit form of γ����� is degree �@� � (, so we 

generated a degree ��@' � (���@� � (� equation with �' as its variable.  
Assume the degree for the PH curve is n in the LLP and LCP case, and the degrees are @'� @��@' � @�� 

for the �'� �� respectively in the CPP case. Proceeding similarly, we can find one equation with one 
variable for LLP, LCP, and CPP, with degree �@ � (, P@ � ( and �P@' � (���@� � (�, respectively.  Assume 
all of the PH curves mentioned above have degree 3; then we need to solve univariate equations of 
degree 5, 8, 25, and 40 for the LLP, LCP, LPP, CPP cases, respectively.  Especially the LPP and CPP cases 
generate polynomials that would be difficult to solve with reasonable accuracy. 

 +'+�� +C���CC�� C�'����@' � @�� 
Parametric Curve ζ 
Degree of ζ 

� � γ�+'� � γ��� �@ � ( 
� � γ�C� � γ��� P@ � ( 

� � γ�C� � γ��'� P@' � ( 

Substitute into // degree γ�+�� // ( γ�+� // ( γ��'� // �@� � ( 

Total Degree �@ � ( P@ � ( �P@' � (����@� � (� 
Equation variable of: � � �' 

 

Tab. 2: The polynomial degrees for LLP, LCP, CCP and CPP. 

There are other ways to solve the problem reaching the same degrees. For example, for the LLP case, 
we can generate the parametric form for the line generate by γ�+'� � γ�+�� and substitute it into the 
implicit form of γ���.  Then, the degree for the univariate equation is �@ � (. 

 
Example 3 [CPP problem]: Consider the circle C and one PH curve P

1
, the entities of Example 1, and the 

PH curve P
2
 defined in Example 2. We can find the circle tangent to these three geometric entities by 

intersecting their cyclographic maps. We plug the intersection curve found in Example 1 into the 
implicit form found in Example 2, and obtain a degree 36 equation with one variable.  After solving this 
equation, it takes less one second in Maple to find 8 real solutions, -1.489, 0.386, 1.089, 1.090, 1.503, 
1.547, 2.380, 4.139.  But there is only one solution in the range from 0 to 1, so we obtain just one circle 
with radius 6.018, centered at (6.906,-14.453), as shown in Fig. 2.  Again, the spatial image shows the 
intersecting cyclographic maps. 
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Fig. 2: The CPP problem of Example 3. The Apollonius circle is shown in black. 

Note that if the circle is not centered at the origin, we can always translate all three geometric entities, 
so that the center of the circle is at the origin. After we find the solutions, the inverse translation 
recovers the true solution. The translation of the %� in the PH curve translates the whole PH curve since 
the other control points are derived from %�. 
3.5 The Algebra of PPP 

 
Theorem 9:  Let � � �� � 	 � /�� � � (���P, be two base curves and let 7 � <�	 ′ � � ′ �  = be the vector fields of 
the cyclographic maps of two PH curves. The intersection of these two surfaces satisfies: 

 y'��'� ��� � � z�� � �' 	� � 	' /�	'′ �'′ '�	�′ ��′ �
z � �/�

 y���'� �O� � z�O � �' 	O � 	' /�	'′ �'′ '�	O′ �O′ O
z � �/ (6)�

� yO��'� ��� �O� � � z / �'′ '�	' � 	��� ��′ ��	' � 	O�O �O′ O
z � �/ 

Furthermore, the parametric form of the intersection points �q� r� s
 under the above restriction is: 
 �q��'� ���� r��'� ���� s��'� ���
 � ��'�	'� /� � {|�M|KM}�

~L}′ L|′{} {|~
��	'′ � �'′ � (� (7) 

Proof:  The theorem can be proved by using the equations �q� r
 � ��'� 	'
 � s��	'′ ') � �'′ ') � � ���� 	�
 �s��	�′ �) � ��′ �) � � ��O� 	O
 � s��	O′ O) � �O′ O) � .  The equations y'��'� ���  and y���'� �O�  can be found by 
eliminating q� r� s from the equations �������'� 	'
 � s��	'′ ') � �'′ ') � � ���� 	�
 � s��	�′ �) � ��′ �) ���������'� 	'
 � s��	'′ ') � �'′ ') � � ��O� 	O
 � s��	O′ O) � �O′ O) � 
respectively.  Here  yO��'� ��� �O� expresses that the two s values in the above two equations should be 
equal. 

♠ 
Assume the degrees of �', �� and �O are @'� @� and @O respectively, where @' � @� � @O. We can find 

the intersection γ��'� � γ���� � γ��O� by: 
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1. Substituting the parametric form *��O�, into implicit form of *��'�,  
2. Substituting the parametric form *����, into implicit form of *��'�,  
3. Solving the two equations with two variables so obtained, restricting to solutions that lie in the 

domain /� � �;O, �O �� �(.  
We generate two bivariate equations in �;O� �O� of degree �@'@� and �@'@O respectively in the first 

and second step. As example, assume that the degree of all PH curves is 3.  So we need to solve two 
degree 15 equations with 2 variables in this procedure. There are at most 225 solutions, but many of 
them will lie outside the domain of interest. 

If we intersect the implicit form of these 3 surfaces, however, then there are at most 125 solutions. 
In this case, we need to solve 3 equations with 3 variables. Both ways of finding solutions for the PPP 
problem are not attractive because the systems of equations have high algebraic degree and so are not 
easy to solve.  So we explore alternative solutions in the next section.  

 
 

Fig. 3: The PPP case. The control points are given in the table. 
 

 ���� �'� ���� �'� %� %' %� %O In Example �' ��P�/� �m�k� �(/� /
 �(� �(�
 ��o��(m
 ��PoSP��(m
  �� �(/�P� ��� �(� ���/��P/
 �(���n/SP
 �miSP��(i
 �omSP���/
 Example 1 �O �(�n� �n�(� �(i��n�SP
 �(/��(k
 �(/��(mSP
 �(i���
 Example 2 
 

Tab. 3: Control points of the curves in Fig. 3. 

4 HARDWARE-ASSISTED SOLUTIONS 

4.1 Approach 

As we have seen, the equations obtained by the algebraic derivation have high degrees.  This means 
that solving them is both computationally demanding and numerically delicate.  Moreover, if we are to 
restrict to solutions in the parametric range �/�(
, or any other domain, many of the equation roots 
obtained algebraically will not qualify, implying wasted computations.  For example, we expect only 
one common circle tangent to the three curves in Fig. 3, yet the algebraic degrees of the two equations 
in �;O� �O� are 15 each, so that in the worst case up to 225 roots have to be determined and examined to 
find the one root that has geometric significance.  Because of such considerations, we investigate a 
solution method that is both quick and does not have to find solutions that lie outside the region of 
interest.  We describe such a method next that exploits the highly parallel nature of sampling and the 
capability of graphics hardware to evaluate such samplings rapidly.  Briefly, we will render the 



 

 

tessellated cyclographic maps by hardware and use the 
surfaces.  This is not a new idea, and an example of using this approach to compute Voronoi diagrams 
of points, line segments and polygons goes back to 
to accelerate Voronoi computations using the GPU; see, e.g., 

Our approach is to approximate the cyclographic map by a tessellation of the appropriate 
accuracy, render the approximations in a raster of, say, 1000x1000 pixels, and then extract the 
intersection points from the graphics hardware.  Those points can then be used directly, or else we can 
use them as starting points for further refinement such as Newton iteration or other suitable
procedures.  Because of the geometry of the cyclographic map, tessellation is quite straightforward and 
error bounds are not difficult to obtain for its accuracy.

We recall that the cyclographic maps of points, oriented circles and oriented line
circular cones and planes.  They are easy to approximate with triangular and quadrilateral facets.  
Following [16], we can tessellate a right-circular c
raster of 1000x1000 and achieve sub-pixel accuracy.  
described in Hoff [16]. 

Briefly, the discretization of Hoff is to treat consecutive segments as line segments, each giving 
rise to a quadrilateral facet that is delimited by the normals of the line segments at their ends.  The 
triangular gaps that arise between consecutive segmen
apex at the joining vertex.  The situation is illustrated in 
After an initial segmentation of the curve, we evaluate the curve normals at the segment end points.  If 
two consecutive normals diverge by more than 3.6 degrees (adopting the same discretization accuracy 
as for the circular cone), the segment is subdivided by a curve point in the middle, into two segments.  
The resulting quadrilaterals may be twisted, and we divide them into two triangles (
Subdivision is repeated until each consecutive normal turns no more than 3.6 degrees.  
generates fewer triangles, but we have not studied whether this confers a performance improvement
 

Fig. 4:  Base curve in black, two segments shown.  
main quadrilaterals, in red, delimited by perpendiculars to the segment, and gaps on the convex side 
are filled with cone approximations.  Right:  
skew quadrilaterals which are then triangulated as shown.

Figure 5 shows the distance function rendered by the graphics hardware for the configurations of 
Fig. 2, the CPP case, and for Fig. 3, the PPP case.  The time to determine each is approximately 0.0
using an NVIDIA Quadro FX 1700 graphics card.  Control points can be picked and moved at 41 frames 
per second.  On a GeForce GTX 280 we achieved over 500 frames/second, i.e., determined the solution 
in less than 0.002sec.  We use the two-sided distan
 

4.2 Basic Algorithm and Results 

Given the three planar shape elements for which we wish to solve the Apollonius problem, we 
discretize them into connected segments.  The facets of the cyclographic map are generated as 
explained.  All facets belonging to one of the shape elements are colored with a specific color, in our 
examples red, green and blue.  They are then rendered using flat shading.  A shader code fragment is 
applied next that notes all pixels adjacent to a differently colo
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lographic maps by hardware and use the z-buffer to extract intersections of the various 
surfaces.  This is not a new idea, and an example of using this approach to compute Voronoi diagrams 
of points, line segments and polygons goes back to [16].  Since, an extensive literature has sprung up 
to accelerate Voronoi computations using the GPU; see, e.g., [20], [23]. 

Our approach is to approximate the cyclographic map by a tessellation of the appropriate 
n a raster of, say, 1000x1000 pixels, and then extract the 

intersection points from the graphics hardware.  Those points can then be used directly, or else we can 
use them as starting points for further refinement such as Newton iteration or other suitable numerical 
procedures.  Because of the geometry of the cyclographic map, tessellation is quite straightforward and 
error bounds are not difficult to obtain for its accuracy. 

We recall that the cyclographic maps of points, oriented circles and oriented lines are right
circular cones and planes.  They are easy to approximate with triangular and quadrilateral facets.  

circular cone with approximately 100 triangles assuming a 
pixel accuracy.  Tessellating PH curves can be done exactly as 

Briefly, the discretization of Hoff is to treat consecutive segments as line segments, each giving 
rise to a quadrilateral facet that is delimited by the normals of the line segments at their ends.  The 
triangular gaps that arise between consecutive segments on one side are closed by pieces of cones with 
apex at the joining vertex.  The situation is illustrated in Fig. 4 (left).  Our discretization is as follows.  
After an initial segmentation of the curve, we evaluate the curve normals at the segment end points.  If 
two consecutive normals diverge by more than 3.6 degrees (adopting the same discretization accuracy 

s subdivided by a curve point in the middle, into two segments.  
The resulting quadrilaterals may be twisted, and we divide them into two triangles (Fig. 4, right).  
Subdivision is repeated until each consecutive normal turns no more than 3.6 degrees.  Our method 
generates fewer triangles, but we have not studied whether this confers a performance improvement. 

       
 

Base curve in black, two segments shown.  Left: Hoff et al tessellation of the cyclographic map; 
main quadrilaterals, in red, delimited by perpendiculars to the segment, and gaps on the convex side 

  Our tessellation uses rotated curve normals to delimit 
skew quadrilaterals which are then triangulated as shown. 

Figure 5 shows the distance function rendered by the graphics hardware for the configurations of 
, the PPP case.  The time to determine each is approximately 0.025sec 

using an NVIDIA Quadro FX 1700 graphics card.  Control points can be picked and moved at 41 frames 
per second.  On a GeForce GTX 280 we achieved over 500 frames/second, i.e., determined the solution 

sided distance function in the figure. 

Given the three planar shape elements for which we wish to solve the Apollonius problem, we 
discretize them into connected segments.  The facets of the cyclographic map are generated as 

l facets belonging to one of the shape elements are colored with a specific color, in our 
examples red, green and blue.  They are then rendered using flat shading.  A shader code fragment is 
applied next that notes all pixels adjacent to a differently colored pixel and colors it white, so 
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buffer to extract intersections of the various 
surfaces.  This is not a new idea, and an example of using this approach to compute Voronoi diagrams 

.  Since, an extensive literature has sprung up 

Our approach is to approximate the cyclographic map by a tessellation of the appropriate 
n a raster of, say, 1000x1000 pixels, and then extract the 

intersection points from the graphics hardware.  Those points can then be used directly, or else we can 
numerical 

procedures.  Because of the geometry of the cyclographic map, tessellation is quite straightforward and 

s are right-
circular cones and planes.  They are easy to approximate with triangular and quadrilateral facets.  

one with approximately 100 triangles assuming a 
PH curves can be done exactly as 

Briefly, the discretization of Hoff is to treat consecutive segments as line segments, each giving 
rise to a quadrilateral facet that is delimited by the normals of the line segments at their ends.  The 

ts on one side are closed by pieces of cones with 
follows.  

After an initial segmentation of the curve, we evaluate the curve normals at the segment end points.  If 
two consecutive normals diverge by more than 3.6 degrees (adopting the same discretization accuracy 

s subdivided by a curve point in the middle, into two segments.  
, right).  

Our method 
 

Hoff et al tessellation of the cyclographic map; 
main quadrilaterals, in red, delimited by perpendiculars to the segment, and gaps on the convex side 

lation uses rotated curve normals to delimit 

Figure 5 shows the distance function rendered by the graphics hardware for the configurations of 
25sec 

using an NVIDIA Quadro FX 1700 graphics card.  Control points can be picked and moved at 41 frames 
per second.  On a GeForce GTX 280 we achieved over 500 frames/second, i.e., determined the solution 

Given the three planar shape elements for which we wish to solve the Apollonius problem, we 
discretize them into connected segments.  The facets of the cyclographic map are generated as 

l facets belonging to one of the shape elements are colored with a specific color, in our 
examples red, green and blue.  They are then rendered using flat shading.  A shader code fragment is 

red pixel and colors it white, so 
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accentuating the medial axis of two of the three shapes.  Moreover, pixels adjacent to two or more 
other colors are the sought solution points and are likewise noted.  The coordinates of the 
intersections are printed to the console, but could be used instead for a subsequent refinement 
computation.  Assuming a raster of 1000x1000 pixels and a normal separation of no more than 3.6 
degrees, we expect to obtain the points with a relative accuracy of the results of (/KO, a good initial 
guess for a possible subsequent Newton iteration. 
 

      
 

Fig. 5:  CPP and PPP configurations from Figures 2 and 3. The control poly-arcs of the PH curves are 
drawn in light gray. 

In the examples we show, the two-sided cyclographic map is used.  That is, a shape element is 
considered in both direction and only the positive part of the cyclographic map is used.  End points are 
capped with half cones.  When using the one-sided distance function only, there are undefined distance 
regions outside the parametric domain, past the end of a PH curve, and no end caps.  Likewise, the 
interior of circles has no distance information, or the exterior does not, depending on the circle 
orientation. Since the signed, negative distance function must be clipped, those regions reveal the 
interaction of the positive part of the cyclographic maps of other shape elements beyond the distance 
function.  An example is shown in Fig. 6 on the left. 

In the algebraic derivation of Section 3 we work with the underlying algebraic curve when deriving 
the implicit representation of the cyclographic map of a PH curve.  This is one of the reasons why the 
algebraic approach delivers more solutions than are geometrically meaningful.  An example of the 
extended cyclographic map is shown in Fig. 6 on the right.  Note the extraneous solution marked by the 
yellow circle.  Here, an Apollonius circle will touch the green curve outside the �/�(
 domain. 
 

The hardware assisted approach is very general owing to the fact that once a segmentation of the 
geometric entity is obtained, the approximate cyclographic map is readily constructed and evaluated 
by the hardware.  Thus, there is no need to restrict to PH curves.  Furthermore, for most plane curves 
and splines there are good algorithms for piecewise-linear approximations and normal evaluation; e.g., 
[8].  Therefore, all those curves can be used as entities for Apollonius constructions.  The details are 
routine.  Likewise, there is no reason to restrict the map construction to three shape elements at a time.  
We can easily create the distance maps for multiple objects and, at point-intersections, we can 
construct circles touching a triple of those elements.  Here we assume that there are no degenerate 
intersections of multiple bisectors.  An example of multiple objects is shown in Fig. 7. 
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Fig. 6: One-sided distance function.  Objects are from Fig. 3. Left: cyclographic map restricted to PH 
curve domain �/�(
. Right: map for extended parameter domain ��(/�k
. 

 
 

Fig. 7:  Distance maps of multiple objects including non-PH Bézier curves. 

The accuracy obtained by this approach to determining circles tangent to given entities depends 
not only on the accuracy of the tessellation but also on the condition number of intersecting facets.  
Briefly, when the facets of two different shape elements are nearly parallel, then the accuracy of 
determining their intersection declines.  This is primarily a characteristic of the problem, not of the 
method.  However, as noted in [16], the graphics hardware determines the intersection by a depth 
sampling using single-precision floating-point numbers.  Inaccuracies are visible in a large raster but 
are usually subtle in appearance.  Fig. 8 shows an example: The control points are symmetric about the 	 � �(  axis and the two curves meet with tangent continuity at the point ��(��(� .  Thus, the 
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cyclographic maps should intersect in the line of symmetry.  The actual intersection, however, shows a 
slight downward slope.   
 

 
Fig. 8:  Ill-conditioned intersection of the cyclographic maps.  The red and green curves are symmetric, 
yet the intersection of the cyclographic maps is not quite. 

4.3 Medial Axis Transform 

The medial axis transform (MAT), e.g., [2], is a restriction of the cyclographic map and can be evaluated 
using the same approach.  However, so far we have exploited the fact that the intersections are 
between the cyclographic maps of different geometric elements and thus can be recognized from color 
discontinuities of adjacent pixels.  When the MAT of a single entity is to be determined, however, the 
self-intersections must be found.  Thus, there is no color discontinuity.  Moreover, near centers of 
curvature the intersections become ill-conditioned.  So, we proceed as follows. 

We render the tessellated cyclographic map to the depth buffer of the graphics card.  Then, we 
identify the gradient of the depth at each pixel.  The MAT points are identified by pixels with a large 
variance in their gradient and the gradient of their neighbors. Fig. 9 shows the gradient image.  The 
shader code fragment calculates the pixel gradients in a first pass, and then compares gradient values 
in a second pass.  Fig. 10 shows an example of the MAT.  

 

 
 

 Fig. 9:  MAT as gradient discontinuities. 

4.4 Multiple Sampling and Surface Decomposition 

For Voronoi diagrams, medial axis and general distance maps, a single rendered image suffices, a fact 
that is often assumed in the literature.  Constraint solving, however, has additional requirements if all 
geometrically meaningful solutions should be considered.  Those additional requirements can be 
discharged by collecting results from multiple raster renderings, each accounting for a family of 
solutions, and decomposition of the cyclographic map in some of these cases.  We illustrate the 
situation with the classical Apollonius problem and sketch our approach how to deal with it. 



 

 

Fig. 10:  Extracted MAT of a single shape.
 

It is well-known that the classical Apollonius problem can be factored into 4 systems of equations, 
each requiring solving only a univariate quadratic equation; e.g., 
considering two cycles and asking for the locus of all cycles tangent to the two given ones.  This locus 
is a conic section, and the different systems are based on different orientations of the three cycles 
which affects the cyclographic maps that must be intersected.  

We observe that we need to account for different cases arising from orientation.  However, this is 
not enough: If we are to find all solutions to the Apollonius problem using hardware assistance, as 
described, then we need to be able to generate the conics of two cycles in their entirety.  The problem 
that arises is that some parts of the conic do not correspond to the global bisector, as illustrated
11.  Here we are looking for cycles tangent to a positive cycle (green) and a negative one (red).  The blue 
cycle is an example of such a cycle, but the part of the hyperbolic arc on which its c
obscured by the lower part of the green cone.  Thus, we cannot find all solutions of the Apollonius 
problem without separate rasters rendering the sub

We can approach this situation by decomposing the cyclographic map of (positive) cycles into two 
parts: the lower cone, representing the interior distance function, extending from the perimeter to the 
vertex above the center, and the upper cone, beginning at the vertex above the center at height equal to 
the radius and extending upward to infinity.  Since the rendering process is so fast, multiple 
renderings are an attractive solution.  An alternative to de
cyclographic maps, is depth buffer reversal.  Briefly, in ordinary rendering the geometric shape closest 
to the eye is considered visible and rendered.  This is done by comparing the depth of competing 
shape elements and selecting the nearest one.  In depth buffer reversal the farthest shape element is 
rendered instead.  In Fig. 12, on the right, the effect of depth 
problem instance.  Thus an alternative, for the classical Apollonius problem, would be to render the 
raster twice, with and without depth buffer reversal.  Note that this problem may also arise for circular 
arcs and Bézier curves at areas of high curvature.

 

Fig. 11:  Hyperbolic locus of the centers of all cycles tangent to negative
Note the missing arc on which the center of the blue example solution 
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:  Extracted MAT of a single shape. 

known that the classical Apollonius problem can be factored into 4 systems of equations, 
each requiring solving only a univariate quadratic equation; e.g., [18].  This can be understood by 
considering two cycles and asking for the locus of all cycles tangent to the two given ones.  This locus 
is a conic section, and the different systems are based on different orientations of the three cycles 

s the cyclographic maps that must be intersected.   
We observe that we need to account for different cases arising from orientation.  However, this is 

not enough: If we are to find all solutions to the Apollonius problem using hardware assistance, as 
ibed, then we need to be able to generate the conics of two cycles in their entirety.  The problem 

that arises is that some parts of the conic do not correspond to the global bisector, as illustrated in Fig.
.  Here we are looking for cycles tangent to a positive cycle (green) and a negative one (red).  The blue 

cycle is an example of such a cycle, but the part of the hyperbolic arc on which its center is found is 
obscured by the lower part of the green cone.  Thus, we cannot find all solutions of the Apollonius 
problem without separate rasters rendering the sub-cases.  See also Fig. 12 (left). 

We can approach this situation by decomposing the cyclographic map of (positive) cycles into two 
parts: the lower cone, representing the interior distance function, extending from the perimeter to the 

ex above the center, and the upper cone, beginning at the vertex above the center at height equal to 
the radius and extending upward to infinity.  Since the rendering process is so fast, multiple 
renderings are an attractive solution.  An alternative to decomposition, based on the geometry of 

.  Briefly, in ordinary rendering the geometric shape closest 
to the eye is considered visible and rendered.  This is done by comparing the depth of competing 

nd selecting the nearest one.  In depth buffer reversal the farthest shape element is 
, on the right, the effect of depth buffer reversal is shown for the same 

problem instance.  Thus an alternative, for the classical Apollonius problem, would be to render the 
raster twice, with and without depth buffer reversal.  Note that this problem may also arise for circular 

zier curves at areas of high curvature. 

      
 

:  Hyperbolic locus of the centers of all cycles tangent to negative red and positive green cycles. 
Note the missing arc on which the center of the blue example solution lies. 
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known that the classical Apollonius problem can be factored into 4 systems of equations, 
.  This can be understood by 

considering two cycles and asking for the locus of all cycles tangent to the two given ones.  This locus 
is a conic section, and the different systems are based on different orientations of the three cycles 

We observe that we need to account for different cases arising from orientation.  However, this is 
not enough: If we are to find all solutions to the Apollonius problem using hardware assistance, as 

ibed, then we need to be able to generate the conics of two cycles in their entirety.  The problem 
Fig. 

.  Here we are looking for cycles tangent to a positive cycle (green) and a negative one (red).  The blue 
enter is found is 

obscured by the lower part of the green cone.  Thus, we cannot find all solutions of the Apollonius 

We can approach this situation by decomposing the cyclographic map of (positive) cycles into two 
parts: the lower cone, representing the interior distance function, extending from the perimeter to the 

ex above the center, and the upper cone, beginning at the vertex above the center at height equal to 
the radius and extending upward to infinity.  Since the rendering process is so fast, multiple 

composition, based on the geometry of 
.  Briefly, in ordinary rendering the geometric shape closest 

to the eye is considered visible and rendered.  This is done by comparing the depth of competing 
nd selecting the nearest one.  In depth buffer reversal the farthest shape element is 

buffer reversal is shown for the same 
problem instance.  Thus an alternative, for the classical Apollonius problem, would be to render the 
raster twice, with and without depth buffer reversal.  Note that this problem may also arise for circular 

red and positive green cycles. 
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Fig. 12: Left: Instance of Apollonius problem requiring decomposition of cyclographic map. 
Right: Depth buffer reversal as an alternative to decomposition for circles. 

5 SUMMARY AND DISCUSSION 

We have reviewed algebraic solutions to the generalized Apollonius problem involving lines, circles and 
PH curves.  The simpler cases were discussed in [5],[6], the more complex cases here.  The use of PH 
curves drives up the algebraic degree of the equation systems that arise.  Therefore, solvers 
constructed based on the algebra have to cope with an increasing computational and algorithmic 
burden as the number, and degrees, of the PH curves increases.   

For high-degree systems, the number of solutions of the equation system becomes large and 
results in much unproductive computation.  For this reason, we have explored an alternative in which 
the geometric objects are each represented by a poly-line, so that hardware acceleration can be used, 
utilizing commodity graphics hardware.   

All experiments have been done on a PC with an Intel quad-core Xeon CPU of 3.16GHz, 4GB main 
memory.  With an NVIDIA Quadro FX 1700 graphics card, all graphics-accelerated computations 
achieve rates of approximately 41 frames per second, and with an NVIDIA GeForce GTX 280 a speedup 
of better than an order of magnitude is obtained, with frame rates around 500 fps, or 2 msec.  At these 
speeds a purely algebraic solution becomes unattractive.  This finding is not unlike the results in the 
literature on GPU algorithms.  Here, we refer the reader to the survey [20] and for (approximate) 
distance field computations in 3D, a close relative to the medial axis, to [23]. 

A key advantage of the hardware assisted approach is that the repertoire of geometric objects can 
be greatly increased at little or no extra cost.  Thus, there is no need to restrict to PH-curves, since the 
ability to construct easily implicit and parametric forms for their cyclographic maps is not important 
to their tessellation.  However, the limitations of the GPU approach concern the ability to resolve at 
sub-pixel scales.  With the chosen raster size of 1000 by 1000, we should not expect more than three 
digits accuracy.  Such accuracy is reasonable for quick, interactive exploration, but not for accurate 
results that may be needed by applications such as CAD.  So, for better accuracy a stable numerical 
method could be used to complement the GPU computation.  That is, run the GPU computation to get 
approximate solutions that are then refined by subsequent numerical computation. 

An alternative to the mixed GPU/iteration would be a multi-resolution approach:  Having found an 
approximate solution, one can restrict the region of sampling and resample the smaller region at high 
resolution, so refining the solution estimates.  This approach has many attractive sides, among them 
that such a “zoom” can be executed without necessarily reading back the graphics buffers into main 
memory, a strong performance gain.  On the downside we mention the fact that GPUs implement 
single-precision floating point arithmetic, although this is beginning to change with the newest 
generation of GPUs from NVIDIA.  Another consideration is that the zoom approach can only deliver 
linear convergence, as opposed to the quadratic convergence of Newton iteration for the regular case.  
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