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ABSTRACT

The present paper investigates an application of Warren's coordinates for convex
polytopes to space deformations. We show that the use of cube-like cages presents a
good compromise between the degrees of freedom of the deformation and the
complexity of the mapping itself. As our main result we give simple sufficient
conditions on injectivity of deformations based on cube-like cages.
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1 INTRODUCTION

Barycentric coordinates play a very important role in computer graphics and applications, e.g. shading,
planar and spatial deformations, animations, etc. One of the most widely used coordinates are the
mean-value coordinates [3]. These coordinates are positive over convex polygons and can be

generalized to non-convex polygons [8] and to R®[2,4]. Another set of coordinates for convex polygons
are the Wachspress coordinates [12]. However, they do not generalize in a natural way to non-convex
polygons. One of possible generalizations of Wachspress coordinates to higher dimensions was
introduced in [13] and later studied in [9] - the so called Warren's coordinates. Other methods using
barycentric coordinates include [11] and [14].

On the other hand, numerous techniques for shape deformations not based on barycentric
coordinates were designed, see the survey [6] and the references cited therein. The so-called free form
deformations are widely used in applications. However, there are only few known deformation
techniques that are guaranteed to be fold-over free, cf. Table 1 of [6]. The injectivity of free form
deformations was studied in [7].

Injectivity of barycentric mappings and other types of planar and spatial deformation has not
been studied widely in the literature. The mapping induced by mean-value coordinates fails to be
injective in some extreme cases [5]. On the other hand, Wachspress coordinates [12] give rise to
injective mappings between convex polygons [5].

In the present paper we investigate an application of Warren's coordinates [13] to space
deformations that they induce. In general, these coordinates are defined for convex polytopes. We
restrict ourselves to cube-like polyhedra only. Indeed, too many degrees of freedom, represented by
control points, might become overwhelming for an inexperienced user. We show that this special,
simple subclass of polyhedra gives rise to cage deformations with sufficiently many degrees of
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freedom. Moreover, we give a set of linear conditions that guarantee injectivity of these deformations.
Due to its simplicity, the user can be provided with an interactive feedback on the injectivity of the
deformation. This new set of sufficient conditions on injectivity also allows a nice geometric
interpretation.

The remainder of the paper is organized as follows. The next section describes feasible cube-like
cages that can be used for shape deformations using Warren's coordinates. Section 3 recalls Warren's
coordinates and barycentric mappings induced by them. In Section 4 we discuss conditions on
injectivity of barycentric mappings. Section 5 then applies these results to space deformations using
cube-like cages. Finally, the paper is concluded with several examples and a discussion of future work.

2  CUBE-LIKE CAGES

Consider the unit cube U with vertices

u, = (1,0,0),u, = (1,1,0),u, = (0,1,0),u, = (0,0,0),u, = (1,0,1),u, = (1,1,1),u, = (0,1,1),u, = (0,0,1). (2.1)

U is considered as an open set in k. Its closure will be denoted Uand its boundaryoU . Let
P c R® be a cage (closed mesh) with vertices P, P,---, Py Which is combinatorially equivalent to the cage
associated with U, i.e., there is a one-to-one correspondence between the vertices and edges of U and
P. Denote F,...,F,the 6 faces of U. If UL Uy andu belong to F ,m =1,..,6 then we denote G the

tetrahedron (or planar quadrilateral) formed by DD, D, and p,. Moreover, let Intg(G) denote the
geometric interior of G .If G is a tetrahedron then Int (G) is the interior of G in R®. If G is a planar

quadrilateral lying in a plane 7, then Int (G)is the interior of G in 77 (the usual Int(G)in R®is the
empty set in this quadrilateral case).
Definition 2.1: Let Int, @)n Intg(Gj) =g forall i,j =1,..,6,i= j. Then Pis called a cube-like cage.

As an example of a cube-like cage, P can be chosen to form an affine image (parallelepiped) or a

projective image of a cube, where no point of the cube is mapped to infinity. However, cube-like cages
are more general since its 'faces’ G are not required to be planar, see Section 6 for examples.

We will focus on deformations based on a set of barycentric coordinates defined in [13]. Since
these coordinates are well defined for convex polytopes only, we assume that P is a convex cube-like
cage with all its 'faces' G planar for the remainder of the paper. Moreover, P will be said to form a

cube-like convex polyhedron.

Since the coordinates of Warren [13] are invariant with respect to affine transforms, we can
assume, without loss of generality, that

p, = (1,0,0),p, = (2,,4,,0),p, = (0,1,0), p, = (0,0,0), p; = (,,0,2,), p; = (%, 94, 2,), P, = (0,4,,2,),p, = (0,0,1). (2.2)

We denote by V(p,q,r,s) the signed volume of the tetrahedron [p,q,r,4],

1 1 1 1
1 pl ql rlogl
V ,q,T,S) = — (23)
(p,q ) 6 pz q2 P2 g
3 (]3 R
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Since P must have planar faces, we obtain that

V(ps’p67p7’ps) =Y, — LY, + LY — Y2t TEY, — 2Ty, = 0,
V(pz’p3’p7’p6) = T2y — TyEY, T BYeE T T2 — B2 — YTz = 0, (2.4)
V(pl’pZ’pﬁ’pS) = oY% T Yy T YpTiZs — Yok T Y% Y2 = 0

must hold. This gives a system of 3 linear equations in z,y,,z, . A thorough description of all feasible

cages falls beyond the scope of the present paper. Therefore, we restrict ourselves to a brief

description only. In general, one can choose the free parameters z,,y,,7,2 z. and compute unique

5 L7027

g, Y4 2, from Eqn. (2.4). Moreover, since the faces of P must be convex, we obtain a system of linear

inequalities. However, all the linear constraints can be satisfied easily and P can be interactively
created and modified to become a cube-like convex polyhedron. See Section 6 for examples of feasible
cages P.

Whereas cages based on affine and projective images of a cube offer 12 and 15 degrees of freedom
(DOF), respectively, a cube-like cage admits 18 DOFs. More precisely, in the case of parallelepipeds, the
cage is uniquely determined by an affine image of a simplex, which gives 3 x 4 = 12 DOFs. Using
projective transformations, one can fix a geometric basis of points in 3D, i.e., 5 points, yielding 15
DOFs. Finally, since we have 8 free vertices and 6 volumetric constraints, the case of a cube-like convex
polyhedron admits 3x 8- 6 =18 DOFs.

3  BARYCENTRIC MAPPINGS

We make use of the dual construction proposed in [9]. For the convenience of the reader we recall the
essential parts of the approach taken therein.
Let p, be a vertex of P. Note that all vertices of P are of valence 3. Letn, ,n,,,n  be the outward

normals of the 3 faces containing p,. Since the dual vertices have the form n,/mn, (p,—x), see [9],

the weight w, associated to vertex p,is given by the unsigned volume

n" 1 nz,.z n,, 3
e e e e e, e 3.1)
nz.l ’ (pz - w) ni.g : (p[ - w) n2.3 . (pl - :I:) .
8
Now, denoting ¢ = » _w, , the barycentric coordinate associated to p, is given by ) = Y Then the

i=1 1%
set {\,i=1,...,8} is called the set of Warren's coordinates for P. We remark that for the unit cube U
Warren's coordinates reduce to

A =al—y)(1=2),A = ay(l—2), A = (L —2)y(l = 2),A = (1 -2)(1-y)(1-2),

(3.2)
A =al—y)z A = ayz A, =1 —2)yz A, = (1—2)(1—y)z
Warren's coordinates, as all barycentric coordinates, satisfy the following properties:
A >0, T € J?,
8 R
> oA () zEP, 3.3)

i=1

8
Zx\l(w)p =z, xEcP.

i=1
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In other words, they are non-negative and satisfy the partition of unity and barycentric property.
Moreover, the Lagrange property holds as well, i.e., /\I,(p],) =4

g
Let @ be a second cube-like cage. Using Warren's coordinates, we define the mapping
8
fl@)=3 Nz)g, ==z zcP (3.4)
i=1

Remark 3.1: As it was observed in [13], the mapping f restricted to faces (edges) of P acts as Warren's

mapping for one (two) dimensions lower. Thus, f extends continuously to 9P and therefore it is well
defined in oP.

From the properties of \ we see that the mapping fis a convex-combination mapping. Therefore,

the point f(z) must belong to the convex hull of é Moreover, using the Lagrange property of )\ it
follows that f(p,) =gq,.

We emphasize that @ is not required to form a convex polyhedron for the mapping f to be well
defined. Therefore, the mapping fis more general than affine and even projective mappings (restricted
to P and when no point of P is mapped to infinity). Nevertheless, in order for f to be usable in

practice for shape deformations and other applications, it is often required that f be injective. This

gives us a guarantee that fdoes not introduce any new self-intersections in the deformed shape.

4  CONDITIONS ON INJECTIVITY

Following Remark 3.1, faces of P, forming convex quadrilaterals, are mapped to Wachspress
interpolants (see [12]). Edges of P are mapped in a linear fashion, i.e., an edge of P given by p,.D is
mapped onto the line segment determined by a4, Turning to the results of [5] we conclude that fis
injective in OP .

Since fis C™in P, f continuously extends to 9P and fis injective in 0P, the question of injectivity
of freduces to whether its Jacobian does not change sign in P, see e.g. [10]. If f(z) = (f(z),9(z),h(z))
and 0 h(z) = 0h /0x",r =1,2,3, the Jacobian of fis the determinant

of dg dh
J()=| 0,/ 0,9 0,
a,f 9,9 0,h

Similarly to the planar case, cf. Lemma 1 of [5], the following lemma can be proved using the matrix
identity

1 f g & Ao A1 g g g
0 0f 99 b | | 9N o o DN S (4.2)
0 0,/ 0,9 O | | N o o DN P
0 9,f 0,9 9, 3 N W | R A A
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and applying the Cauchy-Binet theorem (see formula (1.23) of [1]) to it.

Lemma 4.1: For any set of differentiable functions X ...,\; satisfying the partition of unity,

J(f)@)=6 > DAXNAA)()V(g,q,,9,.9), (4.3)

1<i<j<k<I<8
where

a b c d
da 0b 0c 04d
D(a,b,c,d) = @G0 G G (4.4)
d,a 9p 9, 04
da 0b 0, 04d
The following lemma simplifies our further computations.

Lemma 4.2: For differentiable functions a, b, ¢, dandv > 0
D(va,vb,vec,vd) = v'D(a,b,c,d). 4.5)

The proof is similar to the one of Lemma 2 of [5]. Using Lemma 4.1 and setting v =1/ in Lemma 4.2
we obtain the following sufficient conditions for the injectivity of the mapping f.

Theorem 4.3: Let for all z € P
DAL AN ) () Vg,9,59,.9) >0 (4.6)

DA AN () Vg q,.9,.9,) <0 4.7)

forall 1<i<j<k<i<8 or

forall 1<i< j<k<I<8.Then the mapping fgiven by Eqn. (3.4) is injective.

5 INJECTIVE DEFORMATIONS

Following Theorem 4.3 and Lemma 4.1 we investigate the quantity D(w,,w, wsw)(z) . Since we need to

consider indices satisfying 1 <i < j <k <[ <8, it would be necessary to check 70 terms in a concrete
example. However, a long and tedious computation (with the help of a suitable computer algebra
system) reveals that for a cube-like convex polyhedron the terms D(\, \ v>‘w/\z)( ) simplify significantly.

Lemma 5.1: For all z € Pand forall 1<i< j<k<1<8 itholds

D(w,w,w,w)=12wwwwp Viv,u,u,u). (5.1

3 kY

Since all w, and pare positive in P and at least some V(u,,u, ,uk,uz) are non-zero, combining this

result with Lemma 4.1 and Theorem 4.3 we have proved the following
Theorem 5.2: Let P form a cube-like convex polyhedron and @ be cube-like. Let

Viu,u,u,u) V(g,q,4q,q)=0 (5.2)

PR
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forall 1<i<j<k<I<8 or
V(uﬁvuivukvug) V(q,yvqjvquqg) S 0 (53)

forall 1<i< j<k<I<8.Then the mapping fgiven by Eqn. (3.4) is injective.

Eqn. (5.2), resp. (5.3), gives i ]= 70 conditions. However, as U is a cube, 12 of the conditions are

equal to zero as 12 of the volumes V(p“pw p,.p,) vanish. Therefore, one can extract 58 inequalities from

Eqgn. (5.2), resp. (5.3), which form a set of sufficient conditions for the barycentric mapping f to be
injective.

Consequently, to the best of our knowledge we believe that the conditions in Theorem 5.2 are the
simplest sufficient conditions known. Also, they are the most useful ones since they provide a nice
geometric insight into the problem by relating the volumes V(uﬂuwuwul)associated to U with the

volumes V(qi,qﬁqwa)associated to Q.

Once a given shape is enclosed by a cube-like convex polyhedron P (with 18 DOFs, see Section 2),
the user is provided with 8 vertices (24 DOFs) for controlling the deformation £ By moving one of the

vertices, the given shape is deformed accordingly. If a fold-over free deformation is required, one can
simply test the sufficient conditions given in Theorem 5.2. Finally, we emphasize that these sufficient
conditions are linear in the vertices of @ and constant in z This fact makes them suitable for

applications such as interactive shape deformation since they can be easily evaluated and tested in
real-time.

6 EXAMPLES

In this section we present several examples of shape deformations. All examples were created using
the Gulrit GUI user interface (www.cs.technion.ac.il/~gershon/Gulrit) of the Irit solid modeling system
(www.cs.technion.ac.il/~irit).

A\ ey
l\l O -
X :',"u“s“\\

\

9,

£

Fig. 1: Warren's mapping is reduced to trilinear mapping for P = U. The injectivity of the mapping is
guaranteed by checking only the signs of volumes of all corresponding tetrahedrons, i.e
V(pﬂp],pwpl) and V(qi,q],,qwa) . These volumes are easy to compute and are independent of z € P . Two

views of the same injective deformation of the teapot are shown.
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4,

q4 ql
ql q5

pz qZ

q;
Fig. 2: Conditions of Theorem 5.2 are violated. Volumes V(p,,p,,p,,p;) and V(q,,q,,q,,9;) have opposite
signs, which might cause undesirable self-intersections. Two views of the same setting are shown.

v
27

Fig. 3: Injective deformation of models of chess pieces. A knight and a queen are enclosed by a
truncated pyramid P (left). Two different cube-like deformations of the knight and one deformation of
the queen, displayed from two different viewports, are shown.

b,

Computer-Aided Design & Applications, 7(3), 2010, 309-318
© 2010 CAD Solutions, LLC



316

Fig. 4: Injective deformation using cube-like cages: A free-form model of a chair is enclosed in a convex
polyhedron P (left). Whereas all faces of P are required to be planar quadrilaterals, faces of @ are
allowed to be non-planar. The match in signs of volumes for all corresponding tetrahedrons, i.e.
V(pﬂp],pwpl) and V(qi,q],,qwa), guarantees the injectivity of the mapping.

Fig. 5: Five frames of a teapot deformation from two different viewports (upper/lower row) are
depicted. The cages are shown as well. Vertex g, is moved toward the center of the cage, inducing the

corresponding deformation of the teapot. The deformation is guaranteed to be injective (first four
frames), whilst in the last figures (right) the sufficient conditions of Theorem 5.2 are violated.
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Fig. 6: Injective deformation using cube-like cages: A free-form model of a toy-robot in highly sensitive
self-intersection configuration is enclosed in a convex polyhedron P (left). A self intersection free
deformation is fully controlled by the match in signs of volumes for all corresponding tetrahedrons,
i.e. V(pl,,pj, p,,p,) and V(qi,qj,qk,qz) . Four different deformations are shown.

The tests were performed on parametric free-form surfaces. However, our implementation could be
easily modified to handle polygonal meshes, point clouds or implicit surfaces as well. In all presented

examples the input surfaces are enclosed in convex cube-like polyhedra P. Their deformations are
realized by moving the vertices of P resulting in cube-like cages (.

7  CONCLUSION AND FUTURE WORK

In this paper we presented a method for deforming shapes using cube-like cages based on Warren's
coordinates for convex polyhedra. Focusing on the applicability of this type of deformations, we
derived a simple set of sufficient conditions on the injectivity of the underlying barycentric mapping.
These conditions admit a nice geometric interpretation and can be tested in real-time.

As a matter of future research we would like to generalize our approach to support a wider class of
cages. Since Warren's coordinates are defined for convex polyhedra, one can try to use general convex
cages with planar faces. However, it is a challenging task to find a simple set of sufficient and/or
necessary conditions on the injectivity of general barycentric mappings induced by Warren's
coordinates.
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