
Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

319

Assembly Feature Tutor and Recognition Algorithms Based on Mating Face
Pairs

Adam Dixon and Jami J. Shah

Arizona State University, {adam.c.dixon,jami.shah}@asu.edu

ABSTRACT

Assembly features encode geometric and functional relationships between parts in an
assembly. They can be used in assembly design by features, kinematic and structural
analyses, assembly planning and assemblability evaluation. Explicit definition of
assembly features and archival in libraries can be used to assist in design and analysis
of mechanical assemblies. This paper builds on our past work in neutral definition of
generic assembly features to provide a mechanism for user-defined custom assembly
features using an interactive system, called the assembly feature tutor. The user
teaches the system interactively by examples and the tutor outputs an assembly
definition file that is written in EXPRESS like language. Central to the definition are
pairs of mating part faces and includes algebraic, geometric and parametric relations.
Twist and wrench matrices can be extracted from face pair relations. The definition is
implementation independent and provides a uniform way to define assembly features.
The paper also describes the implementation of an automatic recognition system for
user defined assembly features. The algorithm is based on contact pairs which is
found to be more efficient than those based on pre-recognition of part features, as the
issue of feature interaction is avoided.

Keywords: assembly features, assembly feature definition and recognition.
DOI: 10.3722/cadaps.2010.319-333

1 BACKGROUND

Almost all mechanical and electro-mechanical devices are assemblies of multiple parts. There are
many factors why this is so, some related to functionality and some to manufacturing. Functional
reasons include requirement for relative motion, interfacing of moving and stationary parts, need for
multiple states, power transmission and structural integrity. Manufacturing reasons include use of
different materials, shape/size differences, and assemblability. Thus, we can say that assembly design
is the very crux of engineering design. Yet CAD is not particularly compatible with assembly level
thinking. Designers think in terms of assembly functions but in CAD one must fully define individual
parts before assemblies can be created. Incompatibility also exists between CAD and computer aided
kinematic analysis: the designer needs to manually define joints and reference, moving coordinate
systems even though the information is implicit in the assembly CAD model. Not only is this time
consuming but it is also difficult to keep track of redundant and over constraint situations.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

320

There are many types of assemblies: static, rotational, articulated and mixed. The specific design
process varies with assembly type and function. Major design tasks typically include shape/size
design of parts; interfacing of components; layout, packaging; kinematic, dynamic, structural analyses;
motion simulation and interference detection. Auxiliary tasks may include manufacturability (DfM)
and assemblability (DfA) analysis. In addition to nominal design of an assembly, there is also tolerance
design which determines the GD&T scheme and allowable manufacturing variations to ensure proper
functioning and assemblability.

Assembly features can be used in mechanical design for supporting each of the above functions.
Designing assemblies using assembly features can allow a designer to create an assembly model in a
more fluid fashion. The transition from concept to design is easier since most designers already follow
a top-down design approach. As well, assembly features can help in assembly planning. Assembly
features contain constraints and restricted motion limits that can be exploited to determine ways that
parts can be assembled together or disassembled. Assembly analysis can also take advantage of
assembly features. Assembly features can be used to determine degrees of freedom and motion limits
of an assembly. These uses of assembly features are not readily available in most commercial CAD
systems. With the use of assembly features in conjunction with computer systems, these processes
can be automated, and therefore take advantage of assembly features to create more robust CAD
systems.

In order to provide a way for a user to define assembly features, this paper describes a method
that has been implemented to define a library of assembly features, and also a method to evaluate an
assembly for user defined assembly features. The background to this paper starts with the
development of an information model for storing assembly data for legacy systems engineering [16,
14]. The model is called OAM+, since it is a modified version of Open Assembly Model (OAM). Next, a
neutral definition of assembly features was created [15]. This research lays the ground work for
presenting a uniform definition of assembly features. This paper is a continuation of our previous
work and describes and demonstrates the implementation of a system that interactively defines
assembly features (tutor) and uses these definitions to find assembly features in any assembly CAD
model.

2 ASSEMBLY MODELING

An assembly can be viewed many different ways. Figure 1 shows a mechanical assembly of a rotary
engine in both assembled and disassembled form. This assembly can be viewed as individual parts
with constraints between the parts of the assembly. The hierarchy of the assembly below is shown in
Figure 2. In this model, joints can be defined, such as revolute, but much of the information that is
contained in assembly features is missing. And these joints and links must be manually input by the
user; as shown in Figure 3. With the use of assembly features, these joints and conditions can be
automatically determined and further assembly analysis can proceed.

A part feature has been defined as a stereotypical shape with certain topological and geometric
properties [21]. Similarly, an assembly feature is defined as a stereotypical association between two
part features that are on different parts. Whitehead posits that parts get position from location
features and keep it with effector features [27]. Whitney defines assembly features as a description of
how parts are joined to each other [28]. Bordegoni and Cugini [2] defined assembly features as
attachments, pass-through and connect types. Research by Sambhoos [20] contain assembly feature
that are have direct, indirect or interfering relationships.

One thing that all assembly feature definitions have in common is that they all contain some type
of connection. We define assembly features as an association between two parts which contain face
connections between parts, constraints, parameters, kinematic relations, and structural relations. A
formal definition has been created [15] to provide a uniform definition, which is implementation
independent, of an assembly feature.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

321

Piston Cylinder

Crank_rod

Crank_balance_1

Master_rod

Crank_balance_2

Wrist_pin

Crank_spline

Fig. 1: (a) Engine assembly, (b) disassembled parts.

ENGINE

Master RodCRANK_ROD
sub-asm

PISTON
sub-asm

Cylinder

Crank
balance 1

Crank
balance 2

Wrist pin Piston

Crank spline

Fig. 2: Assembly hierarchy.

crank_bal_1crank_spline

crank_rod

crank_bal_2

master_rod wrist_pin piston cylinder

RZ 0 0 TZRZ RZ

0

0 0

Fig. 3: Kinematic diagram of engine assembly: links, joints, DoFs.

3 LITERATURE REVIEW

Although a great deal of literature exists on part feature definition and recognition, the same cannot
be said about assembly features. Brunett [4] developed an assembly model that supports conceptual
development according to the Pahl & Beitz procedure [18]. Gupta et. al. [8] created models for
assembly sequence generation. Noort et. al. [17] used assembly features to provide multiple views of a
product. Liang [11] used a port model to define interaction between a component and its environment
or interfaces between components. DeFazio [6] proposed a feature-based assembly system to specify
the mating relations between components and relative extraction directions for use in assembly
planning. Sodhi [23] used assembly features for specification of relations between components at a
high abstraction level. Boredegoni [2] classified assembly features as attachment, pass-through and
connect types.

For large assemblies, assembly planning is extremely important. Wang et al [26] created a system
that contains an algorithm to generate all available assembly sequences for an assembly planning



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

322

problem in automobile assembly lines. Their goal was to automate the process so that it speeds up the
assembly planning stage at the prototype design stage. Butterfield [5] established the benefits of
virtual simulation of large assemblies in the aerospace industry. The purpose of this research was to
show how digital manufacturing techniques could improve existing manufacturing assembly practices
in commercial aircraft. By providing a means of assembly planning, the manufacturing engineers are
able to assist more directly in the assembly planning process. A method to reorganize large assembly
models from as-designed assembly models to as-built assembly models was created by Jayaram [9].
This restructuring allows for the assembly model to be evaluated for assemblability and
manufacturability along with creating an assembly hierarchy. There has also been advancement in the
use of features to develop methods of assembly planning. Eng [7] developed a method to extract
assembly planning from a CAD model using mating features. The goal was to create software that
would generate a correct and practical assembly sequence from a CAD model based on already
defined features. As well, van Holland [25] illustrated that assembly features can be a significant help
in creating assembly plans. The connection relationships between parts of an assembly can be used to
bridge the gap between the function of an assembly, and the geometry of an assembly. This
information can be used to help with assembly analysis and planning, resulting in more efficient ways
of analyzing an assembly and planning how an assembly is assembled.

Many if not most commercial CAD systems do not explicitly support model design or synthesis
using assembly features, even though there are advantages to using assembly features in assembly
design. Lee [10] presented an assembly synthesis method that uses screw theory for determining
proper part constraint in an assembly. By using a predefined joint library and screw theory, Lee is able
to determine optimal designs of beam based structures from assemblies that have already been
created by an engineer. Yetis [29] and Lyu [12, 13] have focused on a systematic decomposition
process during the conceptual design phase. In general, their intended purpose is to provide feedback
about possible decompositions to the designer before the detailed design phase. Yetis decomposes a
model into an assembly of multiple structural members. These members and their joints are evaluated
for structural strength. While Lyu introduces continuing research that provides a method that
considers the structural stiffness of the end model. The final model is then determined by joint
location between components and its structural stiffness. Singh [22] developed a method that
automates applying mating constraints by using a catalog of parts with embed assembly information.
Parts are assembled together in a CAD system using ports. These ports are basic geometric entities
that undergo mating constraints. Sambhoos [20] created a method for developing mating graphs from
legacy CAD models in order to apply the information in assembly variant design. The developed
mating graphs contain assembly feature that have direct, indirect or interfering relationships. Indirect
assembly relationships are particularly important to assembly variant design.

An important part of assembly design is verifying that the assembly is valid and performing
various analyses. To do this, Adams and Whitney [1] used screw theory to develop a method to
analyze an assembly’s constraint state using one or more assembly features. Their method uses twist
and wrench matrices to represent the motion properties of kinematic joints. By uniting multiple twist
matrices, contained in an assembly, the motion properties of an assembly can be represented. This
method can be useful to determine if features are over-constrained, under-constrained, or properly
constrained. Rachuri [19] developed a way to allow the exchange of information between modeling,
analysis and planning systems by creating an integrated information model for assembly
representation. They have defined assemblies based on their features, and desire that this
development is to be integrated with various CAD and engineering analysis systems. Sung [24] used
assembly features to generate disassembly sequences of assemblies. An octree representation method
is used to define the assembly features. Along with developed algorithms, the defined assembly
features are used to determine possible disassembly sequences for a given assembly model.

The above review, though not comprehensive, is representative of much assembly modeling
literature. Two themes stand out: most of the work is directed at assembly sequence planning when
the design is already fixed and not evolving; the various assembly feature definitions used require
manual input into the ad-hoc attribute slots. The latter problem creates a disconnect between
kinematic/structural simulation and design. Our assembly feature definition goes beyond geometry by
capturing functional definition of generalizable part-part interfaces in the form of knowledge
structures.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

323

4 ASSEMBLY FEATURE TEMPLATE

In this paper we demonstrate the implementation of interactively defining user defined assembly
features. Below is the template used to define an assembly feature, the complete details of which can
be found in our previous paper [15]. The definition of an assembly feature contains slots for the
following information:

 Face pairs that constitute the assembly feature (including face types and part IDs)
 Net kinematic DoFs at feature level
 Actual loads and directions

Each face pair needs to be defined with:
 Assembly Parameter Definition

o Geometric - parameter defined by two geometric entities directly
o Algebraic - parameter defined by other parameters

 Constraints/ Relations
o Geometric - constraint between two geometric entities
o Algebraic - constraint between parameters

 Kinematic Relations – DoFs & motion limits at the face pair level
 Structural Relations: load point, component directions & magnitude, time functions (at face

pair level)
The slots in the above template will be populated for each assembly feature and used to create a
library of multiple user defined assembly features.

5 ASSEMBLY FEATURE TUTOR

An interactive system can facilitate definition of assembly features. An assembly CAD file can be
imported into the systems, and the user can be guided to define an assembly feature that can later be
used in the process of assembly feature recognition. Each assembly feature can be expressed in terms
of the components of the template described in the last section. By providing a system where the user
is guided thru the process of defining assembly features, the user can define any assembly feature
that they deem useful. Therefore, the user has ultimate control over what assembly features can be
defined and recognized. Such a system has been implemented in C++ on Windows platform using ACIS
geometry kernel, with HOOPS for rendering. Figure 4 shows a workflow schematic and a screenshot of
the Assembly Feature Tutor system. Throughout the following sections, the steps of defining a round
pin and slot assembly feature will be demonstrated using the geometry shown in Figure 4(b).

The Assembly Feature Tutor allows users to define their own features in progressive stages as
shown by the bubbles in Figure 5. When complete, each feature is translated into an implementation
neutral definition. An output file is created which can be stored in a library of assembly features. The
libraries could be used in design by assembly features, feature recognition or any other related
application. Details of the tutor are given in the following sections.

5.1 Find Contact Faces

When the Assembly Feature Tutor is started it stores a list of bodies and their faces, contained in the
assembly, in their respective classes. As well, the user enters a name for the assembly feature they
wish to define; in this circumstance, the name entered is “rd_pin_slot”. Since all assembly features
depend on their contact faces, the second step deals with finding these contact faces. The user has the
option of choosing the faces manually or automatically. If the user chooses to pick contact pairs
manually, the system checks to make sure that the faces chosen are on separate bodies and that they
face each other. If the user decides to automatically find the contact faces in the assembly, they are
able to input either an absolute tolerance (eg. 0.05 units) or a weighted value (from 0 to 1, with 1 being
the tightest). The Tutor uses an algorithm called ACON, which was created by a PhD student at ASU
[15]. Based on the users input, the contact faces can be automatically detected as shown in Figure 6.
The faces automatically found or manually selected are then checked to verify that they have not
previously been identified as contact pairs. They are then stored in the AFFacePair class and identified
as contact faces. The individual faces and bodies are added to the AFFace and AFBody classes
respectively if they have not previously been added. The AFFace and AFBody classes are used to



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

324

identify individual entities that are important to the assembly feature. Also, any appropriate geometric
constraints, described in more detail later, are added based on the face pair type. Figure 6 shows that
the contact faces were found using the automatic function using an absolute tolerance of 0.1 units.
The faces found in contact are highlighted in the figure.

Import CAD
files

Interactive assy
feature defn

Compute feature
level screw &

wrench

Face pair
library

Assembly
feature library

Twist &
wrench

Assembly
relations
library

Geom, algeb,
parametric defn

Fig. 4: Interactive system for assembly feature definition: workflow (left) user interface (right).

Fig. 5: Assembly feature tutor tasks.

Fig. 6: Automatically found contact faces.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

325

5.2 Geometric Constraints and Parameters

The next step in defining an assembly feature is to explicate its geometric constraints. This allows the
user to pick two faces and choose a constraint from a drop down menu. Internally, the system checks
to make sure the faces selected are on separate bodies, and that the types of faces selected also match
with the constraint type. For example, for a tangent geometric constraint, the two faces selected need
to be on separate bodies and one must be a planar face and the other a cylindrical or spherical face.
The faces selected and the constraint type is then added to the AFGeometricConstraints class. As with
the previous step, if the individual faces and their corresponding body are not already added to the
AFFace and AFBody classes, they are added. Figure 7 shows this step using the round pin and slot
feature. The faces chosen are the cylinder of the pin and the top planar face of the slot to define a
tangent geometric constraint.

Geometric parameters are defined by selecting either one or two faces and defining a parameter
name. For example, one may choose a spherical face and define a parameter of “diameter”; or two
parallel planar faces may be selected to define a “width”. When the faces are selected and the
parameter defined, the system adds the faces to the AFGeometricParameter class and the parameter
name to the AFParameter class. And as with previous steps, the individual faces and bodies are added
to their respective classes if not already added. Figure 8 demonstrates the defining of the parameter
“pin_dia” for the example assembly feature.

Fig. 7: Geometric constraint. Fig. 8: Geometric parameter.

5.3 Algebraic Constraints and Parameters

Algebraic constraints allow the user to input 2 expressions and choose the algebraic relation between
these expressions. The possible relations are ≠, <, ≤, =, >, ≥. Since algebraic constraints involve 
algebraic parameters, the algebraic parameters used must also be defined. The complete expression is
then stored in the AFAlgebraicConstraint class. Algebraic parameters are defined using previously
defined geometric parameters. The expression input by the user has the form of: algebraic constraint
= GeometricParameter1 – (or +, *, /, etc) GeometricParameter2. This entire expression is then stored in
the AFAlgebraicParameter class. With the previous assembly feature example, an algebraic constraint
of “side_clearance>0” and an algebraic parameter of “side_clearance=slot_width-pin_dia” (figure 9) has
been defined. These will later be used in the recognition process to verify that the recognized feature
meets these pre-defined criteria.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

326

Fig. 9: Algebraic constraints and parameter for example assembly feature.

5.4 Kinematic Constraints

As discussed earlier, kinematic constraints are represented with twist matrices. When defining
kinematic constraints in the Assembly Feature Tutor, the user is able to input the twist matrix
manually or it can be extracted automatically. When a user is creating a custom assembly feature
definition which involves multiple face pairs, the twist and wrench matrices for the assembly feature
can be derived using Whitney algorithm [28]. A library of twist matrices has been created, based on
contact face pairs, for the automatic extraction of kinematic constraints. They are as follows:

Plane - Plane Cylinder – Cylinder Sphere – Sphere Plane - Cylinder

X

Y

X

Y

X

Z

X

Y

X

Z

X

Z

X

Y

Tab. 1: Kinematic constraints library.

Using the above library with Whitney’s algorithms, an assembly feature twist and wrench matrix
can be derived. In looking at the plane - plane twist matrix, the first and second row represent
translation in the x and y directions respectively, and the third row represents rotation about the z
direction. It is important to note that the matrices in the library need to be aligned correctly with the
assembly and with the global coordinates if possible in order to produce correct load representation
of the assembly. Internally, the system stores the manually entered or automatically derived twist
matrix for the entire assembly in the AFKinematicRelation class. As well, the face pair twist matrices
are stored in the AFFacePairKinematics class. Figure 10 shows the output of kinematic constraints for
the “rd_pin_slot” assembly feature definition. The movement allowed in this feature is translation
along the x direction (along the slot) and rotation about the y axis (axis of the pin).



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

327

Fig. 10: Output of kinematic constraints. Fig. 11: External load information.

5.5 External Loads

This section of the Assembly Feature Tutor allows the user to add external loads to the assembly
feature definition. The user is allowed to either enter the coordinates of the load, or pick a point on
the model. Then they enter the load information. Figure 11 shows this being done on the example that
has been presented. The load location and load magnitudes are stored in the AFExternalLoad class.

5.6 Finish and Save

At this point, all of the major assembly feature definition steps have been completed. The finish stage
allows the user to view all of the information entered that defines the current assembly feature. The
user is also able to delete any parts of the assembly feature that are not necessary. During this step,
the system loops through each individual face that is stored in the AFFace class and creates face
associations of convex or concave between each other. These associations are stored in the
AFFaceRelation class. Figure 12 is the tree display for the example assembly feature definition. The
last step is saving the assembly feature. At this point the user chooses which assembly feature
definition they wish to save, gives it a file name by which it is saved. The system converts the
information saved in the various classes to an N-Rep text file that can be used later in the assembly
feature recognition process. This file is written in an express-like language and a sample is shown in
figure 13.

Fig. 12: Summary of defined assembly feature.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

328

Fig. 13: Assembly feature N-Rep file.

6 ASSEMBLY FEATURE RECOGNITION ALGORITHMS

The motivation for our project comes from the objective to reverse engineer, re-engineer and
manufacture replacement parts in legacy system in order to prolong their lives. In many instances,
design drawings or CAD models for such parts are not available and one must extract information
from failed specimens. It is not enough to just extract geometric information; we also need material,
surface, manufacturing and functional information. The re-engineered part must fit into the legacy
system and perform the intended function of the replacement part. Although functions can be varied,
the two primary functions in mechanical assemblies are structural and kinematic. The assembly
feature model presented is aimed at providing form, fit and function specifications for replacement
parts.

Because of its advantages, the assembly feature recognition process chosen to implement is the
second method presented in our previous paper [15]. Throughout this section, an example will be used
to demonstrate how the system works. The pinned slide in figure 14 will be used to extract some
sample assembly features. The implementation steps, for assembly feature recognition, are as follows:

 The system reads the input N-Rep files, which contain assembly feature definitions

 Modified face adjacency graphs of the N-Rep files are created and pertinent information from
N-Rep files such as parameters and constraints are stored.

 Then the assembly model is loaded by selecting a part to be used to find assembly features.

 Modified face adjacent graph/s of input assembly are created.

 Graph matching is conducted.

 Constraints defined in the assembly feature definitions are checked.

 The system then computes assembly level load directions.

 A tree showing the found assembly features and their parameter values is shown.

 If wanted, the user can output an assembly feature instance file.

#8 = ASU_FACE_REFERENCE ('face1', 'planar', '$');
#21 = ASU_FACE_REFERENCE ('face2', 'planar', '$');
#3 = ASU_FACE_REFERENCE ('face3', 'planar', '$');
#22 = ASU_FACE_REFERENCE ('face4', 'cylindrical', '$');
#12 = ASU_FACE_REFERENCE ('face5', 'planar', '$');
#23 = ASU_FACE_REFERENCE ('face6', 'planar', '$');
#11 = ASU_FACE_REFERENCE ('face7', 'cylindrical', '$');
#10 = ASU_FACE_REFERENCE ('face8', 'cylindrical', '$');
#5 = ASU_FACE_REFERENCE ('face9', 'planar', '$');

#30 = ASU_FACE_PAIR ('pair30', (#8, #21), (#13, #24));
#36 = ASU_FACE_PAIR ('pair36', (#3, #22), (#13, #24));
#42 = ASU_FACE_PAIR ('pair42', (#12, #22), (#13, #24));

#191 = ASU_PARAMETER ('pin_dia', $);
#192 = ASU_CONSTRAINT ('pin_dia', #22, #191);
#48 = ASU_ASSEMBLY_GEOMETRIC_PARAMETER (#192);
#193 = ASU_PARAMETER ('pin_length', $);
#194 = ASU_CONSTRAINT ('pin_length', (#21, #23), #193);
#52 = ASU_ASSEMBLY_GEOMETRIC_PARAMETER (#194);
#195 = ASU_PARAMETER ('slot_length', $);
#196 = ASU_CONSTRAINT ('slot_length', (#11, #10), #195);
#59 = ASU_ASSEMBLY_GEOMETRIC_PARAMETER (#196);
#197 = ASU_PARAMETER ('slot_width', $);
#198 = ASU_CONSTRAINT ('slot_width', (#3, #12), #197);
#66 = ASU_ASSEMBLY_GEOMETRIC_PARAMETER (#198);



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

329

The assembly feature recognition module allows the user to input as many or as little N-Rep files
as they wish. Ideally, a library of assembly feature definitions would be previously created, using the
Assembly Feature Tutor, for use at any time. As little as one N-Rep file can be loaded. For the example
of the slide, two assembly features are of importance, therefore two N-Rep files have been loaded;
“rd_pin_slot” and “concave_pin_thru_hole”. Once the N-Rep files are loaded, the system reads the
definition and creates a modified face adjacency graph of each N-Rep file inputted. This data structure
is similar to face adjacency graphs except face connection arcs are included in the graphs. The nodes
represent the faces in the definition. The nodes contain an id number and face geometry type. The
arcs represent adjacency definitions between faces. These are concave, convex, or contact. The
modified face adjacency graphs are created using linked lists. Next, the user selects the part that is of
interest in finding its assembly features. This is done so that the system focuses on a particular part
of the model. In this step, the contact faces associated with the chosen part are located. This is shown
in figure 15 for the sample assembly. Also a list of contact faces is found in Table 2.

Slide

Fig. 14: Sample assembly.

Fig. 15: Loaded assembly. Tab. 2: Contact faces and their associated

assembly feature.

Once the contact faces are located, a modified face adjacency graph of the input assembly, or Brep
model, is created. The nodes and arcs carry the same information as the ones created for the N-Rep
modified FAGs. For this step, nodes are created for the faces found in contact and their immediate
adjacent faces only. And the arcs are created in the same manner as above. At this point, nodes that
contain faces that point to the same geometry as another node are removed, so that there is only one



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

330

node per geometric face in the Brep model. In order to decrease search space, separate graphs are
created for nodes that do not have any arcs connecting to other groups of nodes, and the graphs are
classified based on the face types contained in the graph/s. A graph that contains only planar faces is
classified as “planar”, and graphs that contain cylinder or spherical faces are classified as “cylindrical”
and “spherical” respectively. The modified FAG for the slide is found in figure 16; for simplicity, only
the pertinent nodes and arch are presented in the graph. It can be noted that there is a single graph
since all of the contact faces and their immediate adjacent faces are all connected by either a face
adjacency or by contact.

Face No. 8 - 1

Face No. 9 - 0

Face No. 7 - 0

Face No. 3 - 1

Face No. 21 - 0Face No. 22 - 0

Face No. 4 - 1 Face No. 2 - 0

Face No. 5 - 0

Face No. 20 - 1 Face No. 19 - 1 Face No. 16 - 0 Face No. 18 - 0

Face No. 17 - 1Face No. 64 - 0

Face No. 6 - 0

Face No. 15 - 1

Contact

Convex

Concave

Fig. 16: Modified FAG for slide example.

Once the graphs are created from the inputted N-Rep files and the input Brep assembly model,
graph searching techniques can be used to find subgraphs within the Brep graphs that match those
created from the N-Rep files. There are many techniques that can be used in this stage. The
implemented system starts graph searching at nodes which contain contact arcs and the same
classification as the N-Rep graph. For example, for an assembly feature with spherical faces, the search
starts at the node that represents one of the spherical faces in contact. Then the search continues
outward until all of the N-Rep nodes in the assembly feature definition are found and match in the
Brep graph/s. In figure 16, the face numbers 5, 6, 7, 8, and 9 make up the contact faces for the
“rd_pin_slot” definition. And faces 3 and 4 are the contact faces for the “concave_pin_thru_hole”
definition. This graph matching process continues with each appropriate N-Rep definition until an
exhaustive search of all possible assembly features has been conducted. Once the graph matching is
complete, the constraints stored from the N-Rep files are checked with the found assembly features in
the Brep graph/s. If the constraints are met, the stored parameters are evaluated in the Brep model.
Also the assembly level load direction, represented as a twist matrix, is evaluated using Whitney’s
algorithms in conjunction with the found assembly feature’s twist matrices. All of the recognized
assembly features and their information are then shown in a tree (figure 17). Finally, the user has the
option of saving an output assembly feature instance file, which shows the important information
about the assembly features and assembly level load directions.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

331

Fig. 17: Found assembly features and their parameters.

7 DISCUSSION

The motivation of this research is to implement a system that interactively defines assembly features
and uses these definitions to locate assembly features for use in Reverse Engineering of legacy
systems. This allows a user to define their own assembly features that are relevant to them and their
own work. In doing so, the user can create a library of assembly features to define any type of
assembly feature desired. This library can be used in many different ways. For Reverse Engineering of
legacy systems, it is important to verify that the part being redesigned still complies with form, fit,
and function of the original part. This means that the new part has the same form (possibly size,
generic shape, weight, balance, etc), that the redesigned part still fits in the assembly, and that this
part also performs the same function as the previous part. In summary, there should not be any
difference between the previous and redesigned assembly.

Assembly features explicitly help to verify that a redesigned part fits and functions identically as
the previous part. Fit has to do with the ability of a part to physically interconnect with other parts in
an assembly. This relates the associativity of a part to other parts. This means that redesigned parts
must have connecting faces that are in the same locations and have the same dimensions as the
previous part. For the slide that is in figure 18, the two features of importance are the rounded end
slot and the hole. For this reason, when identifying these features, the parameters of the hole
diameter, hole depth, slot length, width and depth have been evaluated so that if this part is to be
redesigned, these identified features will still have the same dimensions and fit in place of the old
part.

Rounded

end slot

Hole

Fig. 18: Slide and found assembly features and their parameters.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

332

Similarly, function is equally important factor in the redesign of a part for an assembly. Function
is the action that a part is designed to perform in an assembly. This is extracted from assembly
features by determining motion limits and possible load directions. Figure 19 shows what motion
limits and load directions of the slide at the assembly level and at each assembly feature. It can be
seen that at the assembly level, the slide is fully constrained and has no movements allowed. This
information can be used to verify that a redesigned part contains the same motion limits and load
directions.

This project has produced a system that has been implemented to generate user defined assembly
features. It has also show an implementation of assembly feature recognition of these user defined
assembly features, and has shown how it can be applied to Reverse Engineering of legacy parts.

Assembly Level

Twist Matrix
0 1 0 0 0 0
0 0 0 1 0 0

Twist Matrix
0 1 0 0 0 0

Twist Matrix
Empty

Wrench Matrix
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

Wrench Matrix
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

Wrench Matrix
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Fig. 19: Twist and wrench matrices of sample assembly.

ACKNOWLEDGEMENTS

The work described here was supported by the US Army Research Office, Grant#W911NF-04-R-
0005.

REFERENCES

[1] Adams, J. D.; Whitney, D. E.: Application of Screw Theory to Constraint Analysis of Mechanical
Assemblies Joined by Features, Journal of Mechanical Design, 123, 2004, 26.

[2] Bordegoni, M.; Cugini, U.: Feature-based assembly design: concepts and design environment,
DETC97/CIE- 4266.

[3] Brunett, G.; Golob, B.: A feature-based approach towards an integrated product model including
conceptual design information, Computer-Aided Design, 32, 2000, 877–887.



Computer-Aided Design & Applications, 7(3), 2010, 319-333
© 2010 CAD Solutions, LLC

333

[4] Butterfield, J.; Crosby, S.; Curran, R.; Price, M.; Armstrong C. G.; Raghunathan S.; McAleenan D.;
Gibson C.: Optimization of Aircraft Fuselage Assembly Process Using Digital Manufacturing,
Journal of Computing and Information Science in Engineering, 7, 2007, 269.

[5] De Fazio, T. L: A prototype of feature-based design for assembly, in B. Ravani, ed., ‘ASME
Advances in Design Automation 1990’, Chicago, Illinois, USA, 9–16.

[6] Eng, T.; Ling, Z.; Olson, W.; McLean, C.: Feature-based assembly modeling and sequence
generation, Computer & Industrial Engineering, 36, 1999, 17-33.

[7] Gupta, S. K.; Paredis, C. J. J.; Sinha, R.: Intelligent assembly modeling and simulation, Assembly
Automation, 21(3), 2001, 215–235.

[8] Jayaram, U.; Kim, Y.; Jayaram, S.; Jandhyala, V. K.; Mitsui, T.: Reorganizing CAD Assembly Models
(as-Designed) for Manufacturing Simulations and Planning (as-Built), Journal of Computing and
Information Science in Engineering, 4, 2004, 98.

[9] Lee, B; Saitou, K.: Three-Dimensional Assembly Synthesis for Robust Dimensional Integrity Based
on Screw Theory, L. Mech. Des. 128, 2006, 243.

[10] Liang V-C; Paredis C.: A Port Ontology For Automated Model Composition, Winter Simulation
Conference, 2003.

[11] Lyu, N; Saitou, K: Decomposition-Based Assembly Synthesis for Structural Stiffness, Journal of
Mechanical Design, 125, 2003, 452.

[12] Lyu, N; Saitou, K: Decomposition-Based Assembly Synthesis of Space Frame Structures Using
Joint Library, Journal of Mechanical Design, 128, 2006, 57.

[13] Murshed, M.: Development of TechSpec model for legacy systems engineering, MS Thesis, ASU,
Tempe, AZ, 2008.

[14] Murshed, M.; Dixon, A.; Shah, J.: Neutral definition and recognition of assembly features for
legacy systems reverse engineering, ASME DETC2009-86793, San Diego, Sept. 2009.

[15] Murshed, M.; Shah, J.; Jagasivami V.; Wasfy A.; Hioslop D.: OAM+: An assembly data model for
legacy systems engineering, ASME DETC2007-35723, Las Vegas, Sep 2007.

[16] Noort, A.; Hoek, G. F. M.; Bronsvoort, W. F.: Integrating part and assembly modeling, Computer-
Aided Design, 34(12), 2002, 899–912.

[17] Pahl, G.; Beitz, W.: Engineering Design: A Systematic Approach. Springer, Springer-Verlag, 2007.
[18] Rachuri, S.; Han, Y.; Foufou, S.; Feng, S. C.; Roy, U.; Wang, F.; Sriram, R. D.; Lyons, K. W.: A Model

for Capturing Product Assembly Information, Journal of Computing and Information Science in
Engineering, 6, 2006, 11.

[19] Sambhoos, K.; Koc, B.; Nagi, R.: Extracting Assembly Mating Graphs for Assembly Variant Design,
Journal of Computing and Information Science in Engineering, 9, 2009, 034501.

[20] Shah, J.; Mantyla, M.: Parametric and feature based CAD/CAM, John Wiley, NY, 1995.
[21] Singh, P.; Bettig, B.: Port-Compatibility and Connectability Based Assembly Design, Journal of

Computing and Information Science in Engineering, 4, 2004, 197.
[22] Sodhi, R.; Turner, J. U.: Representing tolerance and assembly information in a feature-based

design environment, in G. A. Gabriele, ed., ASME Design Automation Conference’, Vol. DE-Vol. 32-
1, Miami, Florida, USA, 1991, 101–108.

[23] Sung, R. C. W.; Corney, J. R.; Clark, D. E. R.: Automatic Assembly Feature Recognition and
Disassembly Sequence Generation, Journal of Computing and Information Science in Engineering,
1, 2001, 291.

[24] Van Holland, W; Bronsvoort, W. F.: Assembly features in modeling and planning, Robotics and
Computer Integrated Manufacturing 16, 1999, 277-294.

[25] Wang, W.; Chen, G.; Lin, Z.; Lai, X.: Automated Hierarchical Assembly System Construction in
Automobile Body Assembly Planning, Journal of Mechanical Design, 127, 2005, 347.

[26] Whithead, T: Design of instruments & accurate measurements, Dover NY, 1954.
[27] Whitney, D. E.: Mechanical Assemblies: Their Design, Manufacture, and Role in Product

Developement, Oxford University Press, 2004.
[28] Yetis, F. A.; Saitou, K.: Decomposition-Based Assembly Synthesis Based on Structural

Considerations, Journal of Mechanical Design, 124, 2002, 593.


