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ABSTRACT

A dichotomy exists in the engineering design process between 1) product teams organ-
ized to engineer products collaboratively, and 2) the single-user architectures inherent
in computers and computer-aided design applications (CAx). Selective design authority
is typically assigned to individuals within a product team; they become contributors in
a serialized design process largely driven by a set of core CAx applications. Unfortu-
nately, single-user serial architectures inhibit concurrent engineering, in spite of the
numerous research efforts into product team cooperation, functional constraints, and
data/model propagation and transparency. By surveying modern collaborative tech-
nologies, including modern internet gaming, and by also demonstrating our own col-
laborative CAx prototypes, we draw some interesting conclusions as to collaborative
limitations. From these conclusions we propose research that will hopefully formalize
and focus the multi-user collaborative agenda, including computer and networking ar-
chitectures, user interfaces, and CAx applications.
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1 INTRODUCTION

The late 1970’s saw the practical evolution of the personal computer [40], which usage accelerated in
the 1980’s. This decade also saw the practical emergence of CAD applications as a mostly software 2-D
replacement for drafting [41]. It was not till the late 1970’s and early 1980’s that practical 3-D pack-
ages (CADAM, Calma, CADDS, etc.) were used by designers in the aerospace and automotive industries.
The CAD transition from mainframe to UNIX workstations provided individual designers with new
found flexibility and design independence. Prior to these new CAD applications, engineering designers
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and manufacturing personnel gathered freely around large drafting tables to discuss and successfully
resolve various design issues.

In the 1990’s CAx applications began the transition to personal computers; costs became more
reasonable, and modern CAx application software became more accessible to a new community of
companies and users, including educational institutions. The use of personal tools such as word proc-
essing, graphic design, database management, and network communications exploded during this pe-
riod.

The 1990’s also saw a sharp increase in the global demand for new consumer products as interna-
tional competition reduced product development timetables, and encouraged a new culture of opera-
tional and collaborative diversity. Yet, the basic architectures of both personal computers and com-
puter-aided applications remained fixed – providing the individual with advanced computational tools,
while limiting collaboration.

Today, product development practices assign the steps of conceptualization, specification, design,
analysis, process planning, and manufacturing to specific departments and ultimately to responsible
individuals, all within a highly controlled serial process, with the relevant CAx models securely
checked out and managed by PLM or other file management systems. Global CAx collaboration among
product team members is primarily observational, with appropriate feedback modification, although it
is now normal for CAx models to be “time period checked out” to several team members in a 24 hour
“chase-the-sun” work cycle.

One cannot help but wonder about the widespread exposure of intellectual property (IP) that fol-
lows such practices. Are companies simply dispersing their technical knowledge among the nations of
the world to maintain their competitive standing? Will this short term relevance strategy backfire? It
seems obvious that IP exposure is a reaction to global competition and the pressures of shortened de-
velopment timetables. But we suggest that IP exposure is also the result of not being able to leverage a
company’s existing talent because of the inherent single-user architectural deficiencies found in mod-
ern computer architectures and CAx applications.

This paper will first consider the abundant literature, collaborative prototypes, and existing com-
puter and networking architectures that define and limit multi-user collaboration. Next, we discuss NX
Connect, our collaborative client-server (CS) Siemens NX prototype that allows multiple users to simul-
taneously modify a Siemens NX CAD model. Although our architectural elements are similar to other
CS prototypes discussed in the literature, we have chosen to demonstrate collaborative CAD on a ma-
jor CAx commercial system, and to integrate VOIP communication among the users, along with the
automatic capture and distribution of design rationale/intent.

After drawing some general conclusions about the current CAx collaborative state, we propose a
collaborative agenda that will hopefully assist researchers, computer companies that develop operat-
ing systems, and CAx software companies to converge computer and application architectures to-
wards multi-user environments. We call this environment -CAx with a focus on computer-aided engi-
neering applications, and with the intent of collapsing engineering design process times.

2 REVIEW: MULTI-USER TECHNOLOGIES

We classify our review into these categories: 1) collaborative architectures; 2) collaborative infrastruc-
ture; 3) collaborative interfaces and multi-user tools; 4) model sharing and collaborative security; 5)
collaborative constraints and conflict resolution; and 6) gaming.

2.1 Collaborative Architectures

Although Google Docs is not an engineering CAx application, it is one of the first stable and commer-
cially used browser-based, multi-user document and spreadsheet editors [42]. Using client-server (CS)
architectures, on-line documents can be imported to client computers and simultaneously edited in an
unconstrained manner through the user’s browser application. A revision history is automatically
maintained for document recovery. The Google Docs application server manages access to a document
through an owner, collaborator, and viewer hierarchy, with copy privileges at all levels. Thus, docu-
ment security is loose and meant for open access environments.
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Sun, et al. [32], use M/S API’s and Transparent Adaptation (TA) to develop similarly unconstrained
collaborative access to Word and PowerPoint documents for multi-user editing. Sun extends opera-
tional transform (OT) theory to avoid inconsistencies in editing intent when two or more users are ed-
iting the same object. Multiple modes of viewing and editing are implemented, along with multi-user
awareness. Sun also provides some limited conflict resolution methods when editing the same element
(e.g., a document character or a graphical element), but the final resolution solution for multi-user di-
rect conflicts is unclear, although all modification instances are stored. Each client must import addi-
tional software in the form of a collaborative executable that is linked to the Word and PowerPoint
applications to record/transmit the document editing operations among the multi-collaborators and
the server.

Zheng, et al. [38], extend the TA methods of Sun [32] to AutoCAD as a CoAutoCAD application.
Zheng proposes an open unconstrained collaborative architecture, suggesting that conflict resolution
among several users can optimistically be resolved. He refers to constrained collaboration such as grid
locking as pessimistic approaches to collaboration, yet notes that proprietary information should not
be shared, and also notes that collaborative design may need to be organized among the design group
individuals. Like Sun he suggests that a multi-user system should provide multi-user awareness at
each station.

Ramani, et al. [28], like most researchers in collaborative design, use a CS architecture where the
server acts as the master to distribute model changes between collaborating session users. In Ramani’s
implementation the server stores the master model and the client (local) model is updated by com-
mand objects representing local creation, modification and deletion. The ACIS geometry kernel is used
in the prototype implementation and models can update locally based on change commands, although
the updating frequencies and difficulties are not discussed. The viewing model is stored locally in fac-
eted form.

Cera, et al. [6], have designed a prototype called MUG for group authoring of design semantics and
sharing of design models. MUG uses CS architectures, along with Java tools like Java3D and OpenGL.
Many multi-modal sharing features of the previous references are demonstrated without detailed dis-
cussion into user conflict resolution. Cera states: “The need for common knowledge sharing standards
(which go beyond data standards such as STEP) has been often cited as a major obstacle to achieving
true concurrent engineering.” The paper’s main contribution is “designers collaboratively author an
assembly design, specifying its structure and layout in 3D while annotating the relationships among
all the entities in the assembly with reference to base ontologies.”

Jing, et al. [15], appear to use a peer-to-peer (P2P) architecture between replicated collaborative
CAD stations. Each peer must also replicate the multi-user software that controls the change inputs
and outputs, local locking method, and broadcasting to peers. It is unclear how peers are accepted into
the collaborative sessions.

Li, et al. [17], present a 2005 review of the status of collaborative CAD, noting the dominance of CS
architectures, lack of data security, and the difficulty of real-time interaction over networks, while
proposing that model simplification could adapt modern streaming methods. Li distinguishes thin-
server-strong-clients (clients have full model) from strong-server-thin-clients (client model has partial
model and mainly used for visualization). Liu, et al. [19], recognize the reluctance to use collaborative
CAD, which can be related to network latencies, security and cultural issues, and because software
companies have not adopted collaborative advances. They propose that independent agent-based me-
thods be deployed to enhance the multi-media communication between collaborating personnel. The
intelligent agents can apply rules to communicate among themselves and distribute change informa-
tion among collaborators.

2.2 Collaborative Infrastructure

This paper does not focus on general product development infrastructure; we are more concerned
with the collaborative interaction infrastructure among multi-CAx users. Numerous papers note that
engineering collaboration difficulties can be traced to the basic architectural limitations inherent to
modern CAD systems, a basic premise of this paper. For example, Chen, et al. [8], state: “A collabora-
tive CAD system cannot be simply set-up through equipping a standalone CAD system with IT and
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communication facilities. Due to the complexity of collaborative design activities and the specific cha-
racteristics/requirements of CAD systems, it needs some innovations or even fundamental changes in
many aspects of CAD systems, such as infrastructure design, communication algorithms, geometric
computing algorithms, etc.” Chen then demonstrates adaptive modules that can be used to abstract
design functionality and pass related data between distributed users, even between different applica-
tion types, such as AutoCAD and M/S Excel.

Barbosa, et al. [2], note that conventional CAD systems control their distributed models through
version control and propagation change. He suggests that core infrastructure changes are imperative
for effective collaboration, suggesting that CAD models need an object model foundation. Models
should be made up of objects that can be collaboratively interpreted, edited, linked and distributed.
These object models, built on a fundamental geometry engine like ACIS, will relate model attributes,
provide links to multiple collaborators, record change histories, and can be instantiated into visual
forms.

Bonneau, et al. [3], demonstrates, for complex building applications, a hierarchical file structure
for breaking up building structures into sub-structure files, then assigning file design responsibility to
distributed collaborators. In a sense, the manager artificially breaks the complex structure into an as-
sembly of component parts (and files), such as different floors or structures. Document control and
integration, with oversight management, then permit multi-users, assigned appropriate files, to add to
or modify the overall structure.

Fan, et al [12], consider grid computing and hybrid CS/P2P systems for sharing resources among a
set of collaborators. Effective CAx collaboration will require all users to access equal resources; else
there will be a productivity imbalance.

2.3 Collaborative Interfaces and Multi-User Tools

Researchers have experimented with multi-user interfaces for decades. Liu, et al. [19], propose to use
intelligent agent software to support interaction among multi-users. Each site must have this software.
Agent software can locally capture audio and video streams for each user and pass them over the col-
laborative network; another agent might capture design changes, and update these changes among
users, according to user privileges.

Shen, et al. [29, 30], use Augmented Reality (AR) concepts to display a model among collaborating
design teams, where each member can assume a different view point, but only one member has edit
rights. Using CS architectures, the model is replicated at each user site and server software manages
the change propagation among the users.

To improve multi-user collaboration in fusion control rooms Wallace, et al. [34], have developed a
multi-cursor X window manager that allows multiple users to concurrently interact with all desktop
components, including applications, menus, etc. Multi-cursor support has been added at the systems
level, rather than application level, allowing multiple users to simultaneously control the active appli-
cations on the screen using different colored cursors. Only one cursor can grab an application at a
time, but multiple people can control the same cursor. The architecture uses a single event buffer
which simulates multiple event queues by separating the system cursor events from the multi-cursor
events. The limitation is that the X window software is essentially time sharing the system cursor
among the different users. Another limitation is that user conflicts occur without carefully orches-
trated interactions. The authors found that larger displays worked better in the multi-cursor sessions.

Xu, et al. [37], intercept and broadcast Windows GUI events to distributed users, rather than cap-
ture CAD API events. This avoids the development of collaborative software based on application
API’s. All users must be exercising the same application and the event interceptor and broadcasting
software must also be replicated at each site. There remain some problems that relate to initialization
and synchronization.

Multi-touch research has been conducted over several decades and we now see screen touch ges-
tures integrated into user convenience interfaces on cell phones and PDA’s; see [21] – [24]. Team-
Player [33] is a game that allows you to use multiple mice and keyboards on a Windows based system.
TeamPlayer is designed for a group environment where multiple people will be interacting with the
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same computer. Each mouse is assigned a unique colored cursor to identify it. It appears to handle the
problem of multiple mice by shifting the focus to the "real" Windows cursor for actual actions.

Multi-Cursor ICEWM [22] is a multi-user window manager currently available for Unix X11 envi-
ronments. It creates a desktop environment that allows for simultaneous input from multiple users.
Users can work concurrently on different applications or desktop items. Each user gets a uniquely co-
lored cursor. The multi-cursor window manager works by time-slicing the single system cursor. The
state of each user's multi-cursor is maintained and restored just before an XEvent is sent to the sys-
tem.

Dempski, et al. [9], have developed large user interactive display walls that use camera-based
touch solutions and that can resolve finger dynamics at 30 Hz. The system is capable of displaying
multiple user interactions, but one touch at a time, although the researchers are experimenting with
multi-touch solutions.

2.4 Model Sharing and Collaborative Security

Collaborative security should be a primary concern for industries engaged in global product develop-
ment. The CS and P2P architectures used in the reviewed research prototypes inherently expose IP to
multiple collaborators. Wang, et al. [36] address this problem by proposing lean and selective informa-
tion sharing among collaborators, using encryption means to securely pass the information over the
network among collaborators. Based on role-based viewing methods, partial data sharing is used to
deter reverse engineering, but must be well integrated with data management systems.

Cera, et al. [5], use role-based viewing control access control through geometric partitioning of 3D
models. “The partitioning is used to create variable level-of-detail (LOD) meshes, across both individu-
al parts and assemblies, to provide a model suitable for access rights for individual actors within a
collaborative design environment.” This technique is used to implement hierarchical security access
privileges based on the Bell-La Padula model.

Reference [43] describes the SoftXpand product that, by adding several video cards, creates sepa-
rate Windows XP virtual machines running from each video card. In this brute force method the virtual
machines can be displayed either on one monitor, or on several monitors. The obvious advantage is
that on each virtual machine you can run different processes. This method could be used to share, yet
secure, the design models.

2.5 Collaborative Constraints and Conflict Resolution

Jing, et al. [15], use a local locking mechanism for distributed and replicated collaborative CAD sys-
tems to avoid user-to-user conflicts over a network. Topological correspondence conflicts are handled
by hierarchical naming conventions and some user assigned responsibilities. The RCCS (Replicated
Collaborative CAD System) architecture appears to be P2P so that the ACIS models are replicated lo-
cally at each user station, along with the collaborative management software. The RCCS methods use
operational transforms (OT) to bind the topological operations with the object parameters when they
are transmitted to the other collaborators for model updating.

Bu, et al. [4], use semantic locking to prevent semantic violation, where the locks are classified into
region lock and object lock for resolving violations at different levels of granularity. Users can attach
comments to the lock explicitly or implicitly using some rules. User negotiation and versioning rules
are used to resolve conflicts among the collaborating users.

Chen, et al. [7], apply three coordination rules embedded in e-Assembly to satisfy collaborative as-
sembly constraints in a CS environment. The coordination rules serve to maintain consistency among
collaborators working on different aspects of an assembly (atomic object, object links, and object in-
terface constraints).

Dempski, et al. [9], note that their display walls resolve multiple user interactions one touch at a
time, and that this introduces some conflict among the gathered users, who may be sub-grouped
around an application.

Constraint-based parametric design is a useful way of scaling designs where only a few parame-
ters control the design details. Although Lai, et al. [16], do not focus on collaborative CAx, they do
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demonstrate some hierarchical constraint-based design concepts that could prove useful to decompos-
ing tasks among a set of collaborators. Lin, et al. [18], note the difficulty of applying constraint me-
thods when several collaborators are concurrently engaged in graphic design, while noting that con-
straint methods are proven tools in single user systems. Lin considers collaborative blocking, masking,
and time stamped methods when constraints are applied to design operations such as moving a
graphical object that is subject to some geometrical or parametric constraint, and where multi-users
working the same object would confuse the constraint relations.

Lu, et al. [20], suggest that product collaboration falls into three primary areas: 1) design rationale
and decision-making processes; 2) design data, as an information flow process among design activi-
ties; and 3) design activity as a collaborative group conducting design operations based on task de-
pendencies. These areas often fail to acknowledge the importance of social interaction among the
product team members, leading to the need for guidelines to social interaction and conflict manage-
ment. The authors use Petri Nets to represent the collaborative process and to incorporate socio-
perspective states that accompany the Petri representations.

Panchal, et al. [25], present an Interval-Based Constraint Satisfaction (IBCS) Method for decentra-
lized, collaborative multifunctional design. The authors develop a strategy of capturing a designer’s
decision making processes (as represented by design parameters) throughout the collaborative
process, then representing the range of the design parameters as design constraints. By comparing
each user’s constraints, the design space is incrementally reduced, complexity is reduced, and the de-
sign converges.

Ram, et al. [26], propose that object-oriented databases (ODBMS) are more appropriate for design
activities than relational databases [36]. Although commercially object databases are dominated by
relational databases, ODBMS are better designed for the diversity of information found in engineering
design, and that can be represented by design objects, with object links to other information such as
video and audio. Integrating collaborative design into object databases will require methods for con-
flict resolution, because the differing views of the participants. Conflicts normally occur when one
participant optimizes the design problem at the expense of the other participant problems. Ram
shows how a constraint meta-object can be used to propagate the design constraints (e.g., parameters
regions or limits) among the participants, allowing them to resolve visually or verbally the various de-
sign objects.

Sun, et al. [31], address the problem of maintaining design intent when exchanging CAD data be-
tween collaborators on different CAD platforms. Sun notes that feature based techniques, along with
the design history/order, can preserve the design geometry on different CAD systems, but that the
design intent is lost – see [49]. Sun proposes a constraint conversion method to preserve design intent
using, e.g., Hoffman’s geometry certificates [14].

2.6 Gaming

Gaming is concerned with network speed and strategies, with reducing network communication laten-
cies between players, and with maintaining data consistency and security for hundreds/thousands of
players. Reference [40] presents algorithms for handling these problems where a server can update
each player and the numerous AI clients (~100 or so units) with relevant (reduced) data consistency at
1 – 2KB/sec. The methods use data compression and grid prediction algorithms to reduce the amount
of dynamic data that has to be sent between players.

Reference [45] notes that server centralized gaming architectures suffer from robustness (single
point of failure) and scalability limitations, while suggesting that distributing the game architecture
among the users, according to available resources, will provide greater speed and robustness. This P2P
mode has its own challenges in terms of data consistency and updating latencies, although noting that
many games accept weak data consistency. The Colyseus architecture partitions game state among the
distributer player servers, dynamically maintains a table of servers, and speculatively pre-fetches ob-
jects by predictive techniques.

GauthierDickey, et al. [13], propose a P2P architecture (greater scalability, but more difficult to
implement) as alternative to CS architectures (limited throughput and scalability), noting the chal-
lenges of maintaining consistency, access rights, and event propagation, while avoiding cheating.
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Wang, et al. [35], propose hybrid P2P/CS architectures to collect a set of clients around distributed
Game Service Platforms (GSP) in local clusters. Each GSP maintains local cluster states and can query
the GSP states of other clusters. The hardware and software implementations are not detailed.

Douglas, et al. [10], apply an agent-based approach to facilitate real time interactions between
player entities in a P2P game architecture. A Spatial Data Service (SDS) manages entities within regions;
entities register their current region of involvement with the SDS and query the SDS for other entities
in the region, thus making connections/interactions through real time agents. Note that regional based
approaches reduce significantly the P2P information and dependencies in massive multi-player games.
Assiotis, et al. [1], also split the virtual world into smaller areas, but use a distributed CS architecture,
where server density is a function of player density in virtual regions.

Endo, et al. [1], deal with the P2P problems of cheating, user interaction delays, and network con-
gestion by collecting user machines into a cluster with some acting as site servers. The site servers act
to store all user states within the site cluster. Updates are balanced against all site servers and ac-
cepted by all user machines. One site server is designated the administrative server to handle the serv-
er delegations.

Chu [46 – 48], an IBM researcher, describes a distributed server architecture for MMO games that
consists of distributed servers to interact with gaming clients, an application server to integrate the
distributed gaming servers, and a database server to persist and retrieve data.

Recognizing that the network is the bottleneck in gaming sophistication, and that gaming resolu-
tion continues to increase, Ramakrishna, et al. [27], construct a multicast tree connecting the players
that have a low average player-to-player latency. “The main goals of our research are to enable the
building of self-configuring and self-optimizing structures for the routing of packets between game
clients. It is our aim to ensure that the number of packets containing game information transmitted
through the network be minimal while also ensuring that the average time taken by a packet to move
from one client node to another be as low as possible.” The drawback is that this architecture, al-
though user transparent, still has to be deployed over network nodes, and thus requires the coopera-
tion of Internet Service Providers.

3 NX CONNECT - COLLABORATIVE CAD PROTOTYPE

NX Connect, as an add-on to the existing CAD package Siemens NX, allows multiple users to access
and make changes simultaneously to a single part file. This prototype software was designed to inves-
tigate the limitations of collaborative modeling using a primary commercial CAx application, rather
than develop a new application from the ground up. Siemens NX has an extensive Application Pro-
gramming Interface (API) available with the software.

NX Connect allows multiple users to open and actively make changes to a part file simultaneously.
Each user is able to view the part independently and utilize the zoom and rotational functions without
affecting the view of the remaining users. This allows each user to focus on the intended task while
viewing updates made to the part file by other users.

3.1 NX Connect Architecture

NX Connect utilizes CS with a thin server and strong client. The server will retain all necessary infor-
mation for the part file and each of the workstations will then utilize that information to
create/update identical parts on each of their respective machines. The server also retains and makes
available each change made during the design session. Each client generates a local copy of the part
file and utilizes information gained during the design session to locally update the part. Therefore
most of the computation and processing is done on the local workstation, allowing for a much faster
runtime environment. NX Connect relies upon four custom modules, Fig. 2.

The Information Storage Module (ISM) in the server stores the part features and related data, in-
cluding all information relating to part location and multi-user access. The primary qualification for
designing an ISM is that it must quickly and efficiently store and recall small and large amounts of
data. We applied Microsoft’s SQL Server as the RDMS which is easily accessible by calls made in C#.
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A series of tables are created and linked together to organize the various data types. Among those
created are tables to manage the Parts, Users, Features, and each available feature type. A hierarchical
structure was implemented where each part stored in the Parts table is assigned a Part ID which is
then used in the child table that contains all of the features, Fig. 3. The features for the previously
mentioned part will have as a parameter value the Part ID for which the features apply. Each feature is
then assigned a Feature ID that is utilized in the respective child table corresponding to the feature
types (extrude, revolve, etc.). Similar relationships are implemented within the Feature Type tables
linking those features to other children parameters such as the sketch used.

Data stored in Microsoft SQL Server is limited to a subset of primitive data types and cannot store
more complex NX Object types. Primitive values consist of common data types such as int, float, and
char. To store the information for each part file it is necessary to first break down each of the part
features into parameters that could be described using these primitive types. Fig. 4 illustrates how an
NX Object is broken down into its primitive values, where the X, Y, and Z coordinates are stored in the
database as either float or double type variables along with the sketch name. By using primitive values
a minimal amount of change data can be sent over the network.

The NX Connect multi-user environment requires changes made locally on each users system to be
constantly written to the database and the database changes to be continually broadcast to all con-
nected users. Two modules were developed for this purpose: 1) Data Capture Module (DCM) and 2)
Data Sync Module (DSM).

Data Capture Module - To eliminate the need for each system to constantly send information to
the database the DCM monitors the NX session to determine when changes have been made to the part
file. When a change is detected the DCM determines the feature that has been created, modified, or
deleted and then alerts the NX Controller of the change, then passing the change information for the
modified feature.

Data Sync Module - The DSM monitors the ISM to determine if any changes have been uploaded
by another user. Upon finding a change to the database, the NX Controller is alerted to the changes.

NX Controller - At the core of the NX Connect architecture is the NX Controller. This module
converts all part information into their primitive values for storage in the database, as well as convert-
ing these parameters back into useful data to construct the corresponding features in the NX session
on each users machine. As mentioned above, the NX Controller receives data from the DCM and DSM.
When the DCM reports a change in the local NX part file, the controller gathers all pertinent informa-
tion about the modified feature by utilizing the NX API. Using the API commands the controller de-
termines the feature type and then deconstructs the feature into the basic parameters such as extrude
start and stop distance, draft angle, and Boolean type. If a sketch is used for the specific feature the
controller stores the sketch name for later name reference. All such information is sent to the corres-

Fig. 1: CS architecture. Fig. 2: NX Connect modules. Fig. 3: Server feature attributes.

Server

Client
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ponding table in the database for distribution to each user. This controller function is labeled the
push function.

The NX Controller is also responsible for a related pop function, Fig. 5. After a user modifies the
existing CAD document, and changes are uploaded to the database, the DSM will then alert the Con-
troller of a change ready to be distributed to each user. The NX Controller will then read the feature
data and place each parameter in the appropriate API function to recreate locally the feature or mod-
ification on all user workstations.

3.2 Implemented Functionality and Example

Currently, our NX Connect prototype has implemented networked exchange of datum planes,
sketches, extrusions, Booleans, and revolutions. Within the sketching function line and arc features
can be created. Presently, no geometric or dimensional constraints on a sketch are recorded in the da-
tabase or transmitted to other workstations. Other more complicated features have not yet been im-
plemented such as sweeps, blends, surfaces, or 3D curves. By testing the NX API with our basic func-
tionality, we are confident that we could generate a commercially viable collaborative CAx under the
CS architecture, with some minor API additions, and with some ownership/revision modification of
PLM software.

In the orchestrated example of Tab. 1 two users collaborate to make a part that requires multiple
features. In this particular example one user creates the initial plate by extruding a sketch and is then
joined in the design session by user two. Both users work simultaneously to complete the desired part
of Step 4 in Tab. 1.

Fig. 4: Object primitives.

Fig. 5: For each feature the push
and pop functionality must be
implemented separately. This
code shows the pop function.
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Steps User 1 User2

Step 1 - User 1 has the task of
creating the upper ring of the
part, while user two is creating
the outer walls of the cylinder.
Each user is editing their respec-
tive feature using the extrude
function. These figures show a
screen shot from each user at the
same time. Both users are about
to finalize their respective extru-
sions.

Step 2 - User 2 finishes the extru-
sion first and the outer cylinder is
updated to the screen of user 1
while user 1 is still working with-
in the extrude dialogue box. User
1 then completes the action and
the upper ring is sent to the data-
base and out to user 2 with less
than a second of delay. These
figures show updated screen
shots of each screen after the ex-
trude functions are completed.

Step 3 - A third user might also
join the session and be responsi-
ble for uniting all the pieces. At
the same time User 1 creates a
through hole in the side of the
cylinder by adding a cylinder to
be subtracted from the part, and
User two creates a lip on the top
surface of the part. These figures
show user 1 creating the through
hole in the part while user 2
works on the upper lip.

Step 4 - These figures show the
final part after all actions were
completed. By working together
in a parallel modeling environ-
ment, the complex part was
created faster than conventional
single user approaches.

Tab. 1: NX Connect example.
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3.3 User Interfacing

As add-on software to the commercial package NX, NX Connect does not change the modeling envi-
ronment available through the basic NX software. The NX Connect interface consists of a small pop
up window created when the NX Connect DLL is run from within the NX system. Within the window
are options to populate the parts list currently stored in the database, to load a selected part from the
list, and to upload the user’s current part into the database. As of now, no functionality has been
added to display other users within a design session or to communicate with others who might be
working at the same time. Each user is aware of other users only through updates they might make to
the part file.

Integration with other collaborative techniques will be continually investigated. For example, inter-
personal communication tools like Voip Buster, Ventrilo, or Skype have been used in the NX environ-
ment and could satisfy higher-level communication in real-time collaboration. Currently we have a
prototype that utilizes Skype integrated into NX so that multiple users can collaborate through audio.
The goal of the v-CAx environment is to provide a high level interface for modeling and viewing by
multiple users, without changing dramatically the modeling interface accepted by industrial users of
commercial CAx applications.

3.4 Limitations

The Siemens NX system was not created for multi-user capabilities, nor was the API developed
with this purpose in mind. One significant issue is determining when the NX part file has undergone a
change. Initial attempts included trying to access the event buffer which would contain the most dy-
namic information about changes in the part file. However, it appears that NX does not allow simple
access to the event buffer. An alternative method has been devised utilizing undo marks to mark re-
store points for the undo function. NX creates undo marks for many different actions performed
within a session, including many that have no significance to the multi-user functionality. The DCM
poles the NX session for undo marks that signify significant changes to the part and then sends the
alert to the NX controller.

Another area of difficulty is found in the way NX Connect handles sketches. Currently NX adds
sketches to the history sequence as soon as a sketch is begun, and while a sketch is being edited it
waits for all the geometry and constraints to be added before updating the model to contain the up-
dated sketch. Thus, while in sketching mode NX does not commit any other updates. If another user
adds a feature to the model history while in sketching mode, the local machine will not receive those
updates, including the start of another sketch by another user. Thus two users can not concurrently
create a sketch, a major detraction from the overall usefulness of a concurrent modeling system. Oth-
er than the sketcher the other NX operations do not update until they are finished. Fixing these defi-
ciencies would not seem to be difficult.

The basic design of a CAx API does not recognize the need to pass design changes among multi-
users. For example, in certain cases while executing the command to return the name of a specific pa-
rameter such as Datum Axis, NX returns the handle to the parameter object, which is a memory ad-
dress specific to the user’s computer, but invalid on other workstations. It seems that a collaborative
API could be introduced to resolve this problem by converting the geometric change data into an ap-
propriate format for Internet exchange. CAx companies are already well versed in providing API’s for
conversion to neutral forms, e.g. IGES and STEP.

4 COLLABORATIVE CAX OBSERVATIONS

Global product development needs better tools for collaboration. After reviewing the cited and excel-
lent body of research, then comparing it to the single user CAx commercial applications being widely
used today, such as NX, Catia, PTC ProE, SolidWorks, Varimetrix, etc., we ask why is there not wide-
spread use of collaborative product design tools? Conversations with CAx architects reveal that mod-
ern CAx/computer OS architectures are simply not built for multiple users and have not anticipated



Computer-Aided Design & Applications, 7(3), 2010, 387-404

© 2010 CAD Solutions, LLC

398

(or perhaps even desired) architectural flexibilities like multiple screen events, multiple event buffers,
multiple cursors, multi-user GUI’s, regional/spatial model decomposition beyond assemblies, applica-
tion layering of CAx models over partially completed models (simultaneous design, analysis, process
planning), and others.

4.1 Primary Observation Limitations

If collaborative CAx is to become practical, it will require significant modifications/additions to exist-
ing computer OS’s and commercial PLM/CAx tools. We emphasize that product development in most
companies depends on current commercialized CAx software. Ultimately, the end user will have to
demand new collaborative tools from their CAx providers. There is one exception though. With a few
additional interface tools and some increased flexibility in PLM version control, a CS adaptation could
sustain multi-user CAx collaboration on shared models, but with some IP vulnerability.

4.2 General Observations

We list our general observations in no particular order of preference:
1) Network performance - Network communication latencies and inconsistencies drive the archi-

tectural solutions of many of the successful prototypes, depending on application type. CS is
the dominant network architecture used for collaborative CAx investigations, but hybrid P2P
and CS networking architectures may regionally replicate servers in response to network traf-
fic and distributed user space densities.

2) User density - The application type (game, CAx application) will determine user density and
participation flexibility. Gaming is particularly limited by CS architectures as user densities
grow. P2P architectures, though less structured, less secure, and more difficult to profit from,
enable higher user densities through means such as spatial/gridding observation and predic-
tion, and regional control clustering (distributed serving).

3) Replication - All collaborative approaches replicate something at the multi-user sites. It may be
CAx or gaming models, the application itself, or dedicated collaborative control/management
software which may include databases. The collaborating tools must be transparent to end-
users, other than those designed to promote multi-user awareness and interaction. An impor-
tant security concern to product industries is that CS collaboration may require CAx model
replication at user sites.

4) Security - Gaming is concerned about cheating and security, and provides methods to minimize
cheating problems. There is less focus on security issues in the collaborative CAx engineering
prototypes that we reviewed. P2P architectures provide less security than CS architectures
where a server application can more easily detect user anomalies.

5) Model/Process Ambiguity - Gaming can tolerate some model or user action ambiguity, while
CAx models/processes must be precisely defined and maintained. CAx activities in the early
product conceptualization and specification stages can tolerate some ambiguity.

6) Model editing - Collaborative model editing is examined at many levels, from the root opera-
tions [4,5,6] used to construct parts/features, to model partitioning and spatial gridding, and
other constraint methods used to break the model into user assignable design regions. Propo-
nents refer to unconstrained collaboration as optimistic, whereas regional gridding and con-
straint methods with user assigned access and non-authorized blocking are referred to as pes-
simistic. Optimistic methods require more user communication and conflict resolution, which
may demand time stamps and other operational sequence information.

7) Collaborative agents – A popular, less structured approach to user interaction is to use soft-
ware agents to observe, record, and transmit user actions among a set of collaborators. These
agents can be configured for application type and user/cultural personalities.

8) Conflict resolution – Some researchers allow users to edit the same objects, depending on au-
dio/video personal interaction to resolve conflicts, whereas other researchers use grid (re-
gional) locking, semantic and session locking, and model blocking to partition multi-user in-
teractions.

9) User interfaces – Limitations such as single event buffers and screen cursors have limited GUI
collaborative flexibility for CAx applications. Researchers have generated multi-cursor control
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using software like X windows but the event control is limited to time sharing the OS cursor
event. Xu [37] uniquely captures and transmits CAx Windows GUI events among collaborators
rather than program at the CAx API level. Researchers have observed that multi-user collabora-
tion is more effective on larger displays.

5 AN AGENDA FOR PRACTICAL COLLABORATIVE CAX

As noted earlier, CS collaborative prototypes are feasible when both models and CAx application soft-
ware can be replicated and distributed. Replication leads to some IP vulnerability and PLM systems are
not designed for simultaneous ownership of models or processes by multiple personnel. Product de-
velopment tasks are typically delegated to organizations with defined expertise, and ultimately as-
signed to individuals. Multiple individuals are not likely to be assigned the same tasks in the same
time zone, although they may be asked to cooperate with lesser ownership privileges.

Today, companies use task decomposition and integration to schedule an orderly product flow
through the development and production stages, even when activities are distributed globally. It
seems unlikely in the near term that companies will champion unconstrained (simultaneous) low-level
model editing, because of the intense user interaction needed and the inconsistency of Internet com-
munications. It also seems unlikely that companies will allow more model ambiguity or IP exposure.
Thus, collaborative advances need to protect IP in a distributed environment, and yet allow personnel
meaningful ways to simultaneously edit models. This appears to favor some modes of partial model
exposure, e.g., model decomposition and constraint boundaries.

Companies will be interested in new collaborative methods that blend transparently within exist-
ing CAx tools, rather than complex and additional applications that run outside the mainstream CAx
tools. This could be satisfied by expanding CAx API’s to communicate model changes over the net-
work, while expecting a managing server to update the changes and maintain model integrity. Server
clustering poses a potential hybrid P2P/CS collaborative solution in global product development, but
poses more of an IP risk. Partial model assignment could work in a clustering architecture.

A logical question is how might CAx GUI’s be modified to support multi-user collaboration? Multi-
ple and larger displays are rather self-evident. Multiple displays would expand the viewing window
and even allow for the “brute force” compounding of applications, each application assigned to a dif-
ferent user. Of course compound applications would need compound cursors. Multiple cursor inputs
in a single application window could lead to editing conflicts and also require that the CAx event
buffer be redesigned to recognize multi-cursor uniqueness. There are other challenges to overcome,
such as converting single event buffers to multi-event event buffers. How would users in the same ap-
plication window navigate the hierarchically layered menu windows? Some CAx applications do not
allow access to the event buffer through the API, but may provide access to the design operations and
parameters through a history file sequence and undo markers.

Another strong research component that could be integrated into existing CAx GUI’s is agent
software. Agents could be deployed to reflect the cultural preferences among a set of collaborating
users, and to filter and distribute user events among collaborators. Unique avatars and other dynamic
icons could reflect progress, query events, uncertainties, etc., to connected multi-users through the
GUI. Current CAx GUI’s could be extended to configure multi-user agents on each user’s interface.

Model decomposition and constraint boundaries (regional blocking) could be implemented without
major changes in current GUI architecture, and allow users to collaborate on a single model without
spatial or GUI event conflicts. Viewing strategies could permit collaborating users to view or mask the
partially completed regional models of the other users. This could resolve unanticipated design issues
sooner, and promote teamwork and learning.

Agenda Item 1: Collaborative Understanding – Initial investigations should examine current tools
for development collaboration, and how industries are applying these tools, particularly examining
business practices when distributing IP through globally distributed product groups. The investigation
should also consider expanding API access to the CAx kernel, identifying where the API could be modi-
fied for a multi-user environment. This would include direct access to the event buffer, and new API’s
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that would extract the core parameters for the various design objects, rather than handles to proprie-
tary modelling objects.

Agenda Item 2: Practical CS Collaborative Architecture - Numerous prototypes are working on
CS architectures, where the model is replicated at each site. If model security can be relaxed among a
set of trusted product engineers, then the development of a few more tools will make CS collaboration
practical. These include CS for localized collaboration and distributed server clustering.

CS for localized collaboration – In more localized environments where the network proves reliable
and consistent, and assuming that several CAx companies are willing to expand/modify their API set
to resolve some of the minor deficiencies mentioned earlier, a strict CS architecture could support
multi-user collaboration. New multi-user software, such as the NC Connect prototype in this paper, or
some of the other notable prototypes reviewed in this paper, could be used to generalize an API set for
multi-user collaboration, with capabilities to expand current CAx GUI’s for multi-user observation and
model activity updating.

Distributed server clustering - Gaming technologies have made strategic advances in networked
server distribution/clustering that could prove useful to collaborative CAx. Network latency is a criti-
cal dynamic to both successful gaming and CAx collaboration. Global companies will have develop-
ment offices distributed among several global sites, and thus need to organize their facility servers by
user density and development tasks. PLM systems need to incorporate a simultaneous access multi-
user file mentality different from current versions, allowing a manager to assign simultaneous user
file read/write access. Other PLM procedures will need to be developed to dynamically update part
files in a simultaneous multi-user environment, with some type of manager alert, review and approval
process.

Agenda Item 3: Model Decomposition and Multi-user Constraints – CAx and PLM systems under-
stand part assemblies and divided ownership. It seems that expanding these concepts to regional
model decomposition would be practical using many of these same features. Whereas boundary condi-
tions are used to segregate and join assemblies, constraint equations and other functional relation-
ships could be used to decompose continuous parts regionally, by volume, surface, perimeter, func-

tional relationships, etc. – see Fig. 6. New methods would assign users to a specific model region, di-

Fig. 6: Regional decomposition and constraint/boundary planes.
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vide the regions by constraint features or functional relationships, monitor the screen cursor against
the region boundaries, and expose/hide/lock a decomposed model region from other collaborators.
The CAx GUI should enable only those menu options appropriate to the features within the user’s edit-
ing region.

Agenda Item 4: Multi-User Screen Dynamics – Generally, CAx API’s provide for customizing GUI
menus/panels for individual user needs, but are not designed for multi-cursor-user collaboration be-
cause computer OS’s presume a single event cursor per computer screen and do not have API’s to
communicate part changes among a multi-user group. Newer OS’s now incorporate multi-cursor capa-
bilities that could show other user design edits, but for viewing purposes only. Regional blocking will
not allow removed users to change a locally owned model. A strong need for new collaborative GUI’s
would be the interpretation of multi-user edit intent among collaborators, and its timely transmission.
Multi-user awareness is critical to those engaged in collaborative design, along with appropriate data
filtering. Agent software has been shown to be effective in capturing and transmitting local changes
like these, and could be designed to capture the various cultural elements in global product develop-
ment. Agent software could be incorporated into existing GUI’s with appropriate filters to pass only
the data relevant to the current user activities. We propose that agent software be strongly investi-
gated as an add-on capability to existing CAx GUI’s. Many gaming features such as avatars, lexicons,

predictive actions, and regional dynamics, could prove useful in interpreting another user’s design
intent among several users.

Agenda Item 5: Collaborative Layering – Figure 7 shows the conventional product development
process on the left side. Historically, the steps of specification (constraints), design, analysis, and
process planning consume the Engineering Design Process activities. These activities are conducted
serially, with the related tasks spread among dedicated departments and personnel. When down-
stream design or manufacturing errors are discovered, feedback modifications move the product/part
back upstream. CAx applications are designed for this serial streaming and feedback process, and
perhaps even encourage its serial nature. We would suggest that existing CAx architectures can be
changed to encourage the process layering shown by the Venn diagram of Fig. 7. Regional decomposi-
tion, when carefully considered, could encourage several CAx processes to be conducted simultane-
ously in partially or fully completed regions, such as laying down finite element models in completed
regions, or tool paths. Dimensioning and manufacturing features, tolerances, tool and machine selec-

Fig. 7: CAx process layering.
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tion are examples of activities that could be applied immediately after the part geometry is reasonably
well defined. This level of collaboration would encourage personnel with different expertise to provide
more timely feedback and reduce the development cycle.

Agenda Item 6: Collaborative Security - Product models contain sensitive information (trade se-
crets, patentable ideas) that must be protected to preserve competitive advantage. The new collabora-
tive modes that we have investigated introduce new patterns of data sharing that must provide appro-
priate access control so that only authorized individuals and processes gain access to information and
are authorized to make changes.

It is necessary to explore fine-grained, scalable, easy-to-use, and flexible access control methods to
ensure that all changes are consistent according to policy and only available to authorized entities.
New methods must be suitable for access control in open systems where the participants are not in
the same security domain. Traditional authentication approaches based on identity may not be suita-
ble for an open environment. New policy-driven approaches that rely on trust management approaches
for sharing across organizational boundaries should be considered, along with audio and video recog-
nition.

6 SUMMARY

We recommend that researchers, end-users, CAx software companies and vendors recognize that mul-
ti-user CAx is feasible and practical, with minor changes and additions to existing API’s and design
procedures. Using the existing body of research and our own prototypes, we have proposed a practical
agenda for development that will lead to commercially viable applications and that will assuredly re-
duce product development cycle times. We have also suggested that the changes will most likely be
successful if they are minor revisions to existing and implanted commercial CAx software.
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