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ABSTRACT

3D design retrieval works, which focus on geometric representations, can hardly
obtain reusable CAD models. We propose a novel method to retrieve reusable CAD
models using knowledge-driven partitioning based on modeling dependency graphs. In
order to retrieve reusable results, two dependency-graph partitionings are given based
on design knowledge. The first is a horizontal partitioning scheme to simplify CAD
models and preserve their essential shapes. In order to support partial shape retrieval
and reuse, another vertical partitioning segments sub-parts in a meaningful way. The
main contributions include (1) a graph-based modeling knowledge representation; (2)
knowledge-driven graph partitioning strategies for improving reusability of retrieved
results; and (3) redesign supports by utilizing modeling expertise. The validity of the
method is demonstrated with several retrieval cases of realistic CAD models.
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1 INTRODUCTION

A large proportion of computer-aided design (CAD) models can be reused to facilitate product
development [29]. Text-based retrieval, which was used in PDM systems, are imprecise due to a lack of
names of sufficient quality [20]. Therefore, retrieving models by content is more accurate [13, 28, 31].

But in design reuse contexts, similarity of geometric content is not always equal to mechanical
reusability. 48% of the surveyed firms complained that parts found by content-based retrieval are
inflexible to reuse [18]. The reason is that content-based 3D retrieval tools only work on geometric
representations (such as mesh or surface models). However, reuse is a knowledge-intensive task that
involves the analysis of the commonality between a reference and a target, as well as the feasibility to
adapt the reference to the target. Since engineering knowledge is absent in content-based methods, it
results in the less reusable retrieved results. This is a big gap between the retrieval and reuse.

In this paper, the aforementioned gap is bridged by our proposed CAD retrieval method, which
takes advantage of the design knowledge in feature-based CAD models. The term feature-based refers
to widespread use of the parametric and feature-based modeling technique. In CAD models, features
are employed to capture modeling procedures, and convey high-level engineering semantics [27]. In
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the proposed method, the knowledge-based analysis of the feature interdependency is incorporated
into the similarity assessment to enable the reuse-oriented CAD model retrieval. An attributed graph
representation, namely feature dependency directed acyclic graph (FDAG), captures the feature
interdependency. By analyzing the interdependency knowledge, we develop two FDAG partitioning
schemes to extract feature-based components from CAD models: a horizontal FDAG partitioning (see
Sec. 4.1) is to simplify fully detailed CAD models to less detailed; on the other hand, FDAG can be
partitioned in a vertical way (see Sec. 4.2), and CAD models are segmented into sub-parts accordingly.
A characteristic of the knowledge-driven partitioning is that it conforms to pre-defined modeling
dependencies so that the resultant components are reusable in terms of the feature-based variant
design. Therefore, reusability is maximally preserved.

A guide of the paper is given as follows. Sec. 2 investigates prior approaches in content-based 3D
retrieval. In Sec. 3, the FDAG graph representation is presented. In the following section, two FDAG
partitioning schemes (horizontal and vertical) are detailed to extract reusable CAD components for
different reuse proposes. In Sec. 5, we formulate the essential and partial shape similarities of CAD
models, and their retrieval algorithms. Tested cases of Sec. 6 illustrate that retrieved CAD components
can be easily reused as their feature modeling knowledge is well preserved during the retrieval. In the
meanwhile, best practices of original designs are inherently transferred to reused parts. Validity of the
formulated algorithms is also tested with hundreds of real-world CAD models. Finally, the paper ends
with conclusions.

2 OVERVIEW OF PRIOR APPROACHES

As an application of 3D graphics to the information retrieval (IR) problem, content-based 3D retrieval
aims at retrieving 3D shapes by their actual contents [17]. There are two kinds of 3D similarities:
global and partial shape similarity [32]. The former assesses how visually similar 3D objects are, while
the latter is used to find a shape of which a part is similar to a part of another 3D object.

2.1 Global Shape Retrieval

A number of methods [16, 21, 22] assess global shape similarity by comparing statistical values of 3D
objects. Shape distribution [22] is popular due to its efficiency and simplicity, but it only performs
well for simple shapes. Another method is Surface Partitioning Spectrum (SPS) [25]. Other studies
characterize 3D geometries by vector invariants, e.g. moments and spherical harmonics [26]. Although
the above algorithms are efficient, a common drawback is trade-off between descriptor resolution and
discrimination power. Moreover, they are less sensitive to details.

3D similarity can also be assessed by comparing 2D views [11, 24]. The rationale is that 3D shapes
are equal if they look alike from any angles. Disadvantages of view-based methods are obvious:
abandoned high-level 3D information, and inability to deal with internal spaces. Moreover, it is
difficult to select ideal characteristic views [23].

The topology is another facet of 3D information. There are two ways to get 3D topology. The first
is Reeb graph method [14], which splits 3D objects into parts and takes parts’ connectivity as the
topology. The second kind of methods represents 3D topology by skeletal graphs [12]. In CAD domain,
structures of B-rep entities are compared in [10]. However, since graph matching is a NP-problem, a
simple part may have a too complicated B-rep graph to match.

In engineering information retrieval, domain knowledge is vital. Machining features of prismatic
parts have been compared to estimate manufacturing costs of new parts [7]. Moreover, the similarity
were assessed by sub-graph isomorphism of machining feature graphs [9]. The above studies utilize
manufacturing expertise. The Ref. [8, 15, 19] adopted recognized features for CAD model comparison.
But feature recognition is ambiguous due to the multiple-interpretation issue. Moreover, recognized
features cannot reason out how these models have been modeled. Modeling expertise of a part,
including modeling dependency specified during design process, has a significant impact on the reuse
of the part.
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2.2 Partial Shape Retrieval

As opposed to a full object, similar portions are matched by partial similarity retrieval [31], in which
3D segmentation plays a key role to extract comparable parts, for example, fingers of a hand model.

One popular criterion of 3D segmentation is the surface smoothness. A boundary is detected if
there is a sharp change of curvature [30]. Furthermore, partial shapes, in the form of segmented
surfaces, were matched in a many-to-many manner [3]. Another group of methods applied the
clustering technique on 3D volumes. 3D objects are either segmented by Reeb graphs in a parallel way
[6] or evenly clustered in a symmetric way [4]. More recently, topological graphs and geometric data of
partial shapes were compared in [1].

However, the aforementioned 3D segmentation methods are easy to be affected by minor changes
of shapes being segmented. More importantly, these methods may produce segmentations that are
meaningless to CAD model reuse, e.g. surface soups or shape fragments. Such poor results are “dump”
surfaces or solids, which are of little value in design reuse. Furthermore, the direct reuse of any patch
of freeform faces is still challenging.

3 KNOWLEDGE ACQUISITION AND REPRESENTATION

The proposed method assesses the mechanical reusability by incorporating modeling knowledge into
CAD model retrieval. The knowledge incorporation enables the analysis of internal structures of CAD
models. This section will introduce the acquisition and representation mechanisms of the required
modeling knowledge.

3.1 Definition of Feature Dependency Relation

In the creation of a CAD model, features are added one by one, until the model is created. A feature is
not added alone, and it may be built upon others. For example, an edge blend on the boundary of an
extrusion depends on the extrusion. The feature dependency can be described as follows. Given two
features f and g, if the creation of g is referred to f by geometric constraints [5], we say g depends on
f. In other words, g is built after creating f due to the modeling reference to f. This binary relation is
denoted as fg, where the arrow indicates the modeling precedence of f over g.

For a feature set F, following properties are true for features a, b, or c in F:
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where  stands for a transitive dependency.

The irreflexivity of the binary relation prevents a feature from depending on itself, while the
asymmetry ensures that two features must not depend on each other. Moreover, the feature
dependency is transitive due to the nature of the procedural feature modeling.

3.2 Graph-based Representation

A model created by a feature modeling system generally maintains two distinct representations. A
geometric representation describes the shape of the CAD model in terms of B-rep entities, and another
feature representation includes design features and their relationships. The proposed method acquires
the required knowledge from the feature representation of CAD models.

The feature representation of a CAD model records the modeling process by a procedural design
history. As the term history suggests, all feature constitutes present in a model are sorted
chronologically in its design history. A chronological order is a totally ordered set, where any pair of
feature constitutes are mutually comparable by their instantiation times. However, a predecessor
feature in the design history is not necessary for a successor from the viewpoint of modeling
precedence, as there are probably no geometric constraints between them.

Since the irreflexivity, asymmetry, and transitivity properties apply to the feature dependency,
features of a model can be arranged in a strictly partially ordered set, where only a feature pair having
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the dependency relation is comparable. A strictly partially ordered set corresponds to a directed
acyclic graph. In the proposed method, the feature modeling expertise, e.g. features and their
interdependency are represented by a feature dependency directed acyclic graph (FDAG). In an FDAG,
vertices are design features, and edge directions indicate the modeling precedence of the features. An
FDAG representation of a CAD model M is constructed as follows:

1) The construction of vertices. For design features {f1, f2, …, fn}, vertices {vf1, vf2, …, vfn} are put
into an empty directed acyclic graph (called G) correspondingly.

2) The construction of edges. Traverse pairs of vertices of G. When a pair <vfi, vfj> is visited, a

directed edge is inserted from vfi to vfj if fi depends on fj directly (not transitively).

A part and its FDAG are shown in Fig. 1. Note edges indicate modeling precedence of features, which is
a reverse order to the actual feature dependency. This notation aims to reason the feature

interdependency. For example, two paths F1F3F5 and F1F5 clearly hint at that F5 is a lower end of

the modeling priority among {F1, F3, F5}. If we organize FDAG nodes to put low-prioritized ones in the
bottom as the figure shown, not only binary relations between features are captured by the FDAG, but
it also depicts the whole modeling interdependency as a hierarchical structure.

Fig. 1: A part and its FDAG representation.

4 KNOWLEDGE-DRIVEN GRAPH PARTITIONING

In design reuse, only few parts can be directly reused, while the vast majority must be adapted to the
target shape. There are two ways to redesign a part: making minor modifications to a part or
assembling of several sub-parts to fulfill requirements. Therefore, the search of reusable essential
shapes and sub-parts is more important than finding out non-reusable models that are completely
similar to queries. However, most 3D retrieval methods only compare mechanical CAD models as 3D
rigid shapes. In the proposed method, CAD models are no longer assessed as rigid shapes with the
help of modeling knowledge. In this section, the acquired knowledge (in the form of FDAG) is analyzed
to develop appropriate FDAG graph partitioning schemes.

Two knowledge-driven FDAG partitioning schemes are developed in this section, to decompose
complete models into essential shapes and sub-parts. The first in Sec. 4.1 is related a horizontal
partitioning strategy, which corresponds to the essential shape simplification of CAD models. The
second in Sec. 4.2 discusses a vertical FDAG partitioning scheme to segment meaningful sub-parts.

4.1 Horizontal FDAG Partitioning

A CAMI-ANC 101 part [27] and its FDAG diagram are shown in Fig. 2. A close observation at the figure
reveals that minor features, e.g., ThurHoles, Pockets, and PinHoles appear as leaf vertices, whose out-
degrees are zero. The main reason of the small volume of these leaf nodes is that designers embody
their designs in a coarse-to-fine way, and minor details are always built upon major components. At
the same time, leaf nodes are the least significant ones in terms of the modeling priority. Based on
these analyses, we can deduce the geometric and modeling significance of feature constitutes from the
FDAG representation. A horizontal FDAG decomposition scheme is proposed as follows, to simplify
CAD models from fully detailed to less detailed.

If fg applies to features f and g, removing f leads to a deletion of g due to the modeling
precedence, but not vice versa. That is, the g can be dropped without affecting f because of the
asymmetry of the feature dependency. If we purge leaf nodes from an FDAG, the resultant CAD model
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is still valid in terms of modeling constraints after removing the corresponding features. In this way,
details of a CAD model can be identified and simplified.

Fig. 2: Feature-based CAD model of the CAMI-ANC 101 part and its FDAG diagram.

4.1.1 Essential Shape Simplification of CAD Models

The basic idea of essential shape simplification algorithm is to peel leaf nodes from an FDAG layer by
layer. By keeping the horizontal partitioning, a fully detailed CAD model is progressively simplified
into less detailed ones. With details removed, essential shapes of CAD models can be obtained. The
steps of the essential shape simplification algorithm are listed as follows:

1) Traverse vertices of the FDAG. For every vertex visited, mark it if its out-degree is zero. A nil
out-degree indicates that the vertex is a leaf node and thus needs to be removed;

2) Traverse edges of the FDAG. Remove all edges pointing to the marked vertices;

3) Delete all marked vertices. Remaining sub-graph Gi corresponds to a simplified shape Mi of the
full model M (i increments by 1 after every simplification).

4) The algorithm returns to the step 1) until a pre-defined termination criterion is reached.

The termination criterion is defined to prevent an original CAD model from being changed too much.
The criterion is a threshold of the bounding box discrepancy between the original and a simplified

shape. In our algorithm, bounding boxes are computed by the axis-aligned method. If {M0, M1, …, Mi, …,

Mn} represent a full CAD model and its n simplified shapes, BB(Mi) indicates the bounding box of Mi,

and ΔBB(Mi) stands for the bounding box discrepancy between M0 and Mi (i = 0 to n). |ΔBB(Mi)| ≤ δ×BB(M0)
should be satisfied. Based on our experiment, δ = 0.25 works well in all cases.

Fig. 3 shows a pusher pad model and its essential shape simplification process, from fully detailed

to less detailed, as indicated by Mi (i = 0 to 2). The simplification process is driven by the horizontal
FDAG partitioning algorithm. In the partitioning, as shown in right bottom of the figure, leaf nodes are
removed layer by layer. Every removal corresponds to a batch deletion of least important features, in
terms of modeling priority and geometric significance.

4.2 Vertical FDAG partitioning

Sec. 4.1 introduced a horizontal partitioning algorithm to simplify CAD models; while this section
proposes a vertical partitioning scheme to find out a reasonable FDAG sub-graph decomposition,
which leads to a meaningful sub-part segmentation of the CAD model.

As mentioned in Sec. 3.2, feature constitutes captured by an FDAG are elements of a strictly
partially ordered set, where only pairs having geometric constraint relations are comparable. In other
words, some features are unrelated. Take an example of the pusher pad shown in Fig. 3, two vertically
separated sub-graphs, {F2, F4, F5} and {F6, F7}, are independent to each other from the viewpoint of
the modeling dependency. In other words, they can be revised independently. On the same time, these
two sub-graphs correspond to geometrically cohesive sub-parts, which are also functionally complete
from a mechanical perspective. {F2, F4, F5} is a rectangle bolt component, and {F6, F7} forms a
counter-bored hole. Using the modeling independence deduced, the vertical partitioning of FDAG
provides a way to segment CAD sub-parts.
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Fig. 3: A pusher pad model and its essential shape simplification process (M0, M1 and M2), which is

driven by the horizontal FDAG graph partitioning (G0, G1 and G2).

4.2.1 Sub-part Segmentation of CAD Models

The key of the sub-part segmentation is to find out articulation points of an FDAG. A vertex is an
articulation point (AP) if its removal renders the graph disconnected. In an FDAG, if we longitudinally
decompose the FDAG at an AP, resultant sub-graphs are separated from the graph because only
connection via the AP is broken. Correspondingly, a tentative sub-part is segmented from the CAD
model.

Not all sub-parts segmented are meaningful. Meaningful sub-parts should be locally cohesive and
globally decoupling: a cohesive sub-part has a connected shape; and a decoupling one has little
dependency on other sub-parts. Here, a validation on tentatively segmented sub-parts is developed to
choose meaningful ones. The sub-part segmentation algorithm consisting of the vertical FDAG
partitioning and meaningful sub-part validation is given as follows.

1) Identify APs { v1, …, vi, …, vn } of the FDAG G of a CAD model M. The variable i indicates the
sequence of sub-graphs, ranging from 1 to the number of sub-graphs n. Traverse every
identified AP:

 For an AP vi visited, compute the transitive adjacency closure of vi as its tentative sub-

graph. A transitive closure can be calculated by running depth-first search (DFS) on the vi

and marking all vertices in the DFS result as belonging to the closure.

2) Validate tentative sub-graphs {G1, …, Gi, …, Gn} by evaluating the reusability of sub-parts {P1, …,

Pi, …, Pn}. The {G1, …, Gi, …, Gn} were partitioned by APs { v1, …, vi, …, vn }, respectively. A valid
sub-graph represents a sub-part that has mechanical meanings and yet easy to reuse.

 If a tentative sub-graph Gi equals to the original FDAG G, it is not valid because the

corresponding sub-part Pi is the complete model M;

 If Gi introduces more incoming edges than those pointing to vi, the sub-graph is not valid.
The rationale is that more edges from the outside mean more modeling constraints for

relocating the sub-part, which are the greatest barrier for reuse. Assume D ─({vi}) and D ─(Gi)

are the set of external dependencies of the AP vi and sub-graph Gi respectively, the
following equation must be hold:

})({)( ──
vDGD ii 

(4.1)
where two modeling dependencies are identical only if their constraint types and
dependent entities are same. Please refer to [5] for a full list of geometric constraint types.

 For a Gi, the geometric connectivity of Pi is checked for the sub-part cohesiveness.

We apply the sub-part segmentation algorithm on the pusher pad model of Fig. 3, and the
segmentation results are shown in Fig. 4. By analyzing the FDAG, APs of the graph are automatically
identified (circled by double lines) and tentative sub-graphs (circled by dash-dot lines) are decomposed
by the proposed vertical partitioning. Among these tentative sub-graphs, a false result is shown in Fig.



Computer-Aided Design & Applications, 7(3), 2010, 417-430
© 2010 CAD Solutions, LLC

423

4(b), which is dropped after the sub-graph validation. Three valid sub-graphs are listed in Fig. 4(c-e),
corresponding sub-parts are shown as well. These sub-parts are geometrically connected CAD
components that have limited dependencies to the rest the model so that the desirable cohesiveness
and decoupling properties are satisfied. Especially, Fig. 4(e) shows a counterbore sub-part only
consisting of negative features (F8 and F9 are suppressed to show the complete counterbore shape).
Such subtractive CAD components are hard to be obtained by geometric-based segmentation
algorithms.

Fig. 4: (a) The pusher pad model of Fig. 3 (b-e) Tentative sub-graphs partitioned by FDAG articulation
points (circled by double lines) and corresponding sub-parts. A false sub-part is (b), while (c-e) are valid
sub-part segmentations. Especially, (e) shows a counterbore sub-part consisting of negative features
solely.

5 REUSABLE CAD MODEL RETRIEVAL

Current 3D retrieval methods work on geometric representations (mesh or surface models), but these
methods cannot obtain good results as they process models as rigid shapes. Rigid shapes are hard to
reuse because redesigning a part needs expert understandings about how the part was built. The
proposed method analyses a CAD model as a collection of interdependent feature constitutes so that
extraction of reusable CAD components is possible. In Sec. 4, CAD models have been decomposed into
two kinds of reusable components by knowledge-driven FDAG partitioning: the horizontal partitioning
simplifies fully detailed CAD models into less detailed ones for the essential shape retrieval, and the
vertical partitioning extracts cohesive and decoupling sub-parts for the partial shape retrieval. Sec. 5.1
and 5.2 will present the CAD model retrieval based on essential and partial shape similarity
assessments, respectively.

5.1 CAD Model Retrieval by Assessing Essential Shape Similarity

The essential shape similarity assessment chooses archived CAD models that are similar to the query
model in general shapes, while tolerate their differential details. In Sec. 4.1, details of full CAD models
are simplified progressively. By comparing shapes without details, essentially similar models can be
chosen, and details of the chosen parts can be easy to redesign with feature-based modifications. Prior
to the similarity assessment, the simplification process of a model should be indexed by a concise
representation, which is named the essential shape aggregation (ESA) descriptor. The ESA descriptor
captures geometric and modeling information of all simplified shapes of the model.

Given a model M, its FDAG G and simplified essential shape Mi (i = 1 to n), every simplification Mi

has a corresponding FDAG sub-graph Gi, which is created by the horizontal partitioning. The ESA
descriptor of M is generated as follows:
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1) Geometries of simplifications Mi (i = 1 to n) are characterized by SD D2 histogram [22] as the
SD descriptor shows good discrimination power for shapes with less details [2].

 Compute a D2 histogram Hi for a simplified shape Mi (i = 1 to n). The computation of the
D2 histogram is similar to [22].

2) At the same time, FDAG sub-graphs of simplified shapes are kept as modeling information.

 Generate the FDAG sub-graph Gi (i = 1 to n) in the form of adjacency lists.

3) Pairs of D2 histogram Hi and FDAG sub-graph Gi are aggregated into an ordered list, which is
defined as the ESA descriptor of M.

Once archived models are indexed by ESA descriptors, users can query in a 3D form to search
essentially similar CAD models. The essential similarity assessment process is defined as follows:

1) Compute an SD histogram HQ for the given 3D query Q;

2) Compare ESA descriptors of archived CAD models with HQ:

 Given an archived model M with n simplifications, its ESA descriptor is {<H1, G1>, …, <Hi,

Gi>, …, <Hn, Gn>}. We compare the distance between HQ and Hi (i = 1 to n). We adopt the
Manhattan distance as it outperforms other metrics in the SD histogram comparison [22].

A k-dimensional histogram is a vector in the space Rk, and the Manhattan distance L1

between two vectors X <x1, x2, ..., xk> and Y <y1, y2, ..., yk> as    k
i ii yxYXL 11 ||),( .

 The shortest L1 distance between Hi and HQ (i = 1 to n) is the distance of M to Q. The

corresponding Mi is the representative essential shape most similar to Q.

HHL=M, Q Qi
ni

L ),()( 1
],1[

min
1 min

 (5.1)
The essential shape similarity of M to Q can be defined as the following equation, where

L
max
1 is the theoretical maximum Manhattan distance between D2 histograms:

M, Q
QMSimilarityShapeEssential

L

L
max
1

min
1 )(

1),(__ 

(5.2)
3) Sort all the archived CAD models by their similarities to Q in descending order. Top ranked

models are retrieved to designers for reuse.

Retrieved results have similar essential shapes to the query. Moreover, as essential shapes are
obtained by modeling dependency partitioning, differential details could be adjusted by certain
feature-based modifications. At the same time, new features can be easily added because pre-defined
geometric constraints and entities have been preserved during the retrieval.

5.2 CAD Model Retrieval by Assessing Partial Shape Similarity

The partial shape similarity assessment selects CAD models that only have portions similar to the
query. By applying the vertical partitioning on the FDAG, cohesive and decoupling sub-parts are
extracted as candidate partial shapes, which are further compared with the query to find the most
similar one. A sub-part descriptor is developed to index each sub-part extracted. The generation of a
sub-part descriptor is given as follows:

1) For a sub-part extracted from a CAD model M, says P:

 Compute the SD D2 histogram HP for P.

 Calculate the adjacency list of the corresponding FDAG sub-graph GP.

2) The pair of HP and GP is the sub-part descriptor.

Extracted sub-parts {P1, P2, …, Pn} are compared against a user-sketched query Q to find similar partial
shapes. The partial shape similarity is assessed as follows:

1) Compute the similarity of the query Q to every sub-part, says Pi (i = 1 to n).
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 Calculate the SD D2 histogram HQ of the 3D query Q.

 Compute the Manhattan distance between HQ and the histogram HPi of Pi. The distance is

the dissimilarity of the query Q to the Pi.

 The partial shape similarity of Q to Pi is defined as follows. L
max
1 is the maximum L1 of D2.

,
QSimilarityShapePartial

L

HHL
P

QPi
i max

1

1 )(
1),(__  (5.3)

2) Sort sub-parts from the most similar to the least similar and retrieve the top ranked to
designers.

The top retrieved results are sub-parts most similar to the user-specified query. A sub-part is
segmented by FDAG articulation points so that it only has limited dependencies to the rest of the
model. Such a sub-part can be easily separated and relocated on a new target by resolving the limited
dependencies. One more advantage is that the reused sub-part is fully constrained and well integrated
with the target; therefore, it makes future retrieving of the reused sub-part possible.

6 IMPLEMENTATIONS AND EVALUATIONS

A prototype system is implemented by C++ and integrated with a CAD system (SolidWorksTM) as plug-
in. Users can finish new designs expeditiously by searching existing models. They can sketch what
they want in a 3D way; the prototype plug-in captures the query and returns similar yet reusable CAD
components; finally, the retrieved are reused in target designs with all modeling constraints preserved.

6.1 Evaluations on Essential Similarity

Fig. 5 illustrates a case study of matching a complex CAD model using a simple query, which is
enabled by the proposed essential shape similarity assessment. The figure lists a pin-connector part M

and some of its simplified shapes {M4, M7, M10}. The progressive simplification is driven by the
horizontal FDAG partitioning. Simplified shapes are characterized by an ESA descriptor, in which the

geometric information is captured by a series of D2 histograms, e.g. {H4, H7, H10} in the figure. During
the similarity assessment, the D2 histogram of the query Q is compared with every histogram in the

ESA descriptor, and the similarity (M10, Q) = 0.96 is selected as the essential shape resemblance of M to
Q. The 0.96 is also the highest similarity of all archived CAD models to Q. Conversely, rigid shape
matching methods without detail suppression cannot retrieve the M with such a simple query Q in

early search. For instance, the SD D2 similarity between Q (i.e. HQ) and M (i.e. H0) is 0.83 only. Thus,
users have to spend time in detailing the query to find out a desirable complex model.

We built a data set consisting of 627 realistic-scale CAD models. These models are manually classified
into 32 categories. The models in a same category are relevant in terms of essential shapes.

The evaluation was made between the ESA and the SD [22] descriptors. Given a query model of Fig.
6(a), Fig. 6(b) listed five top ranked results by the ESA, which are all relevant; while the SD brought two
irrelevant models (the 2nd and 4th in Fig. 6c). The irrelevancy can be explained that complex
geometries of real-world CAD models negatively affect the SD descriptor, while the ESA copes with the
complexity well. The precision-recall (P-R) curve is adopted for the quantitative comparison. P-R curves
of ESA and SD descriptors were superimposed on Fig. 6, which indicates a better performance of ESA.
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Fig. 5: Case study of real-world CAD model retrieval enabled by the proposed essential shape similarity
assessment.

Fig. 6: (a) A query model; (b) and (c) High ranked retrievals by the essential shape aggregation (ESA) and
shape distribution (SD) descriptors respectively; (d) Superimposed precision-recall curves (ESA: solid,
SD: dashed).

The overall accuracy for all kinds of CAD models is benchmarked by an average P-R curve, the
precision of which is the simple mean of precision rates of all plotted P-R curves. The simple precision
mean is the sum of precisions at specified recall levels (i.e. ∑Pλ, where Pλ is the precision at the recall λ,
and λ is a real number of [0, 1]) divided by the count of averaged curves m (in our experiment, one P-R
curve is plotted for a model category, thus m is 32) as:

  m
i iP

m
P 1

1  (6.1)

However, if model numbers of 32 categories are not balanced, the simple average may be distorted
because a small category of few models has the equivalent proportion as large categories do. To
eliminate the distortion, weights of categories are introduced into the average computation (see the
following equation). The weight of a category is the model count of the category over the total number
of CAD models evaluated.

  m
i ii Pw

m
P 1weighted

1  (6.2)

Fig. 7(a-b) showed simple and weighted average P-R curves of all the 32 categories, respectively. The
higher curves of the ESA descriptor provides clear evidence that it performed better in retrieving
broader model categories than the SD did.

Comparisons are further made in three recall ranges: 0 to 20%, 20 to 80%, and 80 to 100%, which
correspond to high precision, middle recall, and high recall performance, respectively. Fig. 7b
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obviously reveals that the ESA descriptor was superior to the SD one in both high precision and
middle recall ranges. When the recall was 10%, the ESA (73%) outperformed the SD (54%) by 19% in
terms of retrieval precision. The outperformance confirms that in early search, the ESA descriptor was
more efficient in relevant CAD model retrieval than rigid shape matching methods did. Discussions
can be also made in the high recall range (0.8 to 1.0) as curves of ESA and SD were same. A possible
explanation is that in this range, almost all relevant models have been retrieved; therefore, the
precision, which is the proportion of the relevant items of the retrieved, is expected to flatten out if
the remainder is purely irrelevant models.

(a) (b)
Fig. 7: (a) Average precision-recall (P-R) curves of the essential shape aggregation (ESA) and the shape
distribution (SD) descriptors; (b) Weighted average P-R curves for the ESA and SD descriptors.

6.2 Evaluations on Partial Similarity

Fig. 8 demonstrates a case of retrieving similar CAD sub-parts by the proposed partial shape similarity
assessment. Users can conveniently sketch a 3D query Q, which specifies the desirable partial shape,
as shown in the middle-bottom of the figure. Since sub-parts have been segmented by the vertical
FDAG partitioning, the partial shape similarity is assessed between Q and the segmented sub-parts to

find out most similar ones. Highest ranked sub-parts {P1, P2, P3, P4} (highlighted in yellow) were shown
in the figure. The shown sub-parts closely resemble the Q as their similarities to Q are all larger than
0.97; however complete CAD models of these sub-parts are obviously different. Therefore, the case
study demonstrates the ability of retrieving desirable partial shapes of the proposed CAD model
retrieval method.

Fig. 8: Case study of CAD sub-part retrieval enabled by the proposed partial shape similarity
assessment.

More examples of the CAD sub-part retrieval were shown in Fig. 9(a), where retrieved results on the
right are apparently similar to the queries on the left. In addition, the bottom row showed a sub-part
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query specified by faces (in green) of an existing model. This example demonstrates that the proposed
method provides flexible methods for composing 3D queries: either sketched3D manifolds or selected
3D surfaces are acceptable.

Fig. 9: (a) Sub-part queries and results (highlighted in yellow); (b) Extracted sub-parts (in yellow).

In our method, modeling expertise implied in CAD models is utilized to determine the sub-part
segmentation. An advantage of this knowledge-based technique is that determining sub-parts is no
longer affected by geometric factors, that is, the determination is invariable to minor changes of the
shape being segmented, no matter whether surfaces have salient points, or how boundaries are
surrounded by concavity. Moreover, the segmented sub-parts are feature constitutes that are
mechanically meaningful. Some meaningful sub-parts were shown in Fig. 9(b).

Retrieved sub-parts can be reused easily in a feature-modeling system (SolidWorks in our case).
Fig. 10 illustrated a sub-part reuse case. One sketches a query to search for desirable tapered pins (the
top left screenshot). A retrieved sub-part is chosen as the reuse reference and the complete model
containing the sub-part is loaded (the bottom left screenshot). As the FDAG sub-graph (the middle of
the figure) shows that the retrieved sub-part depends to the rest of the model only by a locating
dependency, the sub-part is externalized as a user-defined feature (UDF). On a new rectangular base,
the UDF is relocated by re-configuring its locating dependency (the bottom right photo), and eventually
the retrieved sub-part is reused and becomes a part of the fabric of the target design (the top right
photo). In this way, the modeling knowledge of this sub-part is fully integrated in the new design so
that this sub-part can be segmented, retrieved, and reused again in the future.

Fig. 10: Knowledge-preserving reuse of a tapered pin using the partial CAD model retrieval.
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7 CONCLUSION

This paper proposes a knowledge-based method to retrieve reusable CAD models so as to bridge the
current gap between CAD model retrieval and reuse. Specific contributions of the paper are described
below:

 We have acquired feature modeling precedence knowledge from CAD models and developed a
graph-based representation (FDAG) to capture the complicated modeling interdependency
among feature constitutes.

 We have proposed two knowledge-driven FDAG partitioning schemes to extract reusable CAD
components. With the partitioning, CAD models are no longer considered as rigid 3D shapes.
Instead, using the horizontal FDAG partitioning, details of CAD models were progressively
simplified to obtain essential shapes. On the other hand, sub-parts were extracted from full
CAD models by vertical FDAG partitioning. The CAD component extractions conform to pre-
defined modeling constraints. Therefore, extracted components are highly reusable in terms
of variant and adaptive design.

 With the simplified essential shapes and segmented sub-parts, comparing the essential and
partial shape similarity is possible. We have formulized these similarity measures and
proposed CAD model retrieval algorithms based on the essential and partial shape similarity.

 We have successfully implemented a prototype system to demonstrate the feasibility of the
proposed algorithms. We have also evaluated the effectiveness of the knowledge-based
retrieval method on over 600 real CAD models. The results showed that the proposed method
outperforms other 3D retrieval methods.

We expect that the proposed method will serve three purposes. First, it will allow designers to retrieve
CAD models by specifying a desirable essential or partial shape. In this way, designers can retrieve
essential similar parts (e.g. a part family) or meaningful sub-parts as redesign references. Second, it
offers ease of reuse to designers as the modeling dependency analysis is incorporated into the CAD
model retrieval to ensure the design reusability of the retrieved. Hence, design reuse inflexibility can
be effectively prevented. Third, it will provide designers the access to original design expertise
embedded in CAD models by visualizing FDAG graphs during the design reuse activities. Thus, best
practices are inherently transferred to new designs.
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