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ABSTRACT

Complex shaped metal parts with internal and external features and varying wall
thickness are most economically produced by casting process. A higher shape
complexity however, leads to lower manufacturability, implying sub-optimal quality,
higher cost, and reduced productivity. Quantitative evaluation and comparison of
shape complexity of alternative part designs can therefore be very useful in design for
manufacturability. In this work, we define shape complexity factor using weighted
criteria based on part geometry parameters such as number of cored features, volume
and surface area of part, core volume, section thickness and draw distance. The
coefficients of the criteria are computed by regression analysis using the actual shape
complexity, which is defined as the additional cost of tooling manufacture compared
to the machining of a simple shape like a cube, and computed using actual cost data
from the tooling manufacturer. The regression was carried out using CAD models and
cost data of 40 industrial castings of varying shapes. The equation thus obtained was
successfully validated by applying it to a separate set of real life cast parts, yielding
over 95% accuracy in shape complexity estimation.

Keywords: casting, shape complexity, tooling cost, design for manufacture.
DOI: 10.3722/cadaps.2010.685-700

1 INTRODUCTION

Shape complexity of a part is usually described in qualitative terms like low, medium, high and very
high. Geometric elements such as internal features (holes, pockets), external features (bosses, ribs) and
wall thickness variation result in higher shape complexity. Here we focus on metal castings, which
have the highest shape complexity among all manufactured parts, as well as a high variation in shape
complexity.

It is well known that a high shape complexity affects manufacturability, leading to lower quality
and productivity, and higher cost of tooling, materials, process, and overheads. The material, process
and overhead costs depend on the part weight, overall production quantity and part shape complexity.
In contrast, the tooling cost is driven more by its machining time, which in turn depends on its shape
complexity. This becomes even more important during product development, when several design
alternatives need to be prototyped and tested in functional materials, requiring manufacture of the
respective tooling and castings. Thus a reduction in shape complexity of the part can result in
improved manufacturability, including significant cost savings.
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Several researchers have developed shape complexity factors to relate part geometry with tooling
or process design in various domains of manufacturing. Shape complexity S of axi-symmetric forged

parts can be determined by:

S  ,   X

f
X

c
and


  2R

g
R

c
[11]. Here  is the axial shape

complexity factor and  is the lateral shape complexity factor, 2
f

X P F , and 2
c c

Xc P F , where P

and F are the perimeter and surface area of the axial cross section,
c

P and
c

F are the perimeter and

area of axial cross section of a circumscribing cylinder,
g

R is the distance from the axis of symmetry

to the centre of gravity of the half axial cross section, and
c

R is the radius of the circumscribing

cylinder. Qamar et al. [8] established shape complexity for predicting the maximum pressure in

extrusion. Here complexity C is a function of the ratio of perimeters of the actual profile section,
s

P

and an equivalent circular section of equal area
o

P and is given by

C    P

s
P

o 


. The values of

α=0.95, β=0.05 and γ=1.5 were obtained by regression analysis.

In machining domain, part feature driven cost estimation for DFM has been reported by several
researchers [9],[12]. This depends on process planning for each retrieved feature type, followed by
computation of machining time, and thereby cost estimation. This approach has been demonstrated
for relatively simple machined shapes. The DFMA (Design for Manufacture and Assembly) software has
a detailed casting cost estimation module aimed at product designers for early cost estimation, but
this requires a large number of manual inputs about the process, such as the time and labour rates [1].

In casting and moulding domain, shapes are usually much more complex than extrusion or
machined parts. Naganumiah et al [7] employed geometric features and mould complexity parameters
for cost estimation of injection moulds and RP-based rapid tooling. The geometric features were
related to core and cavity, and mould complexity factors were related to parting surface, presence of
side cores, surface textures and other secondary mould design elements. Considerable efforts have
also been made in injection mould and die cost estimation based on geometry and process parameters
[3-5],[10]. Chougule and Ravi [2] developed an empirical equation for tooling cost estimation driven by

shape complexity, given by:

X  

0


a
C

a


c
C

c
where,

a
C is area complexity factor (1- (surface area of

cube of equal volume / surface area of solid)), and
c

C is the core complexity factor 0.5(1 (1/ ( 1) ))n
c

  .

Here
c

n is number of cores. The coefficients



i
were obtained by regression analysis. However, several

other important parameters related to tooling cost were left out, leading to fairly high percentage
errors.

In summary, to enable design for manufacturability, there is a need for quantitative evaluation of
part shape complexity. The tooling cost can be a good indicator of the shape complexity, but it
requires a fairly accurate estimation at an early stage in product life cycle. This is not easy, since it
depends on detailed process planning of tooling manufacture and comprehensive cost data, which are
not feasible in early stages of product design. Traditional methods of cost estimation, such as history-
based costing and activity based costing are therefore not suitable for part shape complexity
estimation.

2 CRITERIA FOR SHAPE COMPLEXITY

Geometric features of part design, which influence the design of tooling, determine the complexity of
tooling and therefore its cost. A cast part may require multiple pieces of tooling (separated by the
parting surface), referred to as cope and drag patterns and core boxes (figure 1). The outer shape of
the part is obtained by the sand mould prepared using cope and drag patterns placed in a flask. The
inner features (holes and undercuts) are obtained by sand cores prepared in core boxes.
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Fig. 1: Top: delivery casing and core, middle: cope and drag patterns, bottom: core box.

While interacting with part designers and tool makers, it was observed that the tool manufacturing
cost depends on the number of cores, volume and surface area of part, core volume, draw distance
and variation in section thickness, all of which can be determined from the part CAD model.
Accordingly, we define the following six geometry-driven criteria for shape complexity evaluation. The
criteria equations are set up to return a value between 0 and 1; higher values indicate a greater
contribution to complexity.

Part volume ratio (
PR

C ): This is the ratio of volume of part to the volume of bounding box. The

bounding box is given by the maximum length, width, and height of the part geometry. When the
volume of part is close to its bounding box, less material removal is required, resulting in lower
machining cost. Higher difference in these volumes leads to a higher manufacturing cost. This
criterion is defined as:

1
p

PR
b

V
C

V
  (1)

Where,
p

V is the volume of part and
b

V is the volume of its bounding box.

Area ratio (
AR

C ): This is the ratio of surface area of an equivalent sphere (with the same volume

as that of the part) to the surface area of the part. This ratio is based on the fact that sphere has
minimum surface area as compared to any other geometry. More features in tooling geometry increase
the surface area of tooling. Higher this surface area more will be the cost of machining and hence
higher the complexity. This criterion is defined as:

1 s
AR

p

A
C

A
  (2)

Where
s

A is the surface area of an imaginary sphere with volume equal to that of the part, given

by:

A

s
 (4)1 3(3V

p
)2 3 . Here

p
A and

p
V are the surface area and volume of part respectively.
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Number of cores (
NC

C ): Cores are required for hollow portions of the part and regions that

hinder pattern withdrawal during moulding. Each core requires a separate tooling; hence more the
number of cored features, higher will be the tooling cost. The criterion for number of cores is defined
as follows, considering that the rate of increase in shape complexity
increase in the number of cored features:

NC
C

Where,
c

N is the number of cored features.

Core volume ratio (
CR

C ): Larger cores require larger size tooling and incur higher tooling cost.

Hence the ratio of core volume to bounding box volume is included as another measure of complexity
(figure 2).



C

Where,
i

Vc is the volume of thi core and V

Fig. 2: (a) Part and (b)

Thickness ratio (
TR

C ): This is the ratio of minimum and maximum thickness of the part. A tooling

with thin sections will be more complex and is more difficult to machine as compared to one with
thick sections. This criterion is defined as:

C

Where,
min

T and
max

T are the minimum and maximum thickness of the part, respectively.

Depth ratio (
DR

C ): The draw distance, which is the maximum depth of the tooling, affects the

tooling manufacturing time and hence its cost. The actual draw distance is compared
possible draw distance, which is half the minimum dimension of the part. The criterion is designed
such that parts with higher depth ratio will indicate higher complexity (figure 3).

1
DR

C  

Where, L, W, H are the length, width, and height of the part, respectively and

distance of the tooling.
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Cores are required for hollow portions of the part and regions that

withdrawal during moulding. Each core requires a separate tooling; hence more the
number of cored features, higher will be the tooling cost. The criterion for number of cores is defined
as follows, considering that the rate of increase in shape complexity gradually decreases with an

1
1

(1 )
NC

c

C
N

 


(

is the number of cored features.

Larger cores require larger size tooling and incur higher tooling cost.

Hence the ratio of core volume to bounding box volume is included as another measure of complexity

C
CR



Vc
i

i


V

b

(

b
V is the volume of part’s bounding box.

(a) Part and (b) Core and part bounding box.

This is the ratio of minimum and maximum thickness of the part. A tooling

with thin sections will be more complex and is more difficult to machine as compared to one with

min

max

1
TR

T
C

T
  (

minimum and maximum thickness of the part, respectively.

: The draw distance, which is the maximum depth of the tooling, affects the

tooling manufacturing time and hence its cost. The actual draw distance is compared to the minimum
possible draw distance, which is half the minimum dimension of the part. The criterion is designed
such that parts with higher depth ratio will indicate higher complexity (figure 3).

0.5(min( , , ))
1

d

L W H

D
  (

are the length, width, and height of the part, respectively and
d

D is the draw
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Cores are required for hollow portions of the part and regions that

withdrawal during moulding. Each core requires a separate tooling; hence more the
number of cored features, higher will be the tooling cost. The criterion for number of cores is defined

gradually decreases with an

(3)

Larger cores require larger size tooling and incur higher tooling cost.

Hence the ratio of core volume to bounding box volume is included as another measure of complexity

(4)

This is the ratio of minimum and maximum thickness of the part. A tooling

with thin sections will be more complex and is more difficult to machine as compared to one with

(5)

: The draw distance, which is the maximum depth of the tooling, affects the

to the minimum
possible draw distance, which is half the minimum dimension of the part. The criterion is designed

(6)

is the draw



Computer

Fig. 3: Draw distance with respect to the parting plane

The overall shape complexity factor can be estimated by the weighted sum of the individual
criteria described above.

0 1 2 3 4 5 6estimated PR AR NC CR TR DR
CF w w C w C w C w C w C w C      

3 CORRELATION WITH TOOLING COST

The cost of machining a tooling element is usually higher for parts with greater complexity. For
machining a simple shape such as a cube, the
plane surface machining using traditional machines that incur low operating cost. If the same volume
is to be removed for a complex shape, it may require 3D surface machining using CNC machines with
multiple cutters, leading to a much higher cost.

In reality, shape complexity is not the only factor driving tooling cost. Other factors include
tooling material and accuracy requirement. However, for a given set of tooling material and accuracy
requirements, the tooling manufacturing cost is driven solely by its complexity, and becomes a
quantitative indicator of relative part shape complexity.

The shape complexity of a part can be assessed in terms of the additional cost incurred for
manufacturing its tooling, over the cost of machining a simple shape like a cube. This additional cost
due to complexity is given by the difference in actual cost of tooling and the cost of machining a cube
of ‘differential volume’. The differential volume, which represents the vo
obtained by subtracting the part volume from its bounding box volume (figure 4)

Fig. 4: (a) Part, (b) bounding box, and (c) differential volume

Computer-Aided Design & Applications, 7(5), 2010, 685-700
© 2010 CAD Solutions, LLC

689

distance with respect to the parting plane.

The overall shape complexity factor can be estimated by the weighted sum of the individual

0 1 2 3 4 5 6estimated PR AR NC CR TR DR
CF w w C w C w C w C w C w C       (

The cost of machining a tooling element is usually higher for parts with greater complexity. For
machining a simple shape such as a cube, the material can be removed by a single cutting tool by
plane surface machining using traditional machines that incur low operating cost. If the same volume
is to be removed for a complex shape, it may require 3D surface machining using CNC machines with

ple cutters, leading to a much higher cost.
In reality, shape complexity is not the only factor driving tooling cost. Other factors include

tooling material and accuracy requirement. However, for a given set of tooling material and accuracy
the tooling manufacturing cost is driven solely by its complexity, and becomes a

quantitative indicator of relative part shape complexity.
The shape complexity of a part can be assessed in terms of the additional cost incurred for

, over the cost of machining a simple shape like a cube. This additional cost
due to complexity is given by the difference in actual cost of tooling and the cost of machining a cube
of ‘differential volume’. The differential volume, which represents the volume to be machined, is
obtained by subtracting the part volume from its bounding box volume (figure 4).

(a) Part, (b) bounding box, and (c) differential volume.
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The overall shape complexity factor can be estimated by the weighted sum of the individual

(7)

The cost of machining a tooling element is usually higher for parts with greater complexity. For
material can be removed by a single cutting tool by

plane surface machining using traditional machines that incur low operating cost. If the same volume
is to be removed for a complex shape, it may require 3D surface machining using CNC machines with

In reality, shape complexity is not the only factor driving tooling cost. Other factors include
tooling material and accuracy requirement. However, for a given set of tooling material and accuracy

the tooling manufacturing cost is driven solely by its complexity, and becomes a

The shape complexity of a part can be assessed in terms of the additional cost incurred for
, over the cost of machining a simple shape like a cube. This additional cost

due to complexity is given by the difference in actual cost of tooling and the cost of machining a cube
lume to be machined, is



Computer

We define
actual

CF (actual shape complexity factor) as the ratio of additional cost of machining

(due to part shape complexity) to the cost of machining a cube of differential volume

additional cost of machining
a

c is given by the difference of actual tool machining cost

Hence the actual shape complexity of a part can be computed from its machining cost data, as follows

actual
CF    

Equation 8 is useful for correlating with the shape factor estimated from a part model using
geometry based criteria described in the previous section (equation 7). A regression analysis can be
carried out by equating the two relations for a number of benchmark parts with
obtain the coefficients of the geometry-based equation for shape co

4 COMPLEXITY FACTOR COMPUTATION

The proposed methodology for obtaining and validating the shape complexity equation comprises the
following steps (figure 5).

1. Select existing benchmark parts of varying complexity and compile their actual

machining the tooling, to calculate CF

2. Create the CAD models of these bench mark parts to compute the above six criteria

, , , , ,
PR AR NC CR TR DR

C C C C C C using equations 1 to 6.

3. Perform multiple regression using

coefficients (
0

w -
6

w ) of the proposed shape complexity equation 7.

0 1 2 3 4 5 6actual PR AR NC CR TR DR
CF w w C w C w C w C w C w C      

4. Interpret the results for the relative influence of various geometry criteria and validate the
equation using parts not covered in regression analysis.

Fig. 5: Methodology

The benchmark cases range from a simple cube to fairly complex castings (figure 6), and were
obtained from a tooling manufacturing company.

Computer-Aided Design & Applications, 7(5), 2010, 685-700
© 2010 CAD Solutions, LLC

690

(actual shape complexity factor) as the ratio of additional cost of machining c

(due to part shape complexity) to the cost of machining a cube of differential volume
d

c . The

is given by the difference of actual tool machining cost
t

c and
d

c

Hence the actual shape complexity of a part can be computed from its machining cost data, as follows

1a t d t
actual

d d d

c c c c

c c c


    (

Equation 8 is useful for correlating with the shape factor estimated from a part model using
criteria described in the previous section (equation 7). A regression analysis can be

carried out by equating the two relations for a number of benchmark parts with varying complexity, to
based equation for shape complexity estimation.

The proposed methodology for obtaining and validating the shape complexity equation comprises the

Select existing benchmark parts of varying complexity and compile their actual cost of

actual
CF using equation 8.

Create the CAD models of these bench mark parts to compute the above six criteria

using equations 1 to 6.

Perform multiple regression using
actual

CF and the above six criteria to determine the

) of the proposed shape complexity equation 7.

0 1 2 3 4 5 6actual PR AR NC CR TR DR
CF w w C w C w C w C w C w C       (

Interpret the results for the relative influence of various geometry criteria and validate the
equation using parts not covered in regression analysis.

Fig. 5: Methodology for quantifying complexity.

benchmark cases range from a simple cube to fairly complex castings (figure 6), and were
obtained from a tooling manufacturing company.
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a
c

. The

d
c .

Hence the actual shape complexity of a part can be computed from its machining cost data, as follows.

(8)

Equation 8 is useful for correlating with the shape factor estimated from a part model using
criteria described in the previous section (equation 7). A regression analysis can be

varying complexity, to

The proposed methodology for obtaining and validating the shape complexity equation comprises the

cost of

Create the CAD models of these bench mark parts to compute the above six criteria

and the above six criteria to determine the

(9)

Interpret the results for the relative influence of various geometry criteria and validate the

benchmark cases range from a simple cube to fairly complex castings (figure 6), and were
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Fig. 6: Forty benchmark parts of varying complexity for regression analysis

The tooling material is cast iron for all these parts. The tooling for these parts were developed in
CAD as illustrated earlier in figure 1 considering shrinkage, machining, and draft allowances. The

Computer-Aided Design & Applications, 7(5), 2010, 685-700
© 2010 CAD Solutions, LLC

691

Fig. 6: Forty benchmark parts of varying complexity for regression analysis.

The tooling material is cast iron for all these parts. The tooling for these parts were developed in
CAD as illustrated earlier in figure 1 considering shrinkage, machining, and draft allowances. The

700
CAD Solutions, LLC

691

The tooling material is cast iron for all these parts. The tooling for these parts were developed in
CAD as illustrated earlier in figure 1 considering shrinkage, machining, and draft allowances. The
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actual costs of tooling (
t

c ) for these parts were obtained from the records of the tool

of machining the cube of differential volume (

same company, to provide a standard and consistent base. Since
period of two years, the cost values are not corrected for the rate of inflation.

Data corresponding to geometry criteria (predictors) and actual complexity factor (response
variable) were computed for the 40 benchmark c
33 and 38) is given here to explain the procedure.

Fig. 7: Parts 25, 33 and 38 for sample calculation along with cores.

First, the length, width and height of a part are measured from its CAD model,
compute the bounding box volume. Part volume and surface area are obtained using mass property
function; equating the volume of the part to the volume of an imaginary sphere, the radius of the
sphere is obtained, from which the surface area of
orientation of the part in the mould is determined by the selecting a parting surface that results in the
least number of cored features. The cores are modeled and their volume is computed (figure 7). The
actual complexity factor (response variable) is computed as the ratio of additional cost of machining
(difference of actual machining cost and cost of machining the cube of same volume obtained from
the tool maker) to the cost of machining the cube of same volu
geometry parameters and criteria (predictors) are computed for all 40 parts. These are presented in
table 2 and table 3 respectively, ending with the actual complexity factor
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these parts were obtained from the records of the tool-maker. The cost

of machining the cube of differential volume (
d

c ) were obtained from the senior tool maker in the

same company, to provide a standard and consistent base. Since all parts were developed during a
period of two years, the cost values are not corrected for the rate of inflation.

Data corresponding to geometry criteria (predictors) and actual complexity factor (response
variable) were computed for the 40 benchmark cases. Sample computation for three parts (number 25,
33 and 38) is given here to explain the procedure.

Fig. 7: Parts 25, 33 and 38 for sample calculation along with cores.

First, the length, width and height of a part are measured from its CAD model, and used to
compute the bounding box volume. Part volume and surface area are obtained using mass property
function; equating the volume of the part to the volume of an imaginary sphere, the radius of the
sphere is obtained, from which the surface area of the equivalent sphere is computed. Next, the
orientation of the part in the mould is determined by the selecting a parting surface that results in the
least number of cored features. The cores are modeled and their volume is computed (figure 7). The

l complexity factor (response variable) is computed as the ratio of additional cost of machining
(difference of actual machining cost and cost of machining the cube of same volume obtained from
the tool maker) to the cost of machining the cube of same volume (table 1). In a similar manner, the
geometry parameters and criteria (predictors) are computed for all 40 parts. These are presented in
table 2 and table 3 respectively, ending with the actual complexity factor.
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maker. The cost

) were obtained from the senior tool maker in the

all parts were developed during a

Data corresponding to geometry criteria (predictors) and actual complexity factor (response
ases. Sample computation for three parts (number 25,

and used to
compute the bounding box volume. Part volume and surface area are obtained using mass property
function; equating the volume of the part to the volume of an imaginary sphere, the radius of the

the equivalent sphere is computed. Next, the
orientation of the part in the mould is determined by the selecting a parting surface that results in the
least number of cored features. The cores are modeled and their volume is computed (figure 7). The

l complexity factor (response variable) is computed as the ratio of additional cost of machining
(difference of actual machining cost and cost of machining the cube of same volume obtained from

me (table 1). In a similar manner, the
geometry parameters and criteria (predictors) are computed for all 40 parts. These are presented in
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Parameter / Criteria Unit Part 25 Part 33 Part 38

L, Length mm 240 375 135

W, Width mm 100 270 85

H, Height mm 120 282 110

V
b
:Volume of bounding box mm3 2880000 28552500 1262250

V
p

:Volume of part mm3 1089563 6361078 298882.8

Volume ratio - 0.38 0.22 0.24

Criterion part volume ratio: C
PR

- 0.62 0.78 0.76

A
p

:Surface area of part mm2 111352.3 719652.9 106798.7

Radius of imag. sphere of equal vol. mm 63.8 114.87 41.45

A
s
:Surface area of imag. Sphere mm2 51170.1 165888.9 21604.9

Area ratio - 0.46 0.23 0.20

Criterion area ratio: C
AR

- 0.54 0.77 0.80

N
c
:Number of cores - 2 1 3

Criterion number of cores: C
NC

- 0.42 0.29 0.50

Total core volume mm3 582363.4 10039504.0 308805.4

Criterion core volume ratio: C
CR

- 0.20 0.35 0.24

T
min

:Minimum thickness mm 30 22 3

T
max

:Maximum thickness mm 120 270 135

Thickness ratio - 0.25 0.08 0.02

Criterion thickness ratio: C
TR

- 0.75 0.92 0.98

D
d

:Draw distance mm 50 135 55

Minimum of L, W, H mm 100 270 85

Criterion depth ratio: C
DR

- 0.00 0.00 0.23

c
d

:Machining cost of cube INR 224 1479 120

c
t
:Actual tool machining cost INR 10816 79179 7357

Actual complexity factor: CF
actual

- 47.29 52.54 60.31

Tab. 1: Sample computation of geometry parameters and criteria.



Computer-Aided Design & Applications, 7(5), 2010, 685-700
© 2010 CAD Solutions, LLC

694

Part

Volume of
part

p
V (mm3)

Surface
area of

part

p
A (mm2)

No. of
cores.

c
N

Total core
volume
(mm3)

Min.
thick.

min
T

(mm)

Max.
thick.

max
T

(mm)

Draw
distance

d
D

(mm)

1 1000000 60000 0 0 100 100 50

2 14569317 433339.9 0 0 91 538 152.5

3 5316096 241126.4 0 0 36 250 168

4 723337.1 71004.05 0 0 5 260 31.5

5 8880000 408800 0 0 60 400 100

6 7828074 308170.9 1 621417.1 32 240 120

7 803650.5 71780.97 1 202284.2 25 100 50

8 484208.7 65260.62 1 60878.87 12 135 45

9 5227147 296220.4 1 894840.6 32 192 120

10 746882.8 81176.48 1 65394.5 14 107 85

11 14433010 695786.3 1 1032418 34.5 590 100

12 10550627 481438.2 1 1182634 32 420 135

13 8430326 573038.8 1 244683 13 420 50

14 6650513 409670 1 331422.4 40 332 200

15 22111748 910573.1 2 1147738 20 152 86

16 1399720 147993.6 1 712040.4 16 328 44

17 607812.4 98196.51 1 191111.6 12 140 60

18 2815344 210655.9 2 1179444 16 168 95

19 10249160 888864.4 1 1816271 20 641 101

20 2441142 183959 2 857509.8 31 290 56

21 14549792 967054.9 1 7303972 15 481 127

22 5485396 437847.7 1 4123771 20 508 92

23 577396.6 93358.44 1 377053.7 7 100 64

24 6995315 571463.4 1 7642707 15 300 146

25 1089563 111352.3 2 582363.4 30 120 50

26 629925 131605.3 1 544578.5 11 296 56

27 149233.2 35080.29 1 125533.1 4 24 56

28 412020 97929.03 1 390019.7 26 247 55

29 2192210 181821.2 3 727291.6 12 290 130

30 5955594 644121.1 1 6554878 25 145 145

31 429610.5 72878.95 1 365039.3 10 116 53.5

32 215801.8 35051.75 2 162376.5 10 112 37.5

33 6361078 719652.9 1 10039504 22 270 135

34 1062289 206302.5 2 812999.7 8 107 112.5

35 954664.8 264475.9 1 2529819 5 50 56.25

36 406001.5 113792.4 1 444576.4 7 131 21.5

37 699463.7 198449.1 1 1036978 3 178 60

38 298882.8 106798.7 3 308805.4 3 135 55

39 1432014 363415.8 2 3969743 10 215 97.5

40 2655620 447794.7 6 1911892 8 284 77.5

Tab. 2: Geometry parameters of 40 benchmark parts.
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Part VR
C

AR
C

NC
C

CR
C

TR
C

DR
C

MC*cube

d
c

(INR)

MC tool

t
c

(INR)

actual
CF

1 0.00 0.19 0.00 0.00 0.00 0.00 - - -

2 0.32 0.33 0.00 0.00 0.83 0.50 693 15690 21.64

3 0.37 0.39 0.00 0.00 0.86 0.50 308 7795 24.31

4 0.50 0.45 0.00 0.00 0.98 0.00 90 2511 26.90

5 0.72 0.49 0.00 0.00 0.85 0.00 1541 45567 28.57

6 0.37 0.38 0.29 0.05 0.87 0.50 459 15813 33.45

7 0.20 0.42 0.29 0.20 0.75 0.00 31 1105 34.64

8 0.43 0.54 0.29 0.07 0.91 0.37 57 2218 37.92

9 0.63 0.51 0.29 0.06 0.83 0.50 722 28483 38.45

10 0.76 0.51 0.29 0.02 0.87 0.37 235 9369 38.87

11 0.59 0.59 0.29 0.03 0.94 0.00 1414 56446 38.92

12 0.83 0.52 0.29 0.02 0.92 0.00 3321 132710 38.96

13 0.52 0.65 0.29 0.01 0.97 0.00 737 29974 39.67

14 0.85 0.58 0.29 0.01 0.88 0.31 2601 108948 40.89

15 0.63 0.58 0.42 0.02 0.87 0.12 2472 108971 43.08

16 0.66 0.59 0.29 0.17 0.95 0.00 270 11960 43.30

17 0.83 0.65 0.29 0.05 0.91 0.00 289 12820 43.36

18 0.50 0.54 0.42 0.21 0.90 0.12 280 12861 44.93

19 0.74 0.74 0.29 0.05 0.97 0.00 1906 88124 45.23

20 0.50 0.52 0.42 0.18 0.89 0.00 243 11323 45.60

21 0.80 0.70 0.29 0.10 0.97 0.00 1441 67529 45.86

22 0.70 0.66 0.29 0.23 0.96 0.50 1019 48443 46.54

23 0.76 0.64 0.29 0.16 0.93 0.00 230 10940 46.57

24 0.85 0.69 0.29 0.16 0.95 0.00 2641 127043 47.10

25 0.62 0.54 0.42 0.20 0.75 0.00 224 10816 47.29

26 0.82 0.73 0.29 0.16 0.96 0.00 504 24370 47.35

27 0.82 0.61 0.29 0.15 0.83 0.41 106 5135 47.45

28 0.83 0.73 0.29 0.16 0.89 0.21 244 12064 48.44

29 0.71 0.55 0.50 0.10 0.96 0.45 532 26536 48.88

30 0.82 0.75 0.29 0.20 0.83 0.00 1771 88416 48.92

31 0.68 0.62 0.29 0.27 0.91 0.00 114 5791 49.80

32 0.66 0.50 0.42 0.26 0.91 0.00 65 3447 52.03

33 0.78 0.77 0.29 0.35 0.92 0.00 1479 79179 52.54

34 0.86 0.76 0.42 0.11 0.93 0.40 635 34064 52.64

35 0.89 0.82 0.29 0.28 0.90 0.00 634 34693 53.72

36 0.62 0.77 0.29 0.42 0.95 0.00 102 5631 54.21

37 0.73 0.81 0.29 0.40 0.98 0.00 233 13318 56.16

38 0.76 0.80 0.50 0.24 0.98 0.23 120 7357 60.31

39 0.84 0.83 0.42 0.44 0.95 0.00 607 38260 62.03

40 0.69 0.79 0.62 0.22 0.97 0.00 602 38233 62.51

Tab. 3: Predictor and response variables for regression analysis.
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5 REGRESSION ANALYSIS

The multiple regression analysis is performed using Minitab® statistical analysis software, [9] to

compute the weights (
0

w -
6

w ) of equation 9. The regression equation for estimating shape complexity

for new part designs using these weights is presented as equation 10. Analysis of Variance (ANOVA) is
presented in table 4:

5.7 10.8 18.0 32.7 29.0 6.9 0.7
estimated PR AR NC CR TR DR

CF C C C C C C       (10)

S = 1.1758; R-Sq = 98.7%; R-Sq(adj) = 98.5%; R-Sq(pred.) = 97.9%

Overall

DF SS MS F P-value

6 3393.44 565.57 409.08 0.000

Predictors

Predictor Coef. SE Coef. T P-value

Constant 5.703 3.131 1.82 0.078

C
PR

10.809 1.746 6.19 0.000

C
AR

17.958 3.152 5.70 0.000

C
NC

32.750 1.691 19.37 0.000

C
CR

28.953 2.232 12.97 0.000

C
TR

6.898 3.927 1.76 0.089

C
DR

0.740 1.067 0.69 0.493

Tab. 4: Analysis of variance for data sets of 40 parts.

 The p-value in the ANOVA table (0.000) shows that the model obtained by regression
procedure is significant at an α-level of 0.05 (table 4). The α -level, or the level of significance, is
the maximum acceptable level of risk for rejecting a true hypothesis. Its low value indicates
that the chance of finding an effect that does not exist, is very low.

 The p-values for the estimated coefficients of , ,
PR AR NC

C C C and
CR

C are 0.000, indicating that

they are significantly related to
estimated

CF . The p-value for
TR

C and constant is 0.089 and 0.078,

respectively, indicating that they are related to
estimated

CF . The p-value for
DR

C is 0.493,

indicating that this parameter is not significant for
estimated

CF at an α -level of 0.05.

 The R2 value indicates that the predictors explain 98.7% of the variance in
estimated

CF . The

adjusted R2 is 98.5%, which accounts for the number of predictors in the model. Both values
indicate that the model fits the data well.

 The predicted R2 value is 97.9 %. Because the predicted R2 value is close to R2 and adjusted R2

values, the model does not appear to be over-fit and has adequate predictive ability.
The histogram indicates that outliers may exist in the data, shown by one bar on the far right side

of the plot (figure 8). The normal probability plot shows an approximately linear pattern consistent
with a normal distribution. One point in the upper-right corner appears to be an outlier (figure 9).
Since the predicted R2 value is as high as 97.9%, this can be ignored. The plot of residuals versus the
fitted values shows that the residuals are evenly distributed on both sides of reference line (figure 10).



Computer

Fig. 8: Histogram of residuals for actual complexity factor.

Fig. 9: Normal distribution plot for actual complexity factor.

Fig. 10: Residual versus fit for actual complexity factor
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Fig. 8: Histogram of residuals for actual complexity factor.

Fig. 9: Normal distribution plot for actual complexity factor.

Fig. 10: Residual versus fit for actual complexity factor.
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The coefficient for
NC

C is the highest (32.7), followed by

experience, since every additional core requires a set of core boxes and both the number and volume
of the core boxes increase the tooling cost. A part without cores requires only cope and drag patterns,
and will have low complexity value. As the number of cores increases, the part complexity goes

increasing. Coefficients
AR

C (18.0) and
PR

C

industrial experience, since a larger surface area and volume of material removal increase the

machining time. The coefficient
TR

C is 6.9, signifying a lower relative importance of thickness in

complexity. The coefficient
DR

C is quite low (0.7); indicating that the depth ratio is relatively less

important in complexity estimation and can be even dropped from the equation

6 VALIDATION OF SHAPE COMPLEXITY EQUATION

To validate the shape complexity equation, it is tested on parts other than
analysis. Three such parts are shown in figure 11. Geometry parameters for these parts are given in
table 5. The computation of complexity criteria and the estimated shape complexity (using equation
10) are given in table 6. The estimated shape complexity factor is compared with actual shape
complexity (obtained from the tooling company based on their actual cost data), and presented in
table 7. It is observed that the absolute deviation is as low as 1.61%. Even the maximum dev
2.30%, which is well within generally acceptable limits of 5%. This establishes the validity of using the
estimated complexity equation (equation 10) for a wide range of cast parts.

Fig. 11: Example parts for validation

Part Part

Volume
of part

p
V (mm3)

Surface
area of

part

p
A

(mm2)

A 3872598.9 477892.3 1

B 20429753 1629391 0

C 1119275 285459.7 0

Tab. 5: Geometry parameters of example parts
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highest (32.7), followed by
CR

C (29.0). This is in line with industrial

experience, since every additional core requires a set of core boxes and both the number and volume
of the core boxes increase the tooling cost. A part without cores requires only cope and drag patterns,

ve low complexity value. As the number of cores increases, the part complexity goes on

PR
C (10.8) are also quite high. This is also in line with

nce a larger surface area and volume of material removal increase the

is 6.9, signifying a lower relative importance of thickness in

low (0.7); indicating that the depth ratio is relatively less

important in complexity estimation and can be even dropped from the equation.

COMPLEXITY EQUATION

To validate the shape complexity equation, it is tested on parts other than those used in the regression
analysis. Three such parts are shown in figure 11. Geometry parameters for these parts are given in
table 5. The computation of complexity criteria and the estimated shape complexity (using equation

he estimated shape complexity factor is compared with actual shape
complexity (obtained from the tooling company based on their actual cost data), and presented in
table 7. It is observed that the absolute deviation is as low as 1.61%. Even the maximum deviation is
2.30%, which is well within generally acceptable limits of 5%. This establishes the validity of using the
estimated complexity equation (equation 10) for a wide range of cast parts.

Example parts for validation.

No. of cores.

c
N

Total
core

volume
(mm3)

Min.
thick.

min
T

(mm)

Max.
thick.

max
T

(mm)

4493711.8 24 71 127.5

0 14 875 166.0

0 13 450 54.0

Tab. 5: Geometry parameters of example parts.
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analysis. Three such parts are shown in figure 11. Geometry parameters for these parts are given in
table 5. The computation of complexity criteria and the estimated shape complexity (using equation

he estimated shape complexity factor is compared with actual shape
complexity (obtained from the tooling company based on their actual cost data), and presented in
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Part VR
C

AR
C

NC
C

CR
C

TR
C

DR
C CF

estimated

A 0.85 0.75 0.29 0.17 0.66 0.00 47.35

B 0.79 0.78 0.00 0.00 0.98 0.31 35.25

C 0.90 0.82 0.00 0.00 0.97 0.50 37.22

Tab. 6: Criteria computation of example parts.

Part
Actual tooling

cost (INR)
Cube machining

cost (INR)
CF

actual
CF estimated % error

A 71420 1454 48.12 47.35 1.61

B 158480 4274 36.08 35.25 2.30

C 22476 576 38.02 37.22 2.10

Tab. 7: Comparison of estimated and actual complexity factors.

7 CONCLUSION

Quantitative evaluation of shape complexity of cast parts has been demonstrated, using geometry-
driven criteria based on number of cores, part volume ratio, core volume ratio, area ratio, thickness
ratio and depth ratio. Regression analysis using 40 industrial parts of varying complexity was
successful in determining the coefficients of the shape complexity equation. The relation has been
validated by parts not covered in regression analysis, proving its usefulness for estimation of shape
complexity of new parts. The shape complexity equation can be employed in early phases of product
life cycle, particularly in design for manufacturability, since it does not depend on process planning
and detailed cost data. The part designer can quickly estimate the shape complexity of a cast part
(from its CAD model), allowing comparison of alternate designs in terms of their influence on tooling
and manufacturing cost.

REFERENCES

[1] Boothroyd, G.; Dewhurst P.: Design for manufacture concurrent costing software – user manual,
Boothroyd and Dewhurst Inc., http://www.dfma.com/ , DFMA software.

[2] Chougule R. G.; Ravi B.: Variant process planning of castings using AHP-based nearest neighbor
algorithm for case retrieval, International Journal of Production Research, 43(6) 2005, 1255-1273.

[3] Dewhurst, T.; Boothroyd G.: Early cost estimation in product design, Journal of Manufacturing
Systems, 7(3), 1989, 183-191.

[4] Duverlie, P. J.; Castelain, M.: Cost estimation during design step: parametric method versus case
based reasoning method, International Journal of Advanced Manufacturing Technology, 15,
1999, 895-906.

[5] Lowe P. H.; Walshe K. B. A.: Computer aided tool cost estimating: an evaluation of the labor
content of injection molds, International Journal of Production Research, 23(2) 1985, 371-380.

[6] Minitab Tutorial: http://www.minitab.com/ , Minitab software.
[7] Nagahanumaiah; Ravi B.; Mukherjee, N. P.: An integrated framework for die and mold cost

estimation using design features and tooling parameters, International Journal of Advanced
Manufacturing Technology, 26, 2005, 1138-1149.

[8] Qamar, S. Z.; Arif, A. F. M.; Sheikh, A. K.: A new definition of shape complexity for metal
extrusion, Journal of Materials Processing Technology, 155–156, 2004, 1734-1739.

[9] Shehab, E. M.; Abdalla, H. S.: Manufacturing cost modelling for concurrent product development,
Robotics and Computer Integrated Manufacturing, 17, 2001, 341-353.

[10] Sundaram, M.; Masleka R. D.: A regression model for mold cost estimation, Proceedings of 8th
Industrial Engineering Research Conference, Phoenix, Arizona, 1999.



Computer-Aided Design & Applications, 7(5), 2010, 685-700
© 2010 CAD Solutions, LLC

700

[11] Teterin, G. P.; Tarnovskij, I. J.; Chechik, A. A.: Shape difficulty criteria for forgings, Kuznecno –
shtampovochnoe proizwodstvo, 7, 1966, 6-9 (in Russian).

[12] Yang C.; Lin T. S.: Developing an integrated framework for feature-based early manufacturing
cost estimation, The International Journal of Advanced Manufacturing Technology, 13, 1997,
618-629.


