
835

Computer-Aided Design & Applications, 7(6), 2008, 835-845
© 2010 CAD Solutions, LLC

Graphics Based Path Planning for Multi-Axis Machine Tools

Joshua A. Tarbutton1, Thomas R. Kurfess2 and Tommy M. Tucker3

1Clemson University, trbttn@clemson.edu
2Clemson University, kurfess@clemson.edu

3Tucker Innovations, Inc., tommy@tuckerinnovations.com

ABSTRACT

This paper discusses a graphics-based approach to the tool path and trajectory
planning problem found in machining and robotics applications. Ray casting is used to
determine part and blank surfaces from voxel model representations. Tool paths are
generated from the ray intersections with the voxels and uncut material is used to
determine optimal re-orientation. The algorithm presented is a first step towards
automatic path generation for 5-Axis machine tools. The groundwork is laid to
demonstrate the power of graphics hardware on manufacturing problems. The
resulting tool path is validated by experimental results carried out by multi-axis
milling of a free-form surface with undercut regions.

Keywords: path planning, voxelization, GPU, 5-Axis, machine tool.
DOI: 10.3722/cadaps.2010.835-845

1 INTRODUCTION

Path planning has been the subject of over 30 years of research and yet it still consumes tremendous
amounts of resources. To date, there is not an automatic solution to tool path generation. However,
significant advances can be made towards a solution with modern graphics hardware. Dedicated
graphics functionality can be exploited to provide process planners with faster and better performing
tools to determine tool paths for complex part surfaces such as those found in the die and mold
industry. Tool path planning is the art of transforming a surface representation from a part model
into a series of commands that can be given to an arbitrary machine tool to produce a real part. Tool
path planning plays a central role in the manufacturing sector and affects nearly every part found in
the automobile, aviation, and shipping industries. CAD packages have continually been increasing core
functionality to represent and join multiple complex surfaces into single part models. CAD designers
are taking advantage of this to design parts with higher surface complexity than ever before. CAM
packages attempt to come up with methods to give process planners the ability to generate tool paths
based on these part models. The majority of tool path planning algorithms are based on these well-
established methods: iso-parametric [1-3], iso-planar [4-6], iso-scallop [7, 8], and polyhedral. Iso-
parametric and Iso-planar were the most widely used methods in CAM systems [9] but the most recent
commercial CAM systems are using polyhedral machining [10].

The iso-parametric methods are the mapping of a parametric surface, s(u,v), onto Euclidean space.
This mapped parametric path yields the cutter contact point, or CC. A main drawback of this method is

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

836

that the mapping of surfaces with large surface gradients results in large gaps between successive
paths in Euclidian space. Adaptive methods have been introduced to correct this phenomenon but at
the cost of increased algorithm complexity [2]. Iso-parametric methods are useful when there is only
one surface but multiple surfaces often result in gouging [7] and compound surfaces are commonly
converted to triangular meshes [11]. When the underlying free-form surfaces are extend and combined,
as is normally the case in complex surface modeling, the tool paths generated by the iso-parametric
tool paths often are no longer boundary confined [11] and surface repair is necessary to ensure error-
free tool paths [9].

Iso-planar methods (also referred to as drive surfaces, Cartesian method, constant z-level method,
contour method, direction-parallel method, one-way tool path, or zigzag tool path [12]-[13]) generate
parametric curves by intersecting the part surface by infinite planes. The plane-surface intersections
are used to create parametric curves which are used to generate CC points and cutter location (CL)
points. According to Kim [13], determining the plane-surface intersections is very computationally
demanding; but, because the algorithm is very reliable when used for complex surfaces, it is still widely
used in die and mold manufacturing. A disadvantage of this approach parts with large surface
gradients will produce uneven paths if the intersecting planes are spaced evenly and adaptive methods
must be used to account for these regions [14].

Iso-scallop methods are extensions of the above two approaches to ensure even scallop height. For
the iso-planar method, the interval of the iso-plane adjusted so that accounts for steep surfaces and
results in uniforms scallop height when used. When the iso-parametric method is used, the parametric
surface is manipulated so that the resulting tool paths are mapped uniformly to Euclidian space.

Polyhedral machining was introduced by Duncan in 1983 [15] and is superior to the
computationally intensive surface checking algorithms found in the above methods [10]. However,
polyhedral machining was not widely used simply because of hardware cost and memory limitations;
which are mostly solved with today’s hardware. Polyhedral machining creates a tool path based on
surfaces represented by polyhedrals. Polyhedral surface models can easily be generated by tessellating
a part’s surfaces. Nearly all CAD packages have tessellation algorithms that produce tessellated
surfaces with the desired surface accuracy. Although, the tessellated surface is an approximation of
the true surface, the surface accuracy can be constrained to whatever tolerance is acceptable at the
cost of slightly more memory. The tessellation algorithms are extremely robust and capable of
combining any number of surfaces into a single triangular mesh [11]. Tessellated surfaces have been
widely used for rapid prototype systems where the surface accuracy of the final part is much less
important than the rapid creation of an initial part. In addition, the de-facto standard file format for
rapid prototyping systems (as well as CAD system file sharing) is the STL file format; which is little
more than a header with triangle vertices and their normal. Because hardware limitations are no longer
a limiting issue, polyhedral machining has made its way into commercial CAM packages [10].
Determining the CC and CL from a polyhedral model has been accomplished by two main approaches
which are: the point/curve-based approach [6, 10, 15-17] and the inverse tool offset surface approach
[18-20].

This paper discusses a new tool path planning approach based on ray-casting and voxel models,
both of which are concepts found ubiquitously in computer graphics. Voxel models have been used
extensively in the area of “Volume Rendering” which is concerned with rendering, in a very realistic
way, a scene with volumetric elements. Applications of volume rendering are predominantly concerned
with the rendering of objects with various densities such as clouds and smoke for the movie and
gaming industries or for rendering the bone and organ data obtained from an MRI [21]. Ray-casting is a
cornerstone of graphics research [22, 23] and is used in CAD systems to render the modeled object to
the GUI or “scene” [24]. Ray-casting is used in photo realistic rendering as a means to render a virtual
scene as close to reality as possible by physically modeling rays of light [25]. These concepts are used
to create the state of the art games and movies enjoyed by many.

The concept of ray casting has previously been used in tool path planning to find the highest
patch surface in a work area [26] or specific intersection with a surface [27]. Voxel models have been
used in virtual machining simulation [28] but have not been used to generate tool paths. In this
research, a STL file is used as the basis for voxelization and rays are cast at the iso-surface of the voxel
model for fast surface detection. Tool paths are generated from these intersections in a non-
traditional nearest neighbor approach suitable for rapid prototyping. The tool paths are generated

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

837

based on an optimal plane orientation similar to 5-axis machining where two of the axes are used as
indexing axes.

2 PATH PLANNING AND THE GPU

Polyhedral tool path planning has become a reality due to the technological advances in the CPU and
memory hardware but advances in the Graphics Processor Unit or GPU may have an even more
significant impact on polyhedral tool path planning. The insatiable appetite of the multi-billion dollar
gaming industry has radically transformed the GPU hardware technology resulting in GPU’s that are
capable of hardware implementations of various graphics functions and highly parallel
multiprocessing. Every year the CPU is able to run significantly faster than previous years but its speed
is simply not enough to meet gaming demands. In spite of faster multi-core processors provided by
CPU manufacturers such as Intel, AMD and etc. the GPU industry is booming. This is due to the
fundamental differences between a CPU and GPU.

The CPU executes sequential code on general hardware suitable for a variety of computing tasks to
support a wide range of software whereas the GPU executes parallel code on hardware dedicated to
operating on millions of floating point numbers to support code specifically written to exploit the GPU.
To support these operations, GPUs have what are called Streaming Multiprocessor Cores. These are
similar to CPU processors except in their density. Current high-end CPUs have 2 – 4 cores (e.g. Intel
Duo, Intel Quad) running at approximately 3GHz whereas current GPUs have 64 – 240 processor cores
operating at 1.3GHz. There is a tremendous difference in the computational horsepower of the CPU vs.
GPU. Computational problems that have been ported from the CPU to the GPU have resulted in a
nominal acceleration of 10-100x’s [29] which can result in significant implications for manufacturing.
Implementation of this technology is essential to maintaining a competitive manufacturing edge and it
is particularly well suited for polyhedral tool path planning.

Historically GPU’s were limited to fixed functionality but roughly seven years ago, GPU
manufacturers opened up the “graphics pipeline” to computer programmers. The programmer was
granted the access and ability to manipulate raw vertex and pixel information stored in graphics
memory. With this new capability, research accelerated in what is commonly known as General Purpose
Graphics Processing Unit computing or GPGPU computing. A tremendous amount of research in non-
graphics fields such as physics, economics, medicine, and engineering soon followed [30]. These new
tools have enabled game designers and movie producers to create environments and special effects
that are indistinguishable from real life events. But this technology is not limited to the entertainment
industry and manufacturing can be significantly impacted by exploiting this new hardware
functionality. The approach presented in this paper depends on portions of the hardware
implementation of standard GPU functionality. In addition to exploiting native functions, the parallel
programming capabilities of the GPU can also be used to significantly enhance the approach presented
here.

3 VOXELIZATION

Voxelization is the process of transforming an object into a volume element. A voxel is a volume
element much like a pixel is a picture element. A voxel can be thought of as stacked photographs or
layers of pixels in space. The medical industry utilizes voxel models to store the data from CT and MRI
scans of bones and internal organs in medical imaging. Graphic artists use voxels in games to simulate
a variety of effects including semi-transparent media such as smoke, fog, and clouds. In this research,
a voxel model is used to represent a part and blank. The part is voxelized directly from the polyhedral
model and the resulting surface of the part is defined by the exterior voxels; but, this is not a
requirement as there exists methods to voxelize part models directly from CSG representations [31].
The voxelization is carried out by exploiting native GPU functionality (such as depth testing) and native
memory architecture (such as depth buffers and texture memory).

The part is voxelized for the twofold purpose of fast intersection detection with the rays and fast
calculations on the voxel volume. Analytically solving for the surface intersections takes significant
computation time when using the iso-parametric, iso-planar, iso-scallop, or polyhedral methods.

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

838

Surface intersection is drastically simplified by using a voxel model. However, this speed comes at the
expense of large memory consumption.

The voxelization process is similar to the one described in [32]. Sub-sampling is used here to
increase the accuracy of the resulting voxelized surface and a diagram of this process is shown in Fig.
1. The voxel model is created by clipping the model at a certain location at eight times the desired
resolution of the output model and rendering the rear-facing and front-facing polygons onto texture
memory. The depth resolution is increased by a factor of eight by rendering intermediate textures
between slices. Note that Fig. 1 only represents a resolution that is only four times the desired
resolution for clarity. The voxelization algorithm which makes use of a computer Graphics Processing
Unit or GPU and the generalized process is as follows:

1. Place the near plane of the camera at the desired slice location and the far plane beyond the
extents of the part.

2. Allocate texture memory on the GPU at 8 times the desired resolution of the voxel model.
3. Draw all the background pixels as zero in the high resolution GPU texture memory.
4. Draw all back faces of the polyhedral model as 255 in the GPU texture.
5. Draw all front faces as 0 in the GPU texture if the depth test is passed indicating that the front

faces are in front of the back faces.
6. Make 8 textures in depth and average each 8x8 grid to determine the voxel value for the final

voxel volume and repeat for the next slice.

Fig. 1: Rendering slices into memory.

This algorithm was implemented in C++ and DirectX with an nVIDIA GTX8800 graphics card.
Screen shots of the voxelization process are shown in
Fig. 2. The part to be tessellated is shown on the left and consists of a raised freeform surface in the
form of a tiger paw and a sunken paw. The tessellated part is shown in red next to the gray part in the
top row. The clipping plane is shown at the right side of the part of the tessellated part and what is
saved to GPU memory is shown in the box below the part. The clipping plane starts at the right side of
the part and performs the operations described above then moves to the next plane. The right image
shows the output of the algorithm where the tessellated part is now a volumetric part, or voxel model.

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

839

Fig. 2: Voxelization Process.

Once the part has been voxelized, it represents a digital discrete volume. The tool path planning
algorithm described below relies on the definition of a blank as well as a part. The blank is also
represented by a voxel model. The voxel model of the blank is created based on dimensions of a part
volume. The blank is created by copying the voxel volume and assigning all the voxels to their “on”
value then taking the part volume values and assigning those “off” in the blank volume. The blank and
part volumes are show in
Fig. 3. The blank material is removed by successive tool paths based on the depth of cut until only the
part remains. Defining a voxel model of the blank also allows simulation of the material removed per
pass.

Fig. 3: Voxel part model and voxel blank model.

4 RAY-CASTING INTERSECTION

The concept of ray casting is used to determine the cutter contact (CC) points for the tool path. Rays
are cast at the voxel model of the blank and part from a bounded plane in an arbitrary location inside
the working volume of the machine tool. The plane is created by translating and rotating two
orthogonal vectors initially aligned along two of the tool axis which is important for machines that are
4-axis and higher. For 3-axis machines, the created plane is parallel to the xy-plane. A grid is generated
on the plane according to the voxel size, in the simplest case this is a 1:1 ratio; but, can be extended to
any arbitrary interval for roughing and finishing paths. A ray consists of a point plus a normal
multiplied a distance,

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

840

or p d n (1)

where, r is the ray location, p
o

is the origin of the ray, n is the direction of the ray and also the
machining plane’s normal, and d is the distance along the ray. Rays are cast from the machining plane
by increasing d until the voxel surface is “hit” as shown in Fig. 4. Tri-linear interpolation is used within
the voxel volume based on the ray’s current location to ensure that the ray hits the voxel model’s iso-
surface. Each ray’s intersection with the voxelized part is stored. The intersections between the ray and
blank and the ray and part are used to build a list of surface intersections. This approach allows the
rays to determine all the exterior surfaces of the part and blank along that ray. These surfaces
intersections are used to determine the cutter contact points and the maximum depth of cut at that
location as well as undercut locations.

Fig. 4: Ray casting into part and blank voxel volumes.

The location of the intersection of the ray with the part is used to create either a raster path or a
nearest neighbor path suitable for rapid prototyping. The surface normals are also calculated for use in
higher axis machining as shown in
Fig. 5. As can be seen in the figure, the cutting path can be created for freeform surfaces.

Fig. 5: Ray casting and raster tool path creation.

5 OPTIMAL MACHINING PLANE DETERMINATION

Five axis machining can result in faster machining times and higher quality parts. To maintain the
stiffest possible machining conditions, 5-axis machining is often performed by using two of the rotary
axes as indexing axis that are fixed while the other three perform the machining. This is also called
2+3 machining and all five axis are employed to re-orient the part. The work presented here closely
mimics 2+3 machining because all machining is done from a plane. In addition to stiffer machining

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

841

characteristics, 2+3 machining is often employed because it is easier to manually create tool paths
using CAM software.

The algorithm for determining the optimal plane orientation is described below. First a series of
planes are created and a bounding box is created on them by projecting the bounding box of the part
and blank. Then a grid is generated from the bounded plane that represents the part surface and
another grid is generated for the blank surface. These grids are generated by casting rays from the
plane and recording the surfaces intersections in the grid. The grid is essentially a point cloud for both
the part and blank surfaces. However, the part grid points are associated with the blank grid points by
the ray cast from that location on the grid. This is used to subsequently create tool points according to
a depth of cut from any machining plane orientation.

Once the part and blank grids are generated, the blank voxels in the orthogonal view of the
machining plane are removed because they are all reachable and would be removed in the case that
that plane is selected as the machining plane. Once the voxels in view of the plane are cleared from the
scene, the remaining voxels are counted. This process is repeated until a plane reaches a suitable
number of voxels removed or is the minimum in a set of test planes.

For this research, the test planes are created according to the following geometric shape: gyro-
elongated square bi-cupola. This shape is show in Fig. 6 which can be constructed by a plane normal to
a vector originating from the center of a square and ending at the shortest distance to every face,
edge, and vertex.

Fig. 6: Test shape for optimal plane.

The gyro-elongated square bi-cupola consists of 26 planes which are the test planes used in this
research. The planes are shown below.

Fig. 7: First 8 planes and all 26 planes.

The voxels removed during a search for the best plane are shown below. This is repeated for the 26
planes and the best plane is used as the machining plane.

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

842

Fig. 8: Before and after voxels are removed during optimal plane search.

Once the machining plane has been determined the tool paths are generated from this plane as
discussed below. The material is removed during the machining process and the search process is
repeated; only this time with the machined voxels no longer contributing.

6 PATH PLANNING

Path planning is carried out from the CC points generated by the ray intersections with the voxel
volume. Each ray is cast from a point on a “grid” located on the machining plane. The resolution of the
grid corresponds to the voxel size in the simplest case but this is by no means a restriction. The data
structure used to store the ray intersections with the voxel closely resembles the grid. The location of
the intersections with the blank volume and part volume are used to determine the final CC point. The
final cutter contact point for that location in the grid is equal to the blank surface location plus the
depth-of-cut-distance along the ray that penetrates that point in the surface. The CC point is updated
with the parts iso-surface if the ray hits the part before the depth of cut is reached the. This yields a
grid of tool points. Two types of tool paths considered in this approach which are: a raster path and a
nearest neighbor path.

A raster or lawnmower path starts at a tool point in a corner of the grid and increments along one
dimension the increments the other dimension then decrements the original dimension and repeats.
For this approach only the z-height is varied. The z-height is given by the CC point determined by the
ray casting approach. A simple raster path is shown in
Fig. 9.

Fig. 9: Raster path.

The raster path works well for simple shapes where there are large planes of similar height in the part
to be machined. However, for more complicated surfaces where a part has large variations in the z-
value such as in freeform surfaces, the raster path approach becomes inefficient because it traverses
the same area multiple times to reach areas of varying height.

An alternative approach to the raster path is to use a nearest neighbor approach. The nearest
neighbor approach is a concept borrowed from image processing. The first tool point begins at the
corner of the grid at the specified CC point and tests all the neighbors in a flexible fashion. The default
is a clockwise approach where from the start point the neighbors are tested in a clockwise fashion.

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

843

Each surrounding point is tested to determine if it is able to be machined (not part of the part) and if it
has already been visited. The tool point is added to the tool path if it passes these two tests. If any of
the points are able to be machined then they are candidates to be added to the tool path. A decision is
made at this point as the whether the tool path will continue to points that have already been visited or
retract and engage the blank material at a new point. This is entirely flexible and governed by a past
history buffer. The output paths from this approach are shown in
Fig. 10.

Fig. 10: Nearest neighbor paths.

7 POST-PROCESSING AND 3-AXIS MACHINIG RESULTS

The tool path must be converted from points in voxel space to commands that can be processed by NC
machine tools to machine the part in real dimensions. This is accomplished by post-processing the tool
path and translating voxel space points into G and M-codes which are the de-facto standard used on
NC machine tools. The post-processor is able to scale the output commands during post-processing so
that a single tool path generated from the ray casting voxel approach presented here is able to make a
variety of sized parts based on the same path. Once the tool path has been post-processed it can be
immediately used in a machine tool to produce a part however further optimization will improve its
performance. 3-Axis machining based directly on the G-codes has successfully been performed as
shown in Fig. 11. Typically once CC points are defined, a method is employed to produce cutter
location (CL) data [6, 33]. This has not been implemented yet and the results presented here represent
tool paths based on CC data only. The part below was cut with a 1/8” ball end mill on a 3-Axis Okuma
46 MVU and the material is Necuron610 which is suitable for test milling. As can be seen from the
figure, the method presented here is able to detect ray-surface intersections and produce cutter
contact points. However, the resulting parts suffer from gouging and other artifacts that are the
subject of future work.

Fig. 11: Machining results for different voxel resolutions.

8 MULTI-AXIS PLANE RE-ORIENTATION SIMULATION RESULTS

The process used to create the part is shown in Fig. 12 and follows the method discussed above. First,
a part model is tessellated and saved as an STL file (a polyhedral model). Then the part is voxelized
and an optimal machining plane is determined (shown in red in the figure below). Then the rays are
cast from the optimal machining plane to detect surface interactions. From the surfaces intersections,

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

844

tool paths are planned using a nearest neighbor approach (shown as green below). The algorithm
produces G-Code that can be used to machine a part.

Fig. 12: From CAD model to experimental results.

9 SUMMARY

In this paper a machining algorithm was introduced based on an alternative graphics-based approach
to the classical tool path planning procedures. The computer graphics concept of using a voxel model
was used to represent the part and blank. The graphics concept of ray tracing was used to generate the
cutter contact points based on intersections with the voxelized part. A way to optimally determine a
machining plane orientation was introduced that is based on the voxel models. The method presented
here can be considered a polyhedral machining method because it is based on a polyhedral model of
the part. The polyhedral methods are becoming more widely used because memory limitations are no
longer an issue. Experimental and simulation results demonstrated the potential of this alternative
path planning approach.

10 ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the National Science Foundation for supporting
their work on Graphics Accelerated Manufacturing as well as Okuma for their generous donation of
equipment and support resources.

REFERENCES

[1] Broomhead, P.; Edkins, M.: Generating NC data at the machine tool for the manufacture of free-
form surfaces, International Journal of Production Research, 24(1), 1986, 1-14.

[2] Elber, G.; Cohen, E.: Tool path generation for freeform surface models, Proceedings on the
second ACM symposium on Solid modeling and applications, 1993, 419-428.

[3] Loney, G. C.; Ozsoy, T. M.: NC machining of free form surfaces, Computer-Aided design, 19(2),
1987, 85-90.

[4] Bobrow, J. E.: NC machine tool path generation from CSG part representations, Computer-aided
design, 17(2), 1985, 69-76.

[5] Huang, Y.; Oliver, J. H.: Non-constant parameter NC tool path generation on sculptured surfaces,
The International Journal of Advanced Manufacturing Technology, 9(5), 1994, 281-290.

[6] Hwang, J. S.: Interference-free tool-path generation in the NC machining of parametric compound
surfaces, Computer-aided design, 24(12), 1992, 667-676.

[7] Kim, S.-J.; Yang, M.-Y.: A CL surface deformation approach for constant scallop height tool path
generation from triangular mesh, International Journal of Advanced Manufacturing Technology,
28, 2006, 314-320.

Computer-Aided Design & Applications, 7(6), 2010, 835-845
© 2010 CAD Solutions, LLC

845

[8] Suresh, K.; Yang, D. C. H.: Constant scallop-height machining of free-form surfaces, Journal of
engineering for industry, 116(2), 1994, 253-259.

[9] Yang, D. C. H., et al.: Boundary-conformed toolpath generation for trimmed free-form surfaces
via Coons reparametrization, Journal of Materials Processing Tech., 138(1-3), 2003, 138-144.

[10] Jun, C. S.; Kim, D. S.; Park, S.: A new curve-based approach to polyhedral machining, Computer-
Aided Design, 34(5), 2002, 379-389.

[11] Yuwen, S., et al.: Iso-parametric tool path generation from triangular meshes for free-form
surface machining, The International Journal of Advanced Manufacturing Technology, 28(7),
2006, 721-726.

[12] Park, S.; Choi, B. K.: Tool-path planning for directio-parallel area milling, Computer-Aided
Design, 32(1), 2000, 17-25.

[13] Kim, B. H.; Choi, B. K.: Guide surface based tool path generation in 3-axis milling: an extension of
the guide plane method, Computer-Aided design, 32(3), 2000, 191-199.

[14] Ding, S., et al.: Adaptive iso-planar tool path generation for machining of free-form surfaces,
Computer-Aided Design, 35(2), 2003, 141-153.

[15] Duncan, J. P.; Mair, S. G.: Sculptured Surfaces in Engineering and Medicine. 1983: Cambridge
University Press.

[16] Choi, B. K.; Jun, C. S.: Ball-end cutter interference avoidance in NC machining of sculptured
surfaces, Computer-Aided Design, 21(6), 1989, 371-378.

[17] Choi, B. K., et al.: Compound surface modeling and machining, Computer-Aided Design, 20(3),
1988, 127-136.

[18] Choi, B. K.; Kim, D. H.; Jerad, R. B.: C-Space approach to tool-path generation for die and mold
machining Computer-Aided Design, 29(9), 1997, 657-669.

[19] Takeuchi, Y., et al.: Development of a personal CAD/CAM system for mold manufacture based on
solid modeling techniques, Annals of the CIRP, 38(1), 1989, 429-432.

[20] Inui, M.: Fast Inverse offset computation using polygon rendering hardware, Computer-Aided
Design, 35(2), 2003.

[21] Stone, S. S., et al.: Accelerating advanced MRI reconstructions on GPUs, Journal of Parallel
Distributed Computing, 68(10), 2008.

[22] Appel, A.: Some techniques for shading machine renderings of solids. in Proceedings of the AFIPS
Joint Computer Conferences, 1968, Atlantic City, New Jersey.

[23] Cook, R. L.; Porter, T.; Carpenter, L.: Distributed ray tracing, ACM SIGGRAPH Computer Graphics,
18(3), 1984.

[24] Roth, S. D.: Ray casting for modeling solids, Computer Graphics and Image Processing, 18, 1982,
109-144.

[25] Glassner, A.: Principles of Digital Image Synthesis. 1995, San Fransisco: Morgan Kaufman.
[26] Griffiths: Toolpath based on Hilbert's curve 26(11), 1994, 839-844.
[27] Zhang, D.; Bowyer, A.: CSG set-theoretic solid modelling and NC machining of blend surfaces, in

Proceedings of the second annual symposium on Computational geometry, 1986, Yorktown
Heights, New York.

[28] Jang, D.; Kim, K.; Jung, J.: Voxel-Based Virtual Multi-Axis Machining International Journal of
Advanced Manufacturing Technology, 16(10), 2000, 709-713.

[29] Hwu, W.-M., et al., Compute Unified Device Architecture Application Suitability, in Computing in
Science & Engineering. 2009. p. 16-26.

[30] nVIDIA, GPU Acclerated Research. 2009 [cited 9/25/2009]; Available from:
http://www.nvidia.com/object/cuda_home.html#.

[31] Fang, S.; Liao, D.: Fast CSG voxelization by frame buffer pixel mapping, in Proceedings of the
2000 IEEE symposium on Volume visualization, 2000, Salt Lake City, Utah.

[32] Engle, K., et al., Real-Time Volume Graphics, 2006, Wellesley, MA: A K Peters, Ltd.
[33] Carter, J.A.; Tucker, T. M.; Kurfess, T. R.: 3-Axis CNC Path Planning Using Depth Buffer and

Fragment Shader, Computer Aided Design and Applications, 5(5), 2008, 612-621.

