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ABSTRACT

This paper presents a geometric interpolation method for curve approximation in 3R
space. Given a curve, the new method is to find an approximation Bézier curve of
degree 4 tangent with the given curve at the two end points and at an inner point as
well. The resulting Bézier curve is explicitly expressed in the parameters of the tangent
inner point of both the given curve and the approximation curve. We prove that the
approximation order of the new method is 6, which is the optimal approximation
order in the traditional conjecture.
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1 INTRODUCTION

Curve approximation is an important problem in geometric design and it has wide applications in
computer aided design and manufacture (CAD/CAM). The existence of the solution, the computation
of the solution and the approximation order are three key factors of an approximation scheme.
Achieving a good approximation order is an important goal in curve approximation [2,7,9,10,12]. A

curve s q(s) has an approximation order k to another curve t p(t) at a point p( *t ) = q( *s ) if there

exists a reparameterization s =  (t) such that
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There is a conjecture that smooth curve in Rn can be approximated with an approximation order

m=d+1+⌊(d-1)/(n-1)⌋,

where ⌊r⌋=max{j∈Z: j≤r}, and d is the degree of the approximation curve [9,10,12].

For planar curve approximation, an accurate cubic interpolation scheme with an approximation
order of 6 for planar curves was first constructed by de Boor, Hollig and Sabin [1]. The method used
positions, derivatives and curvatures at both of the two end-points for determining the resulting
approximation curve. Chen et al. [2] present an inner point interpolation (IPI) method for constructing
a cubic Bézier curve that is tangent with the given curve at three positions, i.e., the two end points and
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an inner point. They prove that the optimal approximation order is also 6 for the cubic case. Both the
two methods in [1,2] are not sensitive to the parameterization formula of the given curve. Numerical
examples in [2] also show that both the standard Hermite method and G2 Hermite method that
matches only directions of derivatives up to the second order are sensitive to the parameterization
and their approximation order tends to be 4. Several other approximation schemes with optimal
orders have been proposed for approximating curves with low degrees [3,4,6,8-13]. Scherer claimed for
the proof of the conjecture in one of his unpublished manuscripts in 1994 [9].

For approximation curves of degree n ≥ 4, there are few references discussing approximation 
schemes with the optimal order. Several conjectures are made on the optimal order in Rd by Höllig,
Koch, and Rababah [8-10,12]. The corresponding optimal orders are conjectured by analyzing the
relation between the number of the constrained equations of the derivatives on the two end points
and the number of the unknown variables. Note that the r-th order derivatives and their directional
vectors are sensitive to the parameterization of a curve and the geometric Hermite method is
therefore also sensitive to the parameterization.

This paper discusses the curve approximation problem in R3 space by using quartic Bézier curves.
It provides a geometric interpolation method, which is extended from the IPI method in [2]. For
approximating a given curve, the new method is to find a Bézier curve of degree 4, which is tangent
with the given curve at the two end-points and an inner tangent point. The resulting curve is explicitly
expressed in the parameters of the tangent inner point of both the given curve and the approximation
curve. We prove that the optimal approximation order of the new method is also 6, which is the
optimal order in the traditional conjecture in [9,10,12]. Numerical examples show both the optimal
approximation order and the approximation effect of the new method. Analyzing the additional
degrees of freedom leads to the possibility of obtaining an approximation curve which interpolates an
additional inner point in addition to the interpolation with respective tangent direction at the two end
points and one inner point. However, a detailed discussion and the corresponding proof on whether
such an approximation curve exists are beyond the scope of this paper.

The outline of this paper is as follows. In section 2, we explain the geometric interpolation method

in 3R space. In section 3, we prove that the optimal approximation order of the new method is also 6.
We also point out that it is possible to obtain an approximation order of 7 by analyzing the degree of
freedom of the equations and unknown variables as well. In section 4, we provide several numerical
examples.

2 GEOMETRIC INTERPOLATION METHOD IN R3 SPACE

Suppose that the given curve and the quartic approximation Bézier curve are represented by
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respectively, where   ii
ii uuuB  444 )1()( , for i=0, 1, …, 4, are the Bernstein basis functions and }{ iQ

are the unknown control points. From the constraint that C(t) and A(u) are tangent with each other at
the two end points, we have
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To completely define the approximation curve, one should determine both the control point Q
2
(x

2
,

y
2
, z

2
) and the values of  and  . Altogether, there are five unknown variables. When we constrain C(t)

and A(u) to be tangent to each other at the inner point of C(t
1
), we have
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The five equations in the equation system (2-4) are all linear in the five unknown variables x
2
, y

2
, z

2
,

 and  . By directly solving the above linear equation system in x
2
, y

2
, z

2
,  and  , we obtain
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Remark 1: The details of the derivation of Eqs. (2-4) and (2-5) are given in Appendix 1.
Once the values of t

1
and u

1
are given, the values of x

2
, y

2
, z

2
,  and  are directly computed from

Eq. (2-5), and thus the resulting quartic Bézier curve is obtained.

With the help of the software Maple, it can be verified that
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of degree 4, 3 and 4, respectively. We will firstly

select a suitable value of t
1

such that there exists an interval [u
s
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for u∈(u
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∈(0,1). When t
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has been set, u

s
and u
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are one of the real roots of the

polynomial equations h
4
(u,t

1
) and g

4
(u,t

1
), respectively, which can be directly computed through the

corresponding explicit formulae. Finally, the value of u
1
can be simply set as (u

s
+u

e
)/2.

Note that, instead of setting the two free unknown parameters u
1

and t
1
in the equation system (2-

5) as mentioned above, these two free parameters can also be further exploited to meet other
additional interpolation constraints. It should be possible for adding one more interpolation constraint
such that the approximation curve also interpolate a second inner point of the given curve C(t

2
), and we

obtain
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By substituting Eq. (2-5) into the equation system (2-6), we have three equations
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in four unknown variables u
1
, u

2
, t

1
and t

2
. If the equation system (2-7) has a valid solution, we will show

at the end of the next section that the approximation order can be further increased to 7, which is
larger than that of the traditional conjecture. However, equation system (2-7) is quite complicated and
we have not proven whether it has a valid solution in the general case.
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Fig. 1: The existence of a solution of the equation system (2-7). The solid curve in black and the dashed
curve in red are the given curve and the approximation curve, while the points in blue and in green are
the tangent point and another interpolation point, respectively.

Fig. 1 shows such a numerical example, which has a valid solution for the equation system (2-7). In Fig.
1, the given curve is a Bézier curve of degree 7, which has the control points (30,-10,0), ( 40,20,5),

(45,20,10), (55,15,0), (65,0,10), (70,-10,5), (80,-30,0) and (90,-35,10). The quartic approximation curve
has the control points (30,-10,0), (47.1606,41.4817,8.5803), (61.4018,3.7096,8.7329), (78.6527,-
29.3263,-1.3473) and (90,-35,10), which is tangent with the given curve at point (69.6205, -9.6420,
5.0391) and interpolates it at point (46.3603, 13.6615, 5.4489) at the same time. As mentioned in the
previous section, however, we cannot prove at the moment whether it has a valid solution or not for
general cases since the equation system (2-7) is quite complicated.

3 THE OPTIMAL APPROXIMATION ORDER

From the formula (2-5), there always exists an approximation curve A(u) which is tangent with the
given curve C(t) at three points, i.e., the two end points and an inner point. Each tangent point is a
double intersection point, whose multiplicity is 2. So the two curves C(t) and A(u) will interpolate each
other six points counting multiplicities. We will show the corresponding approximation order is 6.

Suppose that the tangent points are A(0)=C(0), A( 1û ) = C( 1̂t ), and A(1) = C(1). There exist three real

numbers 2
0}{ ii such that A’(0) = 0 C’(0), A’( 1û ) = 1 C’( 1̂t ), and A’(1) = 2 C’(1).

Theorem 1: The approximation curve A(u) has an approximation order of 6 to the given curve C(t).

Proof. From the definition, it needs to prove that there exists a point where the approximation

curve A(u) has an approximation order of 6 to the given curve C(t). Let  (t) be a polynomial such that

 (0) = 0,  (1) = 1,  ( 1̂t ) = 1û ,

 '(0) = 0 ,  '(1) = 2 ,  '( 1̂t ) = 1 .

Let Â (t) = A ( (t)). It can be verified that

Â (0) = C (0), Â (1) = C (1), Â ( 1̂t ) = C ( 1̂t ),



Computer-Aided Design & Applications, 7(6), 2010, 919-928
© 2010 CAD Solutions, LLC

923

Â '(0) = C '(0), Â '(1) = C '(1), Â '( 1̂t ) = C '( 1̂t ).

Let H (t)= Â (t)- C (t). Then we have
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where )0(iH is the value of the i-th derivative function of )(tH at t=0. Note that )0()0(ˆ)0( iii CAH  ,

combining with Eq.(3-1), we have
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From the definition of Eq. (1-1), the approximation curve A(u) has an approximation order of 6 to
the given curve C(t).□ 

Remark 2: A similar proof of Theorem 1 has been given in [2], which is under review, for planar
cubic curve approximation. Here, we give the complete proof for easy reference.

Remark 3: If there always exists an approximation curve which is tangent with the given curve and
also interpolates one more inner point at the same time, we can similarly prove that the corresponding
optimal approximation order is 7.

4 NUMERICAL EXAMPLES

This section provides some numerical examples to illustrate both the effect and the approximation
order of the new method.

Example 1: In Fig. 2, the given curve is a helix curve determined by

C(t) = (cost, sint, t), t ∈[0, 1],

which is also used in [9]. Table 1 shows the approximation results. In Table 1, j is an index for mapping

to the parameter interval [0, j12 ], je denotes the corresponding approximation error, and

1
2log




j

j
j

e

e
m , which illustrates the approximation order. As shown in Table 1, the approximation

order of the new method is 6.
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Fig. 2: The solid curve in black is the given helix curve, while the dotted curve in red is the
approximation curve.

Tab. 1: Approximation results of a helix curve.

Example 2: In Fig. 3, the given curve is a Bézier curve of degree 7 with control points (30,-10,0),
(40,20,5), (45,20,10), (55,15,0), (65,0,10), (70,-10,5), (80,-30,0) and (90,-35,10). Table 2 shows the

approximation results. In Table 2, j is again an index for mapping to the parameter interval [0, j12 ],

je denotes the corresponding approximation error, and
1

2log



j

j
j

e

e
m , which illustrates the

approximation order. Table 2 shows again that the approximation order of the new method is 6.

j e
j

m
j

1 7.6758e-06
2 1.1966e-07 6.0032
3 1.8686e-09 6.0008
4 2.9193e-11 6.0002
5 4.5612e-13 6.0000
6 7.1268e-15 6.0000
7 1.1135e-16 6.0000
8 1.7399e-18 6.0000
9 2.7186e-20 6.0000

10 4.2479e-22 6.0000
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Fig. 3: The solid curve in black is the given Bézier curve of degree 7, while the dotted curve in red is the
approximation curve.

Tab. 2: Approximation results of a helix curve.

A few more examples are shown in Fig. 4. Fig. 4(a) shows a helix curve. For this example, the entire
curve is approximated with 64 segments for meeting the required tolerance of 10-4. Fig. 4 (b) shows a
curve on a surface. This curve is approximated with 16 segments for meeting the required tolerance of
10-8. Fig. 4 (c) and Fig. 4 (d) show curves on a cup and a teapot, respectively. These curves are
approximated with 8 segments for meeting the required tolerance of 10-4.

j e
j

m
j

1 1.6856e-00
2 1.3706e-02 6.9422
3 9.6521e-05 7.1498
4 1.2345e-06 6.2887
5 1.8035e-08 6.0970
6 2.7426e-10 6.0391
7 4.2337e-12 6.0174
8 6.5775e-14 6.0082
9 1.0248e-15 6.0040

10 1.5992e-17 6.0019
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(a) (b)

(c) (d)
Fig. 4: (a) Approximating a helix curve with 64 segments for a tolerance of 10-4; (b) Approximating a
curve on a surface with 16 segments for a tolerance of 10-8; (c) Approximating curves on a cup shape
surface; and (d) Approximating curves on a teapot.

5 CONCLUSIONS

This paper presents a geometric interpolation method in R3 space, which is extended from the IPI
method of [2] for planar curve approximation. In the new method, the resulting quartic Bézier curve is
explicitly expressed in two variables u

1
and t

1
, i.e., the parameters of the tangent point on both the

given curve and the approximation curve, which are free for optimization. A method is provided for
presetting the values of u

1
and t

1
. The new method reaches an approximation order of 6, which is the

optimal order in the traditional conjecture. Some examples are presented to show the approximation
order and the approximation effect.

By analyzing the degree of freedom of the resulting equations and the corresponding unknown
variables, the geometric interpolation method discussed in this paper can be likely extended to a new
method with a higher approximation order. Instead of passing through the given curve at the two end
points and an interior point with respective tangent directions, the approximation curve can be forced
to pass through an additional interior point by exploring the extra degree freedom of the
parametrization. As a result, it is possible to achieve an optimal approximation order of 7, which is
higher than that of the traditional conjecture in [8,9,12]. The idea was also verified with some
preliminary examples. The extension and the proof of the existence of a quartic Bézier curve with an
approximation order of 7 will be further addressed in our future work. The optimal selection of the
values of u

1
and t

1
can also be discussed for achieving the best approximation effect.



Computer-Aided Design & Applications, 7(6), 2010, 919-928
© 2010 CAD Solutions, LLC

927

In principle, the geometric interpolation method can also be further extended to the
approximation problem by using Bézier curves of higher degrees. While this paper uses a quartic
Bézier curve to illustrate the geometric interpolation method, the idea can also be applied to other
curves in the future.

ACKNOWLEDGEMENT

The research was partially supported by the Research Grants Council of Hong Kong Special
Administrative Region, China (CityU 119208), the National Science Foundation of China (60803076),
the Science Foundation of Zhejiang Province (Y1090004).

REFERENCES

[1] de Boor, C.; Höllig, K.; Sabin, M.: High accuracy geometric Hermite interpolation, Computer Aided
Geometric Design, 4(4), 1987, 269–278.

[2] Chen, X.; Ma, W.; Yong, J.; Paul, J.: Inner point interpolation method with tangent direction
constraint for planar curve approximation, Submitted to Computer Aided Geometric Design,
2009.

[3] Degen, W.: Best approximations of parametric curves by splines, In: T. Lyche and L.L.
Schumckaker, eds., Mathematical Methods in Computer Aided Geometric Design II, 1992, 171–
184.

[4] Degen, W.: High accurate rational approximation of parametric curves, Computer Aided
Geometric Design, 10(3-4), 1993, 293–313.

[5] Elber, G.; Lee, I.; Kim, M.: Comparing offset curve approximation methods, IEEE Computer
Graphics and Applications, 17 (1), 1997, 62–71.

[6] Farin, G.: Geometric Hermite interpolation with circular precision, Computer-Aided Design, 40(4),
2008, 476–479.

[7] Gasper, J.; Jernej, K.; Marjeta, K.; Emil, Z.: On geometric interpolation by planar parametric
polynomial curves, Mathematics of Computation, 76 (260), 2007, 1981–1993.

[8] Hö11ig, K.: Algorithms for rational spline curves, Transactions of the Fifth Army Conference on
Applied Mathematics and Computing, 1988, 287–300.

[9] Höllig, K.; Koch, J.: Geometric Hermite interpolation, Computer Aided Geometric Design, 12(6),
1995, 567–580.

[10] Höllig, K.; Koch, J.: Geometric Hermite interpolation with maximal order and smoothness,
Computer Aided Geometric Design, 13 (8), 1996, 681–695.

[11] Marjeta, K.: Geometric Hermite interpolation by cubic G1 splines, Nonlinear Analysis, 70(7), 2009,
2614–2626.

[12] Rababah, A.: High accuracy Hermite approximation for space curves in Rd, Journal of
Mathematical Analysis and Applications, 325(2), 2007, 920–931.

[13] Schaback, R.: Interpolation with piecewise quadratic visually C2 Bézier polynomials, Computer
Aided Geometric Design, 6(3), 1989, 219–233.

Appendix 1: Derivation of Eqs. (2-4) and (2-6).

In principle, Eqs. (2-4) and (2-5) can be derived for general cases. For the sake of simplicity, with a
suitable affine transformation, we assume that the two end points of the given curve are given as
C(0)=(0,0,0) and C(1) =(1,0,0), their directional vectors of the derivatives at the two end points are

)1,1,1( and ),1,1( ez . Without loss of generality, let the inner point and the directional vector of its

derivative be ),,( ttt zyx and ),0,1( mz . The approximation curve then becomes
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Substituting A(u) into Eq. (2-4), we obtain
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Finally, Eq. (2-5) becomes
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