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ABSTRACT

Curve skeletons are 1D entities that capture the essential topology and geometry of a
shape in a simple and very compact form, and have found a multitude of applications
in engineering and science. The concept itself is ill-defined, which is why the many
existing definitions are ad-hoc and employ heuristic algorithms revolving around the
(unique) medial axis. We propose a framework for computing curve skeletons for
arbitrary planar domains that relies on a modified medial axis, and is based on R-
functions that can be thought of as continuous forms of the Boolean logic functions.
Furthermore, we propose one particular definition of such a curve skeleton that
preserves the homotopy of the domain, is stable in the presence of noise and is well-
suited to downstream applications. The framework can be implemented in any
commercial geometric kernel for planar domains, and has attractive computational
properties. Furthermore, the mathematical concepts are extendable to medial surfaces
and curve skeletons in 3D domains.
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1 MOTIVATION

Geometric models are becoming ubiquitous in engineering and scientific applications. We have the
ability today to construct and manipulate geometric models with an accuracy that satisfies even the
most demanding applications. However, the increase in accuracy comes at the expense of an increased
model complexity, which, in turn, may impede downstream applications.

Curve skeletons have been defined in an attempt to provide a simple and compact
representation of the essential topologic and geometric properties of a shape. However, a curve
skeleton is, in general, an ill-defined concept, which has prompted the proposal of a number of ad-hoc
definitions discussed in the next section. Curve skeletons are also sometimes known as “centerlines”
or “medial curves”, which is why most of the existing definitions revolve around the (well-defined)
concept of medial axis.

Introduced by Blum [1] as a tool for image analysis, the medial axis has become one of the
mainstream geometric concepts due to the fact that it provides a compact representation of the
geometric features of a shape and its topology. The medial axis captures the connectivity of the shape,
has a lower dimension than the space itself, and is closely related to the distance function constructed
over the same domain. The concept of medial axis has been described with the help of the fire grass
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concept (see for example [2]) as follows: if a fire starts from all points of a planar curve at the same
time and moves with constant velocities in all directions in the same plane, then the medial axis is the

locus of points where the fire (in fact a moving front) meets itself. The concept can be extended to k -

dimensional geometric shapes in kR , case in which the medial axis becomes a set of dimension 1k  .

Intuitively, the points on the medial axis are equally distant to at least two points of the boundary of
the domain.

1.1 Prior Art

Since the curve skeleton is assumed to be in the “middle” of a shape, most definitions relate the curve
skeleton to a subset of Blum's medial axis. Therefore, it should not be surprising that most algorithms
that compute curve skeletons use a procedural variation of the medial axis algorithms. A good review
of the state of the art and the limitations of current algorithms for medial axis computation appears in
[2], while a survey of the many applications of curve skeletons is provided in [3] along with a detailed
discussion of the desired properties of such representations. Essentially, the current algorithms for
curve skeleton computations employ either: thinning algorithms, which implement some versions of
the fire grass concept such as [4, 5, and 6]; distance functions and Voronoi decompositions [7, 8, 9, 10,
and 11]; level sets [12]; or potential fields [13, 14].

Various approximations of symmetry axes that are used to extract curve skeletons for tubular
shapes are discussed in [15, 16]. An automatic centerline extraction is discussed in [17], which
computes first the medial axis followed by a pruning step to obtain “well centered” paths. The user
defines two (extreme) points on the medial axis, which is followed by running a shortest path
algorithm between the two points of the medial axis whose output is the computed centerline. They
also propose to prune the medial surface by removing all branches connected to end-points and whose
lengths are lower than a specified threshold. Guaranteeing that the centerline will be located in the
“middle” of the object everywhere, as well as handling domains with holes and establishing
connectivity of the centerline to the boundary may be problematic. A new approach that defines the
curve skeleton of 3D solid shapes as the critical points of a geodesic distance function on the medial
axis has been proposed in [18]. Their algorithm computes the curve-skeleton by eroding the medial
axis, and is stable in the presence of noise even though the corresponding medial axis may be unstable.
A number of papers have discussed specific applications of curve skeletons in virtual endoscopy [17,
19], shape segmentation [20], dimensional reduction in boundary value problems [21, 22], shape
similarity [23], virtual navigation [24].

1.2 Scope and Outline

We have proposed in [25] a novel framework for computing the medial axis of a planar domain by
constructing the exact distance function with R-functions that operate on the real valued halfspaces
bounding the domain as logic operators. The medial axis is extracted from the distance function as the
projection of its ridges, where the distance function is not differentiable (note that there are other
points of the distance function where it is not differentiable, namely the ravines. By extracting both
ridges and ravines of the distance function, one obtains a superset of the medial axis [25]). In this
paper we show how to modify this framework to compute curve skeletons for arbitrary planar
domains. Furthermore, we propose one specific modification of the distance function which results in
a skeleton that:

 is a curve skeleton that is homeomorphic to the medial axis and hence it preserves the
homotopy of the domain;

 relies on formalism that is extendable to 3D domains, and

 has attractive computational properties, including the computability by using standard
algorithms within existing commercial CAD systems.
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2 CONSTRUCTING THE DISTANCE FUNCTION OVER THE DOMAIN

Assume that the planar domain is a closed, bounded, regular and semi-analytic pointset  , i.e.,

described by real-function inequalities, or halfspaces, 0
i
f  . We adopt the convention that each

i
f is

positive inside the domain  , and negative outside. Clearly, = 0
i
f on the boundary  of  .

Furthermore, the Euclidean distance to the boundary of every such domain  is usually defined as

 ( ) =
x

d p inf p x




Each halfspace ( , )
i
f x y induces a higher dimensional halfspace in the ( , , ( , ))x y f x y space denoted by

( , , ( , )) 0
i i i

H H x y f x y  (1)

It is easy to see that, in general, the boundary

H

i
of 0

i
H  is not a distance function to = 0

i
f .

However, such a distance function can be constructed for every = 0
i
f either exactly (analytically) or

approximately [26, 27], and therefore for the remainder of this paper we assume that

H

i
is the

distance function to curve = 0
i
f .

One of the main consequences of the theory of R-functions invented by Rvachev [28] is that
one can obtain one single real function inequality 0  for any closed, bounded, regular and semi-

analytic geometric shape  bounded by primitive sets, or function inequalities, 0
i
f  . Function  is

obtained by first constructing an appropriate R-function predicate using the usual logical functions,

and substitute its arguments with the functions describing the primitive sets 0
i
f  . The resulting

function  is continuous over domain  , has known differential properties, and its zero level set is

the domain  itself. If

H

i
are distance functions to = 0

i
f , i.e., =0

( , ) = ( ( , )) |
i f

i
f x y d p x y , then we can

substitute
i

H instead of
i
f in the R-function expression to obtain the exact distance function over  .

Conceptually, the problem of constructing a Boolean expression for a domain bounded by
halfspaces is the same as that of converting a Boundary Representation (B-rep) into a Constructive
Solid Geometry (CSG) representation in Solid Modeling [29]. The Boolean set representation of a
polygonal domain can be computed based on the Convex Deficiency Tree [30], which treats each
polygon as its convex hull minus a finite number of concavities. Note that the polygon is a closed set,
so the subtraction of concavities must necessarily be regularized (i.e., one must use regularized
Boolean operations). Importantly, this construction algorithm for simple polygons can be extended to
some other point sets, such as curved polygons [31], 3D polyhedra, and more general 3D solids [32,
33].

By performing the syntactic substitution mentioned above, we obtain a function  that is the
exact distance function for any convex planar domain, and an approximate distance function for a
concave domain. Note that such a distance function is obtained from the principal system of R-
functions [25]


R


() :

1

1 
x

1
 x

2
 x

1

2  x
2

2  2x
1
x

2
,









 (2)

by setting the value of =1 , i.e., the
1
( )R  system. Values of < 1 correspond to R-functions over

the same domain that have established differential properties [29]. The approximate distance functions

obtained from
1
( )R  can be converted into exact distance functions by introducing additional
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halfspaces at the concave vertices of the domain. Specifically, each concave vertex requires a conical
halfspace with a half angle of / 4 and two separating/trimming halfspaces that are normal to the

boundary curves that are incident at the concave vertex. In practice, we add trimmed conical
halfspaces to all vertices of the domain, which eliminates the need to keep track of the domain
convexity because a trimmed conical halfspace will contribute to the resulting function only when the
corresponding vertex becomes concave [25].

Fig. 1: A planar domain (a), its distance function (b) and the projection of the ridges of the distance
function onto the plane of the domain (c).

3 CURVE SKELETONS

We identify in the medial axis

MA() three types of points illustrated in Figure 2:

 junction (or branch) points - where three or more branches of the medial axis meet, or,
alternatively, where the maximal disc has three or more contact points with the
boundary of the domain;

 convex end-points - these points are both points of the medial axis as well as convex

corners of the original domain  ;
 free-end-points - end-points of the medial axis that are NOT on the boundary of the

original domain  ;

Fig. 2: The three types of medial axis points.

It is known that the number of junction points for any semi-analytic domain is finite [34, 35]
and that these junction points can be used to decompose the original domain into “primitive”
subdomains whose medial axis transforms are piecewise real analytic curves, i.e., the so called
“fundamental domains” [34]. It follows that the maximal ball centered at any point of the medial axis
that lies between two junction points or between a junction point and an end-point (convex or free as
defined above) will have exactly two contact points with the boundary of the planar domain. These
medial axis points are also known as normal points, and all branches of planar solid domains that are
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bounded by two junction points contain only normal points in the interior. Furthermore, the convex
and free end-points will bound branches of the medial axes that do not connect to any other branches
of


MA() at those end-points.

Fig. 3: Branch taxonomy based on branch end-points. Only the upper half of this matrix is populated
due to its symmetry.

The branches of the medial axis can be classified based on their endpoints as shown in Figure
3. The branches whose end-points are both junction points connect to other branches at both ends and
therefore this type of branches can be found in essentially every type of curve skeleton that has ever
been proposed. These branches capture the topology of the domain - see for example Figure 1, and
therefore they will not be modified. Furthermore, the branches whose end-points are of the same type
(i.e., either both convex or both free end-points) come from shapes whose medial axis consists only of
one branch as illustrated in Figure 3 so these will be preserved. Hence, it is reasonable to expect that
the only branches of the medial axis that can potentially be modified or pruned would be those that
have a junction point at one end and either a convex or a free end-point at the other end.

By modifying the distance functions corresponding to some of these candidate branches, and
by substituting these modified distance functions in the Boolean expression computed as described

above, we obtain a new continuous function m over  , whose ridges can be projected onto the plane

of  to obtain the curve skeleton. Once the candidate branches have been identified, one needs to: (1)

identify the corresponding halfspaces
i
f that generate each such branch; (2) modify the corresponding

distance functions
i

H ; (3) recompute the projections of the new ridges of the continuous function m

that form the curve skeleton; and (4) prune the branches that are coincident with the boundary of  as
well as a subset of those branches that are bounded by one junction point and either a convex or a free
end-point. One specific choice is proposed in the next section.

Note that this framework supports the formulation of multiple curve skeletons that can be
obtained by changing the distance functions that are being modified and the branches that are being
pruned.

3.1 One Particular Curve Skeleton

One particular type of skeleton that is well suited to a number of practical applications can be obtained
by eliminating from the medial all branches that have one junction point at one end; and either a
convex or a free end-point at the other end. To this end, the distance functions corresponding to the

halfspaces
j

f generating branches bounded by the same junction point and a convex end-point will be

modified such that they become perpendicular to the plane of  at every point along = 0
j

f . Referring

to Figure 2, the distance functions corresponding to the halfspace(s) that define the leftmost boundary
curve will be modified, which will effectively “push” the leftmost junction point towards the boundary
curve. In the example illustrated in Figure 2 there is one other such boundary curve as shown.
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If we denote by m
j

H the modified distance functions, then the m
j

H 's are substituted in the R-

function expression to replace the corresponding
j

H 's. The resulting continuous function is no longer

a distance function everywhere, but the projection of its ridges result in a modified skeleton for which
specific junction points as well as the end branches bounded by these junction points are on the

boundary of  . Once the new skeleton is recomputed, the skeleton is pruned of all branches (minus

the corresponding junction points) that overlap with  as well as those branches that have a convex
or a free end-point at one end.

Figure 4 illustrates these steps for a planar domain bounded by free-form curves. The medial
axis


MA() is shown in Figure 4(a). There are two candidate distance functions for modification,

namely
1

H and
2

H as indicated in the figure because these distance functions create branches that are

bounded by the same junction point at one end and by a convex end-point at the other end. In the
second step, these distance functions are modified so that they become perpendicular to the plane of

 . The projections of the ridges of the new continuous function 
m are shown in Figure 4(b), which

form the modified skeleton. The exact distance function  and the modified function 
m are shown in

Figures 4(d) and (e). The final curve skeleton that is obtained as a result of the pruning step is shown in
Figure 4(c).

Fig. 4: Medial axisMA , modified MA and the curve skeleton after the pruning step for an arbitrary
domain.

Our implementation accepts a boundary representation of the domain bounded by free-form
boundary curves as input. The distance functions to individual halfspaces are computed either
analytically for linear and quadratic halfspaces, or approximately. The ridges are extracted by using
discrete Laplacian implementation as discussed in detail in [25]. We compute the neighborhood graph
of all points on the medial axis, which is heavily exploited in identifying the three types of points
defined above and the corresponding candidate branches.
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3.2 Singular Cases

For some domains, such as those for which two or more junction points collapse into the same
junction point, selecting an appropriate curve skeleton becomes impossible without additional
information or heuristics. Such an example is illustrated in Figure 5 where two junction points from (a)
collapse into a single junction point (b). This shape clearly admits at least two curve skeletons as
illustrated in Figures 5(c) and (d) and selecting one of these possible skeletons requires additional
information from the user or heuristics.

Fig. 5: Medial axis and curve skeleton of an arbitrary domain in a singular case. Deciding which curve
skeleton to compute requires heuristics or additional information from the user.

A similar example is illustrated in Figure 6 in which the original medial axis from (a) can be
modified to obtain either of the three curve skeletons shown in Figure 6 (b-d). Such a multi-prong
junction point can occur in more complex domains such as the one shown in Figure 6 (e) which can
lead to either one of the skeletons shown in Figures 6 (f) or (g).

Fig. 6: Medial axis of a topological triangle (a) and three possible curve skeletons (b-d). A more complex
domain with a four-prong junction point.
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4 EXAMPLES

In this section we illustrate several examples in which branches bounded by a junction point and either
a convex or a free end-point are eliminated from the skeleton as described above.

The first two examples illustrate a planar cross-section of a compliant robotic hand without
the actuators shown in Figure 7(a)/(b) and a wrench-like domain with two complex cavities as shown in
Figure 7(c)/(d). The medial axes of these domains are computed and shown in Figures 7(a) and (c) while
the corresponding curve skeletons are shown in Figures 7(b) and (d).

Fig. 7: A 2D cross-section of a compliant mechanism (robotic hand) and its medial axis (a) and curve
skeleton (b); a wrench-like domain with two complex cavities and its medial axis (c) as well as its curve
skeleton (d).

The distance function of a 2D section of a rotary cutter (a) and its medial axis (c) are illustrated
in Figure 8. By modifying the distance functions of the nine outermost halfspaces, and substituting
them into the R-function expression as explained in section 2, we obtain the continuous function
shown in Figure 8(b). The final curve skeleton obtained after pruning is shown in Figure 8(d).

Fig. 8: A cross-section of a rotary cutter with its medial axis (c) and curve skeleton (d).
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The final example of Figure 9 illustrates a domain containing two exponential sinusoidal
primitives. The medial axis (Figure 9(c)) contains ten branches that are bounded by a junction point
and a free end-point, and four that have a convex end-point at one end. Note that two rightmost
branches are bounded by the same junction point and have convex end-point at the other end, but the
two leftmost branches do not share the same junction point. Consequently, the distance function
corresponding to the rightmost halfspace is modified as explained above so that the common junction
point will move to the boundary of the domain. By eliminating all branches that are on the boundary of

 as well as all the other branches bounded by both a junction point as well as a free end-point, as
explained in Section 3.1, we obtain the curve skeleton shown in Figure 9(e). Observe that the resulting
curve skeleton intersects the boundary at only one point since the distance function corresponding to
the leftmost halfspace has not been modified (see Figure 9(b)). Nevertheless, one can also modify the
leftmost distance function for the domain of Figure 9(a) which will move the leftmost junction point to
the boundary as shown in Figure 9(f).

Fig. 9: An environment with two exponential sinusoidal primitives, its medial axis (c), and two curve
skeletons (d) and (e) produced by the continuous functions shown in (a-c).

5 CONCLUSIONS

The concept of a curve skeleton has been used to capture the essential topologic and geometric
properties of a shape, and there are many essentially ad-hoc definitions that treat them as
“centerlines” or “medial curves”. Consequently, most existing definitions revolve around the (well-
defined) concept of medial axis.

In this paper we propose a framework for computing curve skeletons of planar domains. Our
formulation, which supports multiple criteria for defining curve skeletons, constructs exact distance
functions with R-functions that operate on the real valued halfspaces bounding the domain as logic
operators. We showed that curve skeletons can be obtained by: modifying specific halfspaces bounding
the domain; substituting the modified halfspaces in the R-function expression; recomputing the
corresponding skeleton, and by pruning specific branches of this modified skeleton.

We have also proposed one particular curve skeleton that is homeomorphic to the medial axis,
and, hence, it preserves the homotopy of the domain by definition because the only branches that are
pruned are those that have an end-point that does not connect to any other branches. Consequently,
no internal loops of the medial axis are being affected. Furthermore, due to the pruning mechanisms
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that we employ, the resulting skeleton is stable with respect to boundary noise even though the medial
axis is not. At the same time, the proposed approach inherits all the computational advantages of our
medial axis computation framework discussed in [25], whose mathematical apparatus is extendable to
3D domains, and has attractive computational properties, including the ability to implement it using
standard algorithms within existing commercial CAD systems.
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