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ABSTRACT

This paper deals with the investigation of the stability and the accuracy of the most
important methods to estimate the parameters that are involved in the shape
recognition process of tessellated surfaces. For this purpose, four approaches to
estimate the differential geometric properties of tessellated surfaces are systematically
examined (namely, simple and extended quadric fitting methods, Rusinkiewicz’s method
and Meyer discrete method). A set of test cases has been designed in order to
investigate the sensitivity of those methods to factors such as noise in point location,
surface typology (chosen between those types that usually define the boundary of
mechanical parts such as: planes, cylinders, spheres, cones and tori), mesh resolution
and mesh regularity. Based on the results obtained, some criticism of the analyzed
methods is made and some guidelines are provided in order to choose the most robust
and reliable method in relation to the surface typology, quality of the mesh and noise
in point location.
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1 NOMENCLATURE
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2 INTRODUCTION

Shape recognition in geometric models defined by triangular meshes is a very complex task to
accomplish. It is commonly required for geometric feature recognition in reverse engineering,
geometric data smoothing and tolerances verification. A tessellated geometric model is a collection of
adjacent planar triangular facets which define a closed (and) oriented Eulerian surface [23]. Shape
recognition is a way of simplifying a geometric model described by triangular facets, by reducing it to
a collection of a few adjacent smooth surfaces, each characterized by a specific geometric type. For
this purpose, it is required that a set of adjacent planar triangular facets be recognized as pertaining
to a unique smooth surface. In other words, a polyhedral surface is likened to a smooth surface whose
points have specific characteristics: they are of the same type (elliptic, flat, hyperbolic, parabolic and
umbilical) and have a specific value for some geometric parameters (principal curvatures, focal points’
location and principal directions). A smooth surface involves the concept of regular point: each point
in a smooth surface is regular and vice versa, any point of a surface is said to be regular if its
neighborhood can be represented by a smooth function. This property of the points of a surface can
be projected to the vertex of a tessellated surface by performing a recognition process of the
smoothness property of the region around the vertex. Shape recognition is typically carried out by
locally analyzing some differential properties of the surface under examination. These properties have
to be deduced from discrete data retained in the mesh’s vertices’ location under the hypothesis that
they are regular points. Regular point recognition is therefore necessary and it is a preliminary stage in
any shape recognition approach in tessellated models. A review of methods for regular point
recognition is presented in [28].

Principal curvatures are the most important differential properties required to identify the point
type and, therefore, shape geometry; other local surface properties, such as normal vector and focal
points at vertex, can be necessary to identify a more specific type of surface geometry. The estimation
of differential properties at the vertices of a triangular mesh is affected by uncertainties and errors.
These uncertainties depend mainly on some factors which characterize the tessellated surface such as:
mesh resolution, non-uniformity of the triangles’ dimensions and the number of triangles sharing each
vertex (valence). These factors affect the recognition process depending on the typology of the surface
to be recognized (plane, cylinder, cone, sphere, tori). Uncertainty in shape recognition can also be due
to an error in point location. Point location is affected by measurement errors and by the
manufacturing errors of the acquired model. A further source of error can be the merging process of
point clouds that are acquired in different positions of the object. Noise deriving from the errors in
point location can be partially compensated by a pre-smoothing of the mesh, but, on the other hand, it
can significantly modify the local properties of the tessellated surface.

The literature on curvature estimation methods for triangular meshes is wide and voluminous. In
the next section, a survey of these methods is presented. Magid et al [17] provide a comparison of four
different methods for Gaussian and mean curvature estimation on triangular meshes. However, there
is a shortcoming in such a comparison inasmuch as they do not systematically analyze all the
significant mesh parameters which may affect the performance of the methods for curvature
estimation. Gatzke and Grimm [7], in order to estimate the accuracy and stability of the most
important methods for Gaussian curvature estimation, evaluate the effects of some mesh parameters
(resolution, valence, regularity and noise). While it is true that Gaussian curvature is an important
parameter, it is not the only one involved in shape recognition.

The present work will demonstrate that the diverse methods show different performances in the
evaluation of the typical parameters involved in shape recognition; the analyses of the performances
in Gaussian curvature estimation do not completely characterize these methods. The investigation,
concerning curvature estimation methods, is focused on shape recognition, so some particular
differential properties have been considered (normal to surface, focal points, Mean and Gaussian
curvatures). Furthermore, the study is oriented to a practical application where the tessellated model
can also be affected by noise in point location (it is typical of scanned objects). For this purpose,
sensitivity to the noise factors of some parameters specifically suited for shape recognition is
examined.
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3 CURVATURE ESTIMATION METHODS

In the last few years several methods have been developed to directly estimate curvature at the
vertex of triangular meshes [1], [16], [24], [26], [29], [31]. These methods can be classified into two main
groups: fitting and discrete methods. Fitting methods, on the one hand, involve finding an analytic
function that fits the mesh locally and whose curvature is well-defined. Discrete methods, on the other
hand, develop either a direct approximation for the curvature, or an approximation of the curvature
tensor, from which curvature and curvature directions can be calculated. These approaches require
that a certain neighborhood of each vertex p of the mesh be considered. In particular, the discrete
methods use, commonly, 1-ring neighborhoods, whereas fitting methods can involve neighborhoods of
higher order. In the latter case, the selection of the order of neighborhood rings significantly affects
results: neighborhoods of lower order provide a better estimation of differential properties for
synthetic meshes, whereas, as the order of neighborhood rings increases, the estimation is rougher
although less sensitive to noise. The 1-ring neighborhood of p is constituted by all triangles having p
as vertex; N

1
(p) is the set of vertices belonging to 1-ring neighborhood of p. The valence n

v
is the

number of vertices in N
1
(p). A higher order of neighborhood of p is denoted with N

j
(p) where j is the

order.

3.1 Discrete Methods

Discrete methods work directly on the tessellated surface without a local fitting and the analytical
evaluation of its local properties. The local geometric properties at the vertices of the triangulated
surface are derived as spatial averages of the corresponding properties on a well-defined region
around vertices.

A large number of papers deal with approaches based on the estimation of tensor of curvature
such as Taubin’s work [30]. He firstly demonstrated that the following symmetric 3x3 matrix:
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In literature, modifications of the Taubin’s methods are proposed by Hameiri and Shimshoni [11]
and Page et al [24]. Rusinkiewicz [27] verified that these methods are accurate only when the
directions of the edges incident to p are uniformly spaced. A variant of the tensor averaging method is
proposed by Cohen-Steiner et al. [5]; the original contribution of this study is that the curvature tensor
is obtained by using the theory of normal cycles. Rusinkiewicz [27], proved that the tensor averaging
method proposed by Cohen-Steiner et al. [5] yields inaccurate results even for densely-spaced
synthetic meshes.

A second set of discrete methods evaluates the Gaussian and Mean curvatures at vertex p, by
extending the definitions of differential quantities in the continuous case to discrete meshes
performing a spatial average. This average is consistent when the mesh is constituted by non-
degenerate triangles (triangles with non-null area). According to this approach, Gaussian curvature is
estimated by the following formula, which is a consequence of the Gauss-Bonnet theorem [6]:
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The left-hand term in (4) is the integral of the Gaussian curvature over an integration area A
around p, which is bounded by a closed curve on S which consists of a set of geodesic arcs. In (4) #f is

the number of triangles belonging to 1-ring neighborhood of p and i
 is the angle at p of the i-th

triangle. The right-hand term in (4) is referred to as angular defect at p. This name is due to its
geometrical meaning: it is the complement of a round angle of the sum of the angles in p of the
triangles belonging to the 1-ring neighborhood. Under the hypothesis that Gaussian curvature is
constant on an area A around p, K can be estimated as follows:
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A
i
is the area of a properly selected portion of the i-th triangle in the 1-ring neighborhood of p. In

order to estimate A
i
two main criteria have been presented in literature. Lin and Perry [15] proposed

estimating A
i

as the portion of the triangle area bounded by connecting the edge midpoints to the
barycenter (A

i
is one-third of the whole triangle area). Borrelli el al. [2] evinced that when the mesh

triangles are flattened geodesic triangles this criterion is correct if contribution terms of order higher
than two in the triangles’ dimensions can be neglected. In a flattened geodesic triangle [2] the edges
have the same length as the related arcs of a geodesic triangle on the original smooth surface. Meyer et
al. [21] assumed that A

i
was equal to the Voronoi cell area of the triangle (see figure 1.a) and showed

that “this region provides provably tight error bounds for the discrete operators by comparing the local
spatial average of Gaussian curvature with the actual pointwise value”. However, Meyer et al. did not
make any assumption about an important prerequisite when using (5), whose validity is confirmed
only when the integration area is bounded by geodesic curves. Xu [34] verified, by analyzing some
synthetic meshes, that the Gaussian curvature estimation based on the Voronoi cell area is, in general,
better than one based on barycentric area.

Fig. 1: The Voronoi cell (a) and the integration cells (b) associated, respectively, to a non-obtuse triangle
and to the two different typologies of obtuse triangles of the 1-ring neighborhood of p.

Meyer et al. [21], also, proposed a discrete method to estimate Mean curvature. They use the Mean
Curvature Normal operator (H) at the vertex p, also known as Laplace-Beltrami operator:

npH  H2)(
(6)

On a triangular mesh, the integral of the Mean Curvature Normal operator over the area A can be

expressed as a function of the nodes’ coordinates and the internal angles of triangles ( j
 and j
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Fig. 2: The angles opposite an edge belonging to 1-ring neighborhood of p.

Under the hypothesis that Mean Curvature Normal operator is constant on an area A around p, H
can be estimated as follows:
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The effectiveness of the method proposed by Meyer et al. can be seen in some evidences as
discussed in [21], where the authors justify choosing to use the Voronoi cell by estimating the error in
H and K and verifying that this error is minimized in the case of the area of the Voronoi cell. The
authors notice that this approach gives rise to some problems when triangles are obtuse. For these
cases they proposed the following two empirical criteria to evaluate the area A

i
:

- if the angle is obtuse at vertex p, the cell boundaries connect the midpoint of each edge
incident to p to the midpoint of the edge opposite to the obtuse angle (see Figure 1 b);

- if the obtuse angle is not placed at vertex p, the cell boundary connects the midpoints of the
two edges incident to p (see Figure 1 b).

The resulting area of each vertex p, denoted as A
mixed

, is obtained by summing the contributions of
the area of the integration cells associated to triangles belonging to 1-ring neighborhood of p.

3.2 Fitting methods

Fitting methods estimate curvature by effecting a local approximation of the vertices of the
triangular mesh with a smooth curve or surface and then deriving the second-order differential
quantities from that. This surface reproduces locally the properties of the hypothetical original
smooth surface from which the tessellated model has originated; curvatures of the fitting primitive are
computed and assumed as curvatures of the triangular mesh.

One of the early fitting methods for curvature estimation was proposed by Chen and Schmitt in [4];
this approach is based on the Euler’s formula, which links the curvature on the normal section of a
surface to its principal curvatures:
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where T is the tangent to the surface at point p in the direction individuated by the angle  with

respect to the first principal direction (related to k
1
). Given a point p and its neighboring points, it is

possible to identify pairs of opposite points to p. In order to limit the effects of the computation error
for angle  , Chen and Schmitt in [4] proposed choosing point pairs that are as close as possible to the

normal sections of the surface passing through p. For each pair identified, the circle passing through
the two points given and p is calculated and its curvature is assumed as a curvature of the normal
section of the surface in p. By using at least three such pairs, a system of Euler’s equations can be
constructed; the solution of this system are the curvatures k

1
and k

2
. Similar algorithms, based on

circle fitting, were introduced by Martin [18] and Krsek et al. [14]. Hameiri et al. [11] demonstrated
several limitations emerging from this approach: first, insufficient accuracy whenever the normal
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section passing through the analyzed node differs from a circle and, second, the assumption that the
section containing p and the chosen opposite points is a normal section of the surface in p.

The polynomials of second degree (paraboloid) are the most used fitting surfaces for curvature
evaluation [8], [16], [22], [25], [26], [29], [33]; Krsek et al. [14] verified that polynomials of higher degree
do not introduce significant advantages. By using the paroboloid fitting, the triangular mesh is locally
approximated by a quadric surface patch whose analytical form is as follows:

fedcba   22 (10)

in the local coordinate system (, , ) with origin at vertex p and -axis that overlaps the unit
vector normal n evaluated at vertex p (see Figure 3). This approach requires a preventive estimation of
the normal at the vertex. The correct identification of the normal to the surface in p plays an
important role in the results of this curvature estimation method. In section 3, some methods of
surface normal estimation are compared.

Fig. 3: Piecewise-linear surface and the local coordinate system (, , ).

The coefficients of the quadric in (10) are determined by solving the following redundant equation
system with a least-squares approach:
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It is important to notice that, in order to resolve this equation system, the valence p should not be
lower than 6. For this reason, in some cases 1-ring neighborhood is not sufficient and a higher order of
neighborhood must be identified.

Equation (10) represents the complete form of the fitting paraboloid (also called full quadric).
Different quadric functions can be obtained by deleting selected coefficients in (10) [25], [29]. Setting
the f term as zero means imposing the passage of the paraboloid through the vertex p (extended
quadric). If d and e coefficients are also zero, the axis of the fitting paraboloid coincides with the -
axis (simple quadric). Different quadric forms effect different approximations and, consequently, have
different results in terms of differential quantities.

More recently, Razdan and Bae [26] suggested using a biquadratic Bèzier surface. Contrary to the
paraboloid, the Bèzier patch involves several advantages such as higher flexibility (the parametric
approach makes it possible to easily increase the fitting function degree) and the possibility to smooth
noisy data. However, it requires the valence of the vertex under examination to be at least 9, so the
N
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(p) is not sufficient.
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Thiesel et al. in [31] proposed a fitting method based approach called Normal based estimation of
the curvature tensor, which estimates the curvatures per triangle instead of per vertex. The curvature
tensor, which for a smooth surface is defined by the first-order partial derivatives of surface points
and their normal vectors, is evaluated for each triangle by using linear interpolations between its
vertices and their unit vector normal. As pointed out by Razdan and Bae in [26], this method
satisfactorily evaluates the curvature only in the case of meshes with a uniform spacing between the
vertices. Another face-based curvature estimator is proposed by Rusinkiewicz in [27]. This approach
first computes the curvature tensor for each face and then estimates its value at each vertex (p) as a
weighted average over the triangles incident to p.

For a smooth surface, the curvature tensor can be defined as:
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where (u, v) are the directional of an orthonormal coordinate system in the tangent frame. Multiplying
this tensor by any vector lying on the tangent plane, the derivative of the normal in that direction is
obtained as:

nsΠ  sD (13)

In the case of triangular facets, Rusinkiewicz in [27] evaluates the curvature tensor by using finite
differences:
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where e
0
, e

1
and e

2
are the directions of the edges of the triangle and n

0
, n

1
and n

2
are the unit

vectors normal at vertices (figure 4).

Fig. 4. Edges and normal directions used in the Rusinkiewicz’s method [27] to build the curvature
tensor of a triangle.

From the equation (14), for each triangle of the mesh Π is determined by using the least squares
method. In order to evaluate the curvature tensor for each vertex p, a change of coordinate is carried
out which transforms the curvature tensor of the triangles incident to p into the vertex coordinate
frame, defined in the plane which is perpendicular to its normal. The weight used for averaging is the
“Voronoi area” [21] associated with the triangle. The principal curvature and the corresponding
principal directions at each vertex are evaluated as eigenvalue and eigenvectors of the tensor
curvature.
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The Rusinkiewicz’s method indirectly takes into account the 2–ring neighborhood of p, by
analyzing the variations to the unit vector normal at the vertices of each triangle incident to p.

4 VERTEX NORMAL ESTIMATION METHODS

Paraboloid fitting techniques and focal points’ calculation need an accurate and robust estimation
of the normal at vertex. In literature some criteria to estimate the normal at vertex are presented;
some of them are hereunder described and analyzed. The methods here considered can be grouped
into the following categories:

 the weighted average;

 the tensor voting;

 the medial quadric;

 the Mean Curvature Normal.

The first group of methods estimates the normal at vertex as the weighted average of the normal
n

i
of the triangles belonging to 1-ring neighborhood of the vertex p:












nv

i
i

nv

i
ii

w

w

1

1

n

n

(15)

where w
i
are the weight factors. In literature various weighting criteria are proposed. Gouraud [9]

introduced the unweighted average (w
i
=1), which provides a vertex normal estimation which does not

take into account the mesh’s characteristics. Brown [3] considered the weights to be proportional to
the areas of the triangles coming from p (w

i
=A

i
); however, this method does not take into account the

shape of triangles (a thin and long triangle contributes as much as a wide and short one of equal area).
Thürmer et al. [32] used weights which are proportional to the facet angles in p (w

i
=

i
, see figure 1).

Max [19] introduced the sine angle-weighted average, evaluated as follows (see Figure 1):
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The tensor voting approach [20] evaluates, for each mesh vertex, the following matrix:
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where the weights w
i

are proportional to the areas of the triangles coming from p (w
i
=A

i
). In

general A is symmetric and positive semi – definite and its eingenvalues are all real and nonnegative.
A can be decomposed into
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where λ
1
 ≥ λ

2
 ≥ λ

3
are the eigenvalues of A and e

i
are the corresponding eigenvector. According to

this approach, e
1

approximates the normal direction in p.

Jiao and Alexander [13] proposed the medial quadric approach for which, the normal estimation at
each mesh vertex is obtained by minimizing the weighted sum of squared distances (fundamental
quadric) of the triangles coming from p from n. This minimization is obtained by solving the following
3 x 3 linear system:

bnA  (19)

where A is the same matrix reported in (14) and b is the following weighted average outward
normal:
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The latter approach is based on the Mean Curvature Normal operator as shown in the formula (8).

As pointed out by Jiao and Alexander in [13], the best results can be obtained by the medial
quadric method which is independent of the shape and dimension of the triangles of the 1 - ring
neighborhood of the point analyzed. That is the reason why in the tests discussed in the following
section the medial quadric criterion is used for vertex normal estimation.

5 EXPERIMENTAL RESULTS

In order to compare the methods for curvature estimation, some test cases are designed by using
the following surface typologies: plane, cylinder, cone, sphere and torus. These are the most important
typologies of surface to be recognized and, moreover, in this set of surfaces, all the point types
(elliptic, flat, hyperbolic, parabolic and umbilical) can be found.

In Table I the geometrical differential parameters which are significant to recognize the type of
point are reported. The quality of the mesh largely affects the performances of any curvature
estimation method. In this work, in order to characterize some aspects concerning the quality of the
mesh, the following parameters are introduced:

- n
v
(p) = valence of the 1 – ring neighborhood of p;

- µ(p)·H is a normalized measure of the mesh size in the neighborhood of p, where µ(p)·is the
mean size of the edges of the triangles belonging to the neighborhood;

- (p)/µ(p)·is a normalized measure of the dispersion of the dimension of the triangles around
p, where (p) is the standard deviation of size of the edges of the triangles belonging to the
neighborhood;

- 
max

= maximum angular value inside the 1-ring triangular facets around the target vertex p.

Point type Relevant parameters Monitored parameters
Flat (plane) R R
Parabolic (cylinder) H, K, FS

k1
λ

H
 [%], K, λ

FSk1
[%]

Parabolic (cone) H, K, FS
k1

λ
H
 [%], K, λ

FSk1
[%]

Umbilical (sphere) KH 2 , H KH 2 , λ
H

[%]

Elliptic - Hyperbolic (torus) FS
k1
, FS

k2
λ

FSk1
 [%], λ

FSk2
[%]

where:

100*[%]
t

test

H
H

HH 


;
H

est
is the estimated mean curvature;

H
t
is the nominal mean curvature;

    λ
FSk1

= error of position of first focal point normalized on k
1
;

    λ
FSk2

= error of position of second focal point normalized on k
2

Tab. 1: The parameters monitored for each point type.

These parameters do not identify how well the triangular mesh approximates the original surface
but they are, substantially, the parameters which affect the performance of the curvature estimation
methods. A very significant and typical parameter that can be used to qualify a triangular mesh
generated from a regular surface is the SAG, that is to say, the maximum value of the distance from
the barycenter of a mesh triangle to the original surface. As evidenced by the experimental tests
conducted in this work, the performances of the curvature estimation methods are not affected by this
parameter. If we are to generalize from the results obtained, parameters and evaluated errors must be
normalized so that they can be extended to similar cases.

Experimental tests are conducted for different synthetic meshes characterized by selected values
of the mesh quality parameters and for synthetic meshes with random error added (

err
). The

experimental tests carried out in this work have been designed by following a standard approach,
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which consists of varying one parameter at a time, keeping all other parameters at the base-case value
(n

v
(p) = 6; µ(p) = 1 mm; (p)·= 0 mm; 

max
=60°, 

err
= 0 mm). In Table II, the levels’ number and the

increment step, or straightforwardly the corresponding values of the analyzed parameters, are quoted
for each type of point being analyzed. The curvature estimation methods which have been analyzed
are the Meyer discrete method, the simple quadric, the extended quadric and the Rusinkiewicz fitting
methods. The performance of the last-named is evaluated by using Rusinkiewicz’s implementation
(http://www.cs.princeton.edu/gfx/proj/trimesh2/) and by analyzing 2–ring neighborhoods. After a
preliminary experimentation, the full quadric fitting method has been discarded due to its instability
for low values of the valence and to the large errors evidenced. In the next sub-sections a summary of
some of the most significant results are described. Each of the next sub-sections refers to a specific
factor which identifies the quality of the mesh.

Flat

(plane)

Parabolic
(uniform
curvatures
)

(cylinder)

Parabolic

(non
uniform
curvatures)

(cone)

Umbilical

(sphere)

Elliptic and
Hyperbolic

(torus)

µ(p)·H(*)

n° of
levels

26 26 26 26 14

initial
value

0.25
mm

0.0039 0.0039 0.012 0.015

step
0.25
mm

0.0039 0.0039 0.012 0.015

(p)/µ(p)

n° of
levels

8 8 8 7 15

value
s

0, 0.002,
0.086,
0.171,
0.184,
0.248,
0.314,
0.420

0, 0.0001,
0.0055,
0.0106,
0.0115,
0.0156,
0.0193,
0.0261

0, 0.007,
0.011,
0.012,
0.015,
0.017,
0.019,
0.021

0, 0.0043,
0.0085, 0.0128,
0.0170, 0.0212,
0.0253

0, 0.0454,
0.1196, 0.158,
0.1963, 0.2346,
0.2727, 0.3105,
0.3481, 0.3854,
0.4224, 0.4592,
0.4957, 0.532,
0.5681

n
v
(p)

n° of
levels

9

value
s

5, 6, 8, 10, 12, 14, 16, 18, 20


max

[°]

n° of
levels

7

value
s

60, 70, 80, 90, 100, 120, 140


err

n° of
levels

7

value
s

0.003, 0.005, 0.01, 0.025, 0.03, 0.04, 0.05

(*) µ(p) for flat point;

the i-th level of parameter value is obtained as: initial_value + (i-1)*step, for i=1,2,…..,n° of levels.

Tab. 2: Experimental tests: levels’ number and parameters’ values for each type of point analyzed.

Parameters

Point types
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5.1 Valence of the 1-ring Neighborhood of p

A set of experiments have been conducted selecting neighborhoods of p having different values
for the valence: from 3 to 20. As far as the fitting methods are concerned, in all the cases analyzed the
extended quadric does not seem to be significantly affected by the valence (figure 5), whereas the
simple quadric is unstable for n

v
=3 and the Rusinkiewicz’s method proves to be quite sensitive to this

factor. By contrast, Gauss-Bonnet based discrete methods are largely sensitive to the valence, as
noticed also by Gatzke and Grimm [7]. Borrelli et al. [2] proved that, at what they call regular vertex,
these methods have their minimum sensitive for n

v
equal to 6. They also pointed out that, for n

v
 ≠ 6, 

angular defect is not just a function of Gaussian curvature but also of principal curvature values. All
these considerations have been confirmed by the results of the experiments, as it is shown in figure 5,
which refers to the error in the focal points’ evaluation in a torus.

Fig. 5: Impact of the valence on the error in the focal point estimation for a tessellated torus.

5.2 Maximum angular value 
max

The maximum angular value inside the triangular facets around the vertex p affects the error in
curvature estimation. This factor has greater relevance in Gauss-Bonnet based discrete methods than
in fitting ones. In particular, for angle values greater than 90°, Meyer method produces very large
errors in curvature estimation. On the contrary, paraboloid fitting methods do not seem to be sensitive
to this factor. Figure 6 shows the impact of the 

max
on the parameter H2-K, suited for sphere

recognition. Analogous results have been obtained for other kinds of geometries. Meyer’s attempt at
solving the problem derived from obtuse angles by introducing a properly chosen integration region
does not yield useful results: the error in H and K estimation, for 

max
>90°, can reach such high values

(see Figure 6) that it practically makes Meyer method unusable. The Rusinkiewicz’s method proves to
be sensitive to this factor in the case of a strong distortion of the 2–ring neighborhood (

max
>120°).

5.3 Mesh dimension in the 1-ring neighborhood

Mesh dimension is another important factor which affects the error of curvature estimation
methods. Two different contributions to the error can be identified: the first one due to the mean
values of the dimension of triangles incident to p and the second one owing to the dispersion in the
triangles’ dimensions. Both these contributions have been analyzed by means of two different sets of
numerical experiments.
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Fig. 6: Impact of the 
max

on H and H2-K for a tessellated sphere.

The first contribution of the mesh dimension has been analyzed by processing regular meshes
which do not have dispersion in the values of the triangles’ dimensions. For n

v
= 6 and for all the

geometries analyzed, simple and extended quadric methods show greater sensitivity to mesh
dimensions than the Meyer and Rusinkiewicz methods (see Figure 7). This is due to the properties of
the fitting surface used to evaluate curvatures. Paraboloid performs a polynomial approximation of
points in N

1
(p); the computed curvatures are not so accurate when the points lie on a surface that is

represented by a rational function (as in the case of an axial symmetric surface). It is important to
notice that, for the recognition of the type of point, the relative values of the principal curvatures are
more important than their absolute values; therefore, there are not significant problems in point
recognition when the paraboloid fitting method is used. By contrast, in focal point evaluation, the
absolute values of the curvature are essential to obtain useful results.

Fig. 7: Impact of µ(p)·H on the error in estimated focal points’ location for a tessellated torus.

The second contribution of the mesh dimension has been analyzed by processing meshes
characterized by dispersion in the dimensions of triangles incident to p, leaving out the cases with
obtuse angles, which have been separately analyzed since they affect the performance of the Meyer
method. The simple quadric fitting method seems to be very sensitive to dispersion in the dimensions
of triangles with an unstable behavior (see Figures 8 and 10). In comparison, the extended quadric
appears to be stable and not significantly affected by this factor. The Meyer method proves to be quite
sensitive to dispersion in the dimensions of triangles. The Rusinkiewicz’s method, in turn, does not
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seem to be significantly affected by this factor but, unlike the other methods, the error in curvature
estimation is noticeably affected by the orientation of the mesh with respect to principal directions.
The configurations I and II shown in figure 8 refer to those depicted in figure 9.

Fig. 8: Impact of σ(p)/µ(p) on H and K estimation (tessellated cone: µ(p)·H = 0.0485, n
v
(p) = 6).

Fig. 9: Two different configurations of the 2–ring neighborhood used when analyzing the performance
of the Rusinkiewicz’s method.

5.4 Noise in point location

The noise affecting point location can be detected in all the meshes obtained by a scanning process of
a real object. This noise strictly affects any curvature estimation process. The test cases here used to
analyze curvature estimation methods have been generated from synthetic meshes with random error
added. The random error is applied by producing a displacement of the vertex, normal to the surface.
The value of the displacement for each vertex is randomly generated with a normal probability density
function. The results of the experimental tests related to meshes affected by errors have been
evaluated as the mean values of groups of 30 experiments analyzed for each test case. In figures 11
and 12 the results are represented; 

err
is the measure of the noise evaluated as the maximum distance

of the points in N
1
(p) in the direction of the normal vector n(p). For the simple and the extended

quadric and for the Meyer method, the estimated value for the R parameter (which is the parameter
suited to the recognition of planar faces) is over 0.008 for a noise level of 

err
/(p)=0.03 (see Figure 11).

Configuration I Configuration II


H
[%

]


(p)/µ(p) (p)/µ(p)
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Fig. 10. Impact of σ(p)/µ(p) on the error in the estimated focal points’ location (tessellated torus: µ(p)·H
= 0.06, n

v
(p)=6).

This value of R is also compatible with non-planar surfaces, for a noise level (
err

/(p)=0.03) that is
lower than the typical level detected in scanned surfaces that are not pre-smoothed. For these same
methods (that is, simple and extended quadric and Meyer’s) and a level of noise (

err
/(p)=0.03 ) the

estimated value of K in a cylindrical surface (diameter 64mm) is 1.393*10-3, which is also compatible
with a sphere having a diameter of 26.8 mm. It is important to notice that the value of the parameter
H2-K, used to recognize umbilical points is, in this specific case, 1.18*10-6 and that practically it is not
very far from the values measured in synthetic meshes of a sphere (see Figure 6). For these reasons, all
the methods which use the first ring neighborhood have so high a sensitivity to noise that practically
cannot be used to estimate curvatures or to recognize the type of point. The Rusinkiewicz’s method
turns out to be the least sensitive to noise level, but it is important to highlight the fact that it takes
into account the 2–ring neighborhood of the point, performing an intrinsic smoothing of the surface
data. For the previously defined noise levels and point types, the values of R and K are 0.003027 and
4.341*10-4 respectively. The value of K could not make possible the correct recognition of a cylindrical
face.

Fig. 11. Impact of 
err

/µ(p) on R for
tessellated planes.

Fig. 12. Impact of 
err

/µ(p) on K for
tessellated cylinders.
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The paraboloid fitting methods can be applied using higher orders of ring neighborhood. In Tables
III and IV the values of R and K are reported for different orders of ring neighborhood: from 1 to 3.
The values of R and K rapidly fall to values that clearly and respectively distinguish, in the practical
situation, a plane or a ruled surface from any other kind of geometry. When comparing the extended
quadric with the Rusinkiewicz’s method, both of which evaluate the same neighborhood order, it is
manifest that the former proves to yield better results.

(
err

/µ(p) = 0.03)

N
1
(p) N

2
(p) N

3
(p)

R 0.008163 0.002542 0.000698
Table III. The impact of the ring – neighborhood order of the point p on the R evaluation of a noised

planar mesh

(
err

/µ(p) = 0.03)

N
1
(p) N

2
(p) N

3
(p)

K 1.393*10-

4 2.249*10-5 2.088*10-6

Table IV. The impact of ring – neighborhood order of the point p on the K evaluation of a noised
cylindrical mesh

6 CONCLUSIONS

In this work an investigation about the stability and accuracy of the most important shape
recognition methods for tessellated objects is carried out. In order to highlight the effects of mesh
parameters such as resolution, regularity and noise, four methods (two paraboloid fitting ones,
Rusinkiewicz’s and Meyer’s) have been investigated by means of a set of specifically designed test
cases.

On the one hand, paraboloid fitting methods prove to be affected mainly by the mesh dimension.
Error in curvature estimation can be detected, which increases as the mesh dimension increases. This
error does not significantly compromise the identification of point type when it involves recognizing
null values in some characteristic parameters. It is the case of R, H2-K and K parameters. On the other
hand, paraboloid fitting methods produce errors, which are larger as the mesh dimension increases,
when evaluating quantitative parameters such as focal points and mean curvature. The simple quadric
method is unstable for valence = 3 (see Figures 5) and highly sensitive to mesh dispersion of the
dimensions of 1-ring neighborhood (see Figures 8 and 10). It is for this reason that the simple quadric
method cannot be used in a practical situation when dispersion in the triangles’ dimension is very
frequent.

Regarding synthetic meshes, Rusinkiewicz’s method falls short since it is affected by the
orientation of the mesh with respect to principal directions. Furthermore, these methods have
difficulty in evaluating the differential geometric parameters in vertices near non–regular points.

The Meyer method shows some critical states that are typical of all Gauss-Bonnet based discrete
methods. These critical states manifest for valence not equal to six and for a high dispersion in the
mesh dimension in the 1-ring neighborhood. A specific critical state of the Meyer method manifests
when there are obtuse triangles. In this case, the method produces large error in the estimation of any
geometrical differential parameter. It is important to notice that valence different from six and obtuse
triangles can be commonly found in real cases of meshes generated by reverse engineering and also in
synthetic meshes. It is, for example, the case of the benchmark proposed by Hugues Hoppe, which is
shown in figure 13. In the geometric model of an oil pump housing, the points having valence different
from six (see Figure 13 b) and obtuse triangles (see Figure 13 c) are illustrated. As it can be observed in
the case in figure 12, and also in many other practical cases, obtuse triangles and valence different
from six are located in many parts of the geometric model. In the geometric model in figure 13 the
percentage of the area of the obtuse triangles is 48.4%. The large error the Meyer method produces in
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these zones gives rise to such high uncertainty in point type recognition that it cannot be used for this
purpose. The test cases used in literature to analyze Meyer method are not focused on shape
recognition and do not refer to real practical cases affected by error in points’ location.

The results of many of the test cases analyzed show that those methods which use the 1 - ring
neighborhood have high sensitivity to noise, and hence, cannot be practically used to estimate
curvatures or to recognize the type of point in scanned surfaces. The Rusinkiewicz’s method shows a
satisfactory performance depending on the type of point and only for certain neighborhood vertex
arrangements. The extended quadric fitting method shows quite a good capability, independently from
the point type, when the neighborhood order is higher than the first one. On the other side some
problems occur when evaluating quantitative parameters such as the absolute location of focal points
or curvature measures. As far as point type recognition is concerned (elliptic, flat, hyperbolic,
parabolic and umbilical), the relative values of the principal curvatures are more important than their
absolute values and for this goal extended quadric fitting method performs good results.

Fig. 13. Quality of the mesh (valence (b) and obtuse triangles (c)) of a typical mesh of a scanned object
(a).
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