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ABSTRACT

Conventional approaches to segmenting skeletal structures include extracting 2D
contour profiles on the 2D image domain and performing 3D region growing to
acquire the 3D bone region directly. However, as far as multiple pieces of bones
segmentation are concerned, these methods are not accurate or efficient enough as
each bone must be processed one by one. The purpose of this study is to present a
method for multiple bones segmentation. A seed regions generation algorithm is
proposed to automatically generate an initial region on each bone of interest. The seed
regions are then expanded iteratively. In this process, simultaneous region growing is
employed to control the moving speed of the fronts, which can reduce the occurrence
of overflow. An investigation of the initial threshold and target threshold is also
conducted and appropriate methods to optimize the values are provided. Moreover,
five cases of lower limbs are employed to demonstrate the feasibility of the proposed
method.
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1 INTRODUCTION

3D visualization techniques such as volume rendering and maximum/minimum intensity projection
can easily be employed to display skeletal structures. The examples shown in Figure 1 represent the
isosurface of several skeletal structures by a volume rendering technique. Although such data seem to
be visually pleasing, no surface boundary can be accessed from such a representation because such
data only represent the mapping of 3D data onto the 2D viewing plane. The primary shortcoming of
this representation is that the joint area may easily be obstructed and can never be observed in any
view. Moreover, it is impossible to display and manipulate an individual bone owing to the limitations
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of this representation. To overcome such a problem, segmentation of the bones of interest is
necessary.

The 3D skeletal structures have many applications, including visualization, diagnosis, implant
design, surgical planning and simulation. Although several 3D methods exist for vessels, brains,
organs and skeletal structures, segmentation is still the major bottleneck because clinical applications
require a fast, robust and efficient approach for real-time display and operation. In CT images, the
contrast between the bones and the surrounding tissues is generally high. However, the overlapping
intensity distribution between the bones and the surrounding tissues makes it difficult to segment the
bones accurately and completely.

Fig. 1: Isosurface representation of skeletal structures by a volume rendering.

Bone segmentation approaches can be classified into three kinds: interactive, semi-automatic and fully
automatic. The interactive approach is typically implemented on 2D images, in which the contour of
the bone of interest is detected or drawn slice by slice. This method is time consuming and error-
prone. On the contrary, the fully automatic approach requires less manual effort and is generally the
best method. However, it is the most difficult approach due to the inherent complexity and variety of
medical images. Most available approaches are still semi-automatic as they can cope with the accuracy
as well as the completeness of the bone model.

3D region growing is a common method for bone segmentation. Starting from a seed point, the
region is expanded along the six-neighborhoods of each voxel on a front in accordance with a certain
criteria. All new boundary voxels are added to the front and the expansion is continued until all voxels
on the front have been checked. Constant thresholding is typically employed for the growing of an iso-
surface. It can easily yield a bone model for any of the examples shown in Figure 1. The model may
not be very accurate, yet, it is good enough for the purpose of visualization. However, as far as the
accuracy and completeness of the model is concerned, constant thresholding is still not good enough.
Various methods have been proposed to determine the threshold value for the constant thresholding
technique. Histogram-based approaches have been used to evaluate the intensity distribution of entire
images and determine an optimized threshold in terms of cross entropy ([1],[2]), cumulative moments
[3], moving threshold [4] and variance minimization through dilations [5]. These methods have been
referred to as global thresholding as the threshold is determined in terms of the global histogram of
the images. They have worked satisfactorily when there is significant difference in gray values between
the background and the object. For actual CT images, however, the intensity distribution near the
transition of the bones and the surrounding issues may not be uniform, resulting in difficulty in
deciding an appropriate threshold for all slices of images. Multiple thresholding techniques in terms
of cross entropy [6] and Ostu’s cumulative moments ([7],[8]) have also been presented to deal with
multi-object images. These methods, however, are more suitable for histograms with several distinct
peaks.
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Another type of region growing involves providing rules to determine the similarity between the
tested voxel and the growing region locally. Seeded region growing [9] (SRG) employs the mean and
standard deviation of the growing region to determine the similarity of the tested pixel and the
growing region; while unseeded region growing [10] (URG) emphasizes automatic determination of
seeded points, with the same growing criteria as those shown in SRG. Justice et al. [11] modified the
SRG algorithm by extending the search to 3D and generating the seeds automatically through the use
of thresholds. Revol-Muller et al. [5] provided several assessment functions in terms of boundary
criteria and region criteria to determine the optimal homogeneity criterion for 3D region growing.
Sekiguchi and Sano [12] employed two criteria in accordance with the difference between adjacent
pixels and the difference between the tested pixel and the seed point, respectively, to determine the
homogeneity criterion. A leakage removal procedure was also implemented to extract and remove
leakage regions automatically. Hojjatoleslami and Kittler [13] defined an average contrast measure in
terms of two boundaries: current boundary, which was the set of pixels adjacent to the current region,
and internal boundary, which was the boundary produced by the set of connected outermost pixels of
the current region. They claimed that region growing produced increasing average contrast measure
values as long as high intensity pixels were continuously included. Pohle and Toennies [14] conducted
adaptive region growing in which an upper bound and a lower bound of the thresholds in terms of the
mean and standard deviation of the neighborhoods around the seed point were defined. Two runs of
region growing were presented. The first run was employed for evaluating homogeneity parameters,
while the second run was employed for extracting the region.

As for the segmentation of skeletal structures, Kwan et al. [15] proposed an approach composed
of gap pixel identification, fragment filtering and gap extension and widening for automatic extraction
of bone boundaries on 2D images, especially for narrow gaps. A fuzzy multilevel thresholding
algorithm was employed to deal with the overlapping of the intensity distribution of different tissues
on the histogram. Kang et al. [16] proposed a highly automated method for the segmentation of 3D
bones. They proposed 3D region growing in terms of local adaptive thresholds, in which the intensity
distribution near the intersection of bones and surrounding tissues were fitted into Gaussian
functions, by which the upper bound and lower bound of the thresholds were determined for growing.
This was followed by procedures to correct for remaining boundary discontinuities and a subsequent
anatomically oriented boundary adjustment using local values of cortical bone density.

Wang et al. [17] presented a method to validate the segmentation of CT images and improved the
accuracy and efficiency of the subsequent registration of the three-dimensional reconstructed
surfaces. The similarity or coherency of neighboring contours was measured by comparing statistical
properties. Descoteaux et al. [18] proposed a multi-scale sheet enhancement measure for paranasal
sinus bone segmentation by means of local shape information obtained from an eigenvalue
decomposition of the Hessian matrix. Conventional segmentation by thresholding was not suitable for
thin bones as it resulted in holes and diffuse boundaries due to partial volume effects and noise in CT
datasets. Zoroofi et al. [19] proposed several techniques for segmenting the pelvis and the femur, in
particular, the acetabulum and the femoral head in the hip joint. Their method was primarily divided
into three steps: preprocessing, histogram based thresholding and binary and morphological
operations. Their study provided a detailed description of the algorithm for each of the steps. Testi et
al. [20] focused on the implementation and validation of a border-tracing method for the extraction of
endosteal canal contours. The result of this method was compared with those obtained by the manual
method and the threshold-based technique. Westin et al. [21] proposed a new solution to the problems
caused by constant thresholding based on three-dimensional filtering techniques. The fundamental
concept of their approach was to design an adaptive filtering algorithm to emphasize structures of
interest in CT images to make segmentation of bones easier.

In the segmentation of multiple pieces of bones, the most difficult problem is the separation of
the bones near the joint area. Ideally, adjacent bones are separated by a thin layer of soft tissue and
the intensity of the soft tissue is different from that of its adjacent bones such that a clear boundary

Computer-Aided Design & Applications, 8(2), 2011, 269-288
© 2011 CAD Solutions, LLC, http://www.cadanda.com




272

can be recognized. However, in real CT images, the boundaries of adjacent bones may become vague
when the transition between the soft tissue and the bone is not clear enough. This may even result in
the leakage of the gray values from one region to its neighboring region. The gray levels on such
adjacent regions are so similar that none of the above threshold-determining techniques can deal with
such a problem robustly. In addition, when multiple pieces of bones are concerned, the seed points are
conventionally assigned manually. Even if they are determined automatically, the available algorithms
are usually not robust enough to deal with all kinds of situations on the CT images. Therefore, it is
necessary to develop an integrated procedure that can achieve the segmentation of all kinds of bones.

The aim of this study is to present a method for segmenting skeletal structures from two-
dimensional slices of CT images. An integrated procedure is proposed to make sure that all bone
regions can be segmented accurately, completely and efficiently. The proposed method includes
automatic seed region definition, iterative region growing, as well as region re-combination and re-
segmentation. In conventional region growing in which no restriction is made, it is difficult to separate
different bones accurately because multiple regions of points may be combined together owing to the
overflow problem. Iterative region growing by means of an intermediate target threshold is proposed
to prevent such a problem. This ensures that all fronts can proceed to the common boundary at the
same speed. Moreover, an optimized method for determining the initial threshold and target threshold
is provided. Five cases of lower limbs are employed to demonstrate the feasibility of the proposed
method.

2  MATERIAL AND METHODS

2.1  Overall Method

The input is a sequence of CT slices, which store digital images and communications in DICOM format.
Each slice of the CT images has a fixed size of 512 x 512 pixels and a gray value of 12 bits. The image
data must first be converted into volume data for easier processing. The volume data are essentially
three-dimensional matrices recording the gray value of each voxel (a pixel in 3D images), where the
first dimension represents the index of the slices, while the second and third dimensions represent the
indices of the pixels on a slice. The overall process of the proposed method for segmenting skeletal
structures can be divided into the following three stages:

e Determination of thresholds: two thresholds must be determined according to the proposed
method: initial threshold T and target threshold T. The initial threshold is employed to assign
seed points as well as to generate initial regions; while the target threshold is served as the
terminal condition of the growing of each seed region.

e Iterative 3D region growing: The goal is to assign a seed point on each skeletal structure, and
then grow an individual region for each of the seed points. All regions are grown iteratively, in
which specific constraints are implemented to avoid the occurrence of overflow. Iterative
region growing essentially includes two steps: automatic seed region generation and
simultaneous multiple region growing. In particular, an intermediate target threshold is
introduced to control the moving speed of the fronts such that they can reach the common
boundary at the same time. With the proposed algorithm, all adjacent bones can be separated
and grown individually.

e Region re-combination and re-segmentation: for complex or large skeletal structures with
vague boundaries, some of the regions may not be segmented properly. Post-processing
including a region re-combination and a region re-segmentation is employed to ensure that all
regions can be segmented accurately and completely. The post-processing algorithm is
essentially very simple in operation and can achieve the task efficiently.
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2.2  Determination of Threshold

Two thresholds must be determined in the proposed multiple-region growing algorithm: initial
threshold T, and target threshold T. The initial threshold T, is employed for initial seed region
growing. As the initial threshold T is 1ncreased so is the number of seed regions obtained. This means
that there is more chance to separate unclear boundaries. However, as T, becomes larger, the risk of
over segmentation is increased also. A user interface is provided such that whenever T is set, the seed
regions are automatically displayed in real time. Figure 2 depicts an example near a knee joint for
T=800, 600 and 400, where the numbers of seed regions obtained are 15, 12 and 5, respectively. It is
noted that when a new T, is set, the seed regions are evaluated and displayed immediately, enabling
the user to determine the appropriate number of regions.

T,=800 T=600

Fig. 2: Real-time display of seed regions in accordance with initial threshold T.

The target threshold T essentially determines the surface boundary of the final region. If T is too
large, the growing may be stopped before it reaches the desired boundary, which may result in tiny
regions or incomplete regions. On the contrary, if T is too small, the growing may overflow, e.g.
several regions are wrongly connected or part of the surface boundary is over grown. An intensity
distribution in accordance with the gray values of the entire images can be drawn to show the
probability of each gray value, by which a rough threshold for the target bone can be determined.
However, it is difficult to determine the cut-off threshold precisely as the lobes on the intensity plot
are overlapped.

The transition of the gray values between the skeletal structure and its surrounding tissues is
typically large, say over 1000. Thus, when the surface boundary is clear, the target threshold T can be
determined easily. However, near the joint area where adjacent bones are separated by thin layers of
soft tissue, the transition of the gray values is typically vague. Figure 3 indicates that there is a
transition zone composed of several pixels between the target bone and its surrounding tissue on the
gray-value plot. It is difficult to determine the target threshold as the shape of the transition zone and
the number of pixels within it is changeable.
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Fig. 3: The transition zone between a bone and its surrounding tissue is typically composed of several
pixels.

When the boundary curve of two different tissues is available, the optimal threshold can be regarded
as the average gray value of the pixels on the boundary curve [22]. The following expression can be
employed to detect the edge boundary:

%t o%f
|(X,Y)=¥+ o

[VE(x y)| > d ()

-0 1)

where I(x,») and |Vf(x,y)| represent the Laplacian function and gradient magnitude function of fix,y),

respectively, d is an allowable tolerance. Equation (1) denotes the zero-crossing of the second
derivative of fix,y) and Eq. (2) denotes the peak magnitude of the first derivative of fix,y). The edge
point corresponds to the status where the gradient magnitude reaches the maximum and the
Laplacian function reaches zero. Since practical images are generally noised and imperfect, Egs. (1) and
(2) should be checked simultaneously to accurately detect the required edge boundary.

The Laplacian function is evaluated by means of eight neighborhoods of (x, ), while the gradient
magnitude is evaluated by the Sobel edge detection mask. It is noted that to evaluate Eq. (1) on a 2D
image, we must choose a pair of adjacent pixels that satisfy the following condition:

10, ¥2)-1(%;, ¥2) <0 3)

where (x, y,) and (x,, ¥,) denote two adjacent pixels in the region of interest. The pixel with the smaller
gray value is chosen as the edge point.
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Region expanded External boundary Real boundary

Initial region grown
with T=180

Internal boundary Boundary expanded

Fig. 4: Bone profile evaluation on a 2D image, (a) an expanded bone region is obtained, (b) edge points
are obtained by Eq. (2) and (3), and (c) external boundary is extracted for evaluating optimal target
threshold.

To fulfill the above concept of real CT images, a procedure is necessary to determine the boundary
pixels as well as to choose the pixels for evaluating T. Figure 4 depicts the procedure for achieving
this task. First, a threshold of 180 is employed to acquire a region (brown area in Figure 4(a)). This
region is then expanded for two voxels to ensure that the skeletal structure is fully covered (green area
in Figure 4(a)). Second, search the voxels within the brown and green regions to extract the voxels
which satisfy Egs. (2) and (3), shown as the purple voxels in Figure 4(b). It is noted that both the
external and internal boundaries of the target bone are identified. Third, the internal boundary should
be discarded as it distorts the target threshold. The brown region is shrunk until the purple boundary
voxels are obtained, thus yielding the voxels of the external boundary. Once the voxels of the external
boundary are obtained (purple voxels in Figure 4(c)), they are expanded outside for two voxels to yield
a circle of voxels (green voxels in Figure 4(c)). The average gray value of these green voxels represents
the optimized target threshold T for this 2D image. It is noted that T for different 2D images are
usually different. Therefore, the above procedures should be implemented automatically.

2.3 Iterative 3D Region Growing

The proposed region growing algorithm is developed to grow multiple bones simultaneously,
emphasizing accurate segmentation of the surfaces near the joint area. The proposed algorithm is
essentially composed of the following two steps: (1) initial seed region growing and (2) simultaneous
multiple region growing. Each of the two steps is discussed in detail below.

2.3.1 Seed Region Growing

This stage is made up of two procedures: automatic seed-point assignment and initial region growing.
The seed-point assignment and initial region growing are performed in pairs. Whenever a seed point is
assigned, it follows the growing of the initial region corresponding to that seed point. This ensures
that all voxels of similar gray values are assigned to the same region. The following two rules are
employed to check if a voxel is a seed point:

(1) The voxel hasn’t been grown.
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(2) Its gray value is larger than the initial threshold T,

If both rules are satisfied, the voxel is assigned as a seed point.

(© (d)

Fig. 5: Seed regions growing, (a) scanning the first seed point, (b) generating the first seed region, (c)
generating the second seed point, and seed region, and (d) generating the last seed point and seed
region.

Initial region growing is implemented as follows. Starting from the seed point, its six neighborhoods
are tested in sequence to check if the above two rules are satisfied. Whenever a voxel is found, it is put
into an array. Each voxel on the array is then tested to find its neighborhoods which satisfy the above
two rules. All voxels found are also put into the array. Such a test is repeated until all voxels on the
array have been tested, which finishes the growing. It is noted that a seed point may be located on a
noised region. Therefore, a minimum number of voxels in a region is specified to avoid the generation
of noised regions.

The overall procedure of seed region growing can be summarized as follows: Starting from the
first voxel on the first slice of the images, the voxels on the images are tested sequentially. If a seed
point is found, initial region growing is implemented. Once the region growing is finished, it is
followed by the search of the next seed point. The voxel next to the current seed point is chosen as the
starting point of the search, and each of the following voxels are checked. Whenever the above two
rules are satisfied, the new seed point is found. The above process is continued until all voxels on the
images have been tested.
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Figure 5 depicts the search of the seed points and the growing of initial regions for a slice of CT
images, where T=400 and T=180. As Figure 5(a) depicts, the search starts from the voxel on the upper
left side and checks each voxel sequentially from left to right and top to bottom. The blue arrow
indicates that the above two rules are satisfied, and hence it serves as the first seed point. The yellow
region in Figure 5(b) is grown by means of the first seed point. The search is then continued to look
for the second seed point, indicated by the blue arrow in Figure 5(b). The brown region in Figure 5(c) is
grown by means of the second seed point. The third seed point is also indicated by the blue arrow in
Figure 5(c). Finally, Figure 5(d) indicates that the green region is grown by means of the third seed
point. The search is continued to the end of this image and no more seed points are found. Therefore,
three seed regions are acquired.

2.3.2  Simultaneous Multiple Region Growing

Once all seed regions are acquired, they must be expanded in an appropriate sequence in order to
yield the desired regions. When a region is expanded faster than its neighboring region, it may easily
seize the voxels near the common boundary, and hence result in overflow. Figure 6 depicts three kinds
of algorithms for expanding adjacent regions. In Figure 6(a), region A is expanded first, followed by
region B. When there is a gap on the common boundary, region A easily crosses over the gap and
occupies part of region B. In Figure 6(b), regions A and B are expanded in turn and each region is
expanded for a width of one neighboring voxel each time. However, since the front of region A is
initially close to the gap, region A still crosses over the gap and occupies part of region B. The method
in Figure 6(c) is the modification of Figure 6(b). Basically, regions A and B are expanded in turn and for
a width of one neighboring voxel as well. However, to avoid unequal speeds approaching the common
boundary, an immediate target threshold T is employed to force both fronts to reach the same gray
value during the expansion. As Figure 6(c) depicts, a decrement AT is specified to bring both fronts to
reach the same gray value in each cycle of expansion. Therefore, even if region A is initially close to
the gap, both regions reach the gap almost at the same iteration. We employ Figure 6(c) in the
proposed algorithm.

Fig. 6: Three kinds of region growing strategies, (a) region A and B are expanded separately, (b) regions
A and B are expanded in turn, without restriction in speed on the fronts, and (c) regions A and B are
expanded in turn, with restriction in speed on the fronts.

The flowchart of the proposed region growing algorithm in depicted in Figure 7. All the voxels on the
region boundary are called a front. Initially, the gray values on all fronts are close to T. Iterative region
growing is implemented to expand each region sequentially until the gray values of all fronts reach the
target threshold T. In Figure 7, the iteration is essentially divided into two loops, where the inner loop
expands each front in turn so that the gray values of all fronts can reach the intermediate threshold
T , while the outer loop upgrades T until it reaches the final target threshold T. A detailed
description of simultaneous multiple-region growing is given below.
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Fig. 7: Flowchart of simultaneous multiple regions growing.

First, the fronts F, for all seed regions are found. Each front represents the collection of the boundary
voxels of a seed region. Second, since the gray value of a bone is larger than its surrounding tissues, a
front with larger gray value should be expanded first. Therefore, compute the average gray value of all
the voxels on each front, termed G, o , and then arrange the fronts in terms of G, o from maximum to
minimum. The expansion of the fronts is carried out in accordance with such”a sequence. Third,
starting from the first front of the new sequence, each of the voxels on this front is expanded around
its six neighborhoods. Assume that the gray value of its neighborhood is G. If G2 T , where T =T-
mAT, the expansion can be carried out along this voxel. Otherwise, the expansion is stopped at this
voxel. Whenever all voxels on a front have been tested, we then test the voxels of the next front. When
all fronts have been tested, the inner loop of the iteration is completed. Fourth, the index m is
increased by 1 to reduce the intermediate target threshold T for AT. If T, > T, go back to the first step
for the next cycle of expansion with an upgraded T . If T <T stop the process
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Figure 8 depicts an example of a pelvis to illustrate the results of different region growing
algorithms. In Figure 8(a), eight seed points are found automatically and each region is grown
independently with a common target threshold of T=600. It is evident that all regions are not grown
completely because T, is too large. In Figure 8(b), T, is reduced to 185 and all seed regions are grown
one by one. The results show that all regions are completely grown as T, is reduced from 600 to 185.
However, overflow is observed in many regions as no rule is specified to restrict the growing near the
joint area. In Figure 8(c), the iterative region growing is implemented, with T=600 and T=185. The
results show that all regions are grown completely and no overflow is observed.

Overflow

Fig. 8: Different region growing algorithms on a pelvis example, (a) all regions grown independently
with T=600, (b) all regions grown independently with T=185, and (c) proposed iterative region growing
with T 600 and T=185.

Fig. 9: Segmentation of unclear gray values near the joint area of a cervical vertebrae example, (a) two
slices of the original images, (b) accurate segmentation of the shared boundary, and (c) 3D display of
three separated bones.

To further demonstrate the capability of the proposed algorithm for bones with similar gray values in
the joint area, two slices of the cervical vertebrae are discussed, in which the gray values at the
common boundary are not very clear. Figure 9(a) depicts the original images, in which some of the
boundaries cannot be distinguished visually. Figure 9(b) depicts the separated regions in different
colors. The results show that the transition of adjacent bones is accurately identified. Figure 9(c)
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depicts a 3D display of three separated bones, where each color represents an individual bone region.
The results show that the joint areas of all bones are accurately separated and no overflow is observed.

2.4 Region Re-combination and Re-segmentation

It is unavoidable that some of the regions may wrongly be segmented. This is because the above-
mentioned seed point assignment algorithm may not be robust enough to satisfy all kinds of CT
images. To compensate for such a deficiency, a post-processing process including region re-
combination and re-segmentation is developed. Region re-combination is employed to combine the
regions which are over segmented, while region re-segmentation is employed to handle the under
segmented cases.

2.4.1  Region Re-combination

Region re-combination is a process of combining separated regions into a single region, and can
generally be implemented manually. However, when multiple regions are generated simultaneously, an
automatic procedure is necessary to check for the possibility of re-combination. The following four
coefficients are defined to judge the possibly of region re-combination:

(1) Region points N: number of voxels in region i

(2) Adjacent points P number of voxels shared by two adjacent regions i and j.

(3) Adjacent faces F; number of faces shared by two adjacent regions i and j.

(4) Average gradient in gray value kv_: average difference in gray value per adjacent face for adjacent
regions i and j. It is evaluated as follows: for each boundary voxel in region i, find its neighboring
voxels in region j. For each pair of such voxels, evaluate the difference in gray values. Add all
differences together and divide them by the adjacent faces F, which yields kij.

Fig. 10: An example showing the definition of four coefficients N, P, F, and ku-'

Figure 10 depicts an example showing the values of the above four coefficients. The four coefficients
of the yellow region in Figure 10 are as follows: (1) N=10, (2) P is 3 for both the green and brown
regions, (3) F is 4 for both the green and brown reglons and (4) for both the green and brown regions,
the sum of the differences in gray values for the four pairs of the neighboring voxels is evaluated and
k is the sum divided by 4. Here N. can be used to determine the size of a region; the ratio S, =F /P can
be used to judge the flatness of the boundary across adjacent regions. When s, s large, the boundary
is less smooth. In general, when two adjacent regions belong to the same structure, S, should be small.
The parameter k is used to judge the variation of the gray values between two adJacent regions. When
two regions belong to the same bone, k should be small. Five rules are developed to judge whether or
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not adjacent regions should be combined. If any of the following five rules are satisfied, the two
regions can be combined into one region:

1) kl_j <50 and F >100 (judged by average difference in gray value per adjacent face)

(2) k,-j< 80 and F>500 (judged by average difference in gray value per adjacent face)

(3) ku_< 130 and s, <15 (judged by average difference in gray value per adjacent face and the flatness
of the boundary)

4) s,<1.8 (judged by the flatness of the boundary)

(5) PU/ N> 0.1 (judged by the ratio of the voxels on the boundary relative to total voxels in a region)

2.4.2  Region Re-segmentation

A global threshold T, is not sufficient for segmenting all kinds of bones. Some of the bones may need a
larger T, for accurate extraction of the voxels near the common boundary. Others may need a smaller
T to achieve the task. When a larger T is selected to fulfil the requirement of the former, it may result
in over segmentation or incomplete growmg for the latter. To deal with such a problem, it is suggested
that the initial threshold T, be less than 600 in multiple region growing. The regions which are not
accurately separated can later be segmented by a region re-segmentation process.

The region re-segmentation algorithm is similar to the multiple regions growing algorithm, except
that the region considered and the range of the initial threshold T is different. The region re-
segmentation algorithm is only used for a particular region specrﬁed by the user. Therefore, the
domain of the voxels searched is restricted to the region considered. This can easily be achieved when
all voxels of the same region are marked with the same index in the data structure. Moreover, the
initial threshold T, is set to be larger than 600, say 800. This ensures that at least two seed regions can
be obtained, and then grown into separated regions. The target threshold T, is kept the same during
the growing of the seed regions. Region re-segmentation can be implemented repeatedly until all
regions are properly segmented.

3  RESULTS AND DISCUSSION

Five sets of CT images for the human lower limbs are employed to investigate the feasibility of the
proposed method for multiple bone segmentation. Figure 11 shows the iso-surface display of the five
lower limbs with a threshold of T=180. The threshold T=180 provides a quick display of the skeletal
structures for visualization. However, not all surface boundaries are accurately described owing to the
limitation of the constant threshold. Table 1 lists the DICOM information of the five cases, where the
first three cases are from GE LightSpeed VCT, while the fourth and fifth cases are from SOMATOM
Sensation 16 and Website OsiriX, respectively. The pixel spacing and slicing thickness for all five cases
are between 0.66~0.832 mm and 1.0~1.4 mm, respectively. The slicing thickness is especially
important as it may affect the accuracy of the segmentation results near the joints. The clearance
between the femur and the tibia in the human lower limb is typically between 2~5 mm. The range
1.0~1.4 mm for the slicing thickness is less than the above clearance, and is regarded as acceptable.
The aim here is to segment five major bones in each example, namely the ilium, femur, patella, tibia
and fibula.

The initial threshold T, and the target threshold T are two important parameters affecting the
segmentation results and must be determined effectively. First, T, is analyzed as follows. An initial
region growing is performed by starting with a lower T to yreld a region that combines all bones
together. The same region growing is then repeated with' T increased by 1 each time until a bone is
separated. Take Figure 12 as an example. When T is increased from a lower value to 163, all regions
are combined together (Figure 12(a)); when T, is increased to 164, the patella is separated (the green
object in Figure 12(b). Here T=164 is regarded as a critical threshold. As T is increased continuously,
other bone regions are separated in sequence. Such a process is repeated until all five target bones are
obtained. Table 2 lists all critical thresholds for five bones and five lower limbs in Figure 11, where the
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left and right bones are also individually listed. The results indicate that the patella has the minimum
critical threshold (average threshold=151), while the ilium has the maximum critical threshold (average
threshold=402). The other three bones are in between (average threshold is between 284~291).
Therefore, if all five bones must be separated individually, it would be better to set T=400; whereas, if
four of them, except the ilium, must be separated, it would be better to set T=300. We perform similar
tests for other skeletal structures, and the best ranges of T, suggested are listed in Table 3. In general,
one can choose the largest value of the corresponding range to ensure that a greater number of bones
can be separated. Region re-combination can later be performed to combine the over segmented
regions.

Fig. 11: Iso-surface display of five lower limbs with a threshold 7=180.

Case 1 | Case 2 | Case 3 Case 4 Case 5
Machine LightSpeed VCT SensiaGtion From website OsiriX
Sex Female | Female | Female Male Male
Age 18 20 36 30 No Info.
Pixel spacing (mm) 0.768 0.660 0.703 0.678 0.832
Slicing thickness (mm) | 1.250 1.250 1.250 1.000 1.400

Tab. 1: The DICOM information of five lower limbs in Figure 11.

Fig. 12: Critical initial threshold for separating the tibia, (a) T=163, all regions are still combined
together, (b) T=164, the patella is separated.
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Casel Case? Case3 Case4 Caseb
L R L R L R L R L R Avg.
Patella| 164 152 115 116 215 213 100 102 147 182 151
Tibia | 250 285 425 342 266 313 203 169 382 273 291
Fibula | 312 293 425 274 305 260 176 142 382 273 284
Femur| 335 312 237 242 303 299 282 297 268 332 291
Ilium | 351 342 336 272 528 464 442 453 434 441 402

Tab. 2: Critical thresholds for five major bones for five lower limbs.

Skeletal area T
Upper limb 300~400
Lower limb 300~400

Ilium 400~500
Feet 400~600
Spine 600~800

Tab. 3: Initial threshold T used in the proposed method for different area of the skeletal structures.

Next, the analysis for T is as follows. On each slice of the same bone, an average threshold T, along its
2D contour is evaluated using the algorithm in Section 2.2. Figures 13(a) and (b) depict the
distributions of T in terms of the slice number for the femur and tibia, respectively. The plots indicate
that the thresholds near the long bone area are larger than those of the joint area. If one chooses the
value near the long bone area as the target threshold T, the bones near the joint area may be grown
incompletely (e.g., T=260 in Figure 13(a)). On the contrary, if one chooses the value near the valley of
the joint area only, the long bone area may be over grown (e.g., T=110 in Figure 13(a)). In general,
incomplete growing occurs more frequently than over growing and is more troublesome. Therefore,
the optimal target threshold T for a bone is determined by averaging the first several portions and the
last several portions of T on the distribution plot.

Figure 14 depicts the procedure for evaluating the optimal target threshold T for each bone. First,
initial bone segmentation is implemented to obtain the initial region of each bone, where T, is
determined in Table 2. Next, multiple regions growing is implemented with a target threshold of 140
to ensure that all regions are over expanded. Then, each region is filled and expanded to yield a solid
region which covers the surface boundary of the bone. The boundary detection algorithm described in
Section 2.2 is then implemented to extract the surface boundary. A T on each slice of the surface
boundary can then be evaluated. Finally, choose appropriate portions of T, and average them to yield
the optimal target threshold T of the bone considered. Here the first one third and the last one third
of T, on each distribution plot are employed to determine T.

Table 4 lists the optimal target thresholds T, for five major bones and five lower limbs in Figure 11
by means of the above procedure. The results indicate that T for the left bone and the right bone of
the same patient are similar (the maximum difference is 10), indicating that the same CT displays
similar gray values on the left and right bones of the same patient. On the contrary, for cases 1, 2 and
3, where the same CT morality is employed on different patients, the maximum difference is increased
to 35, indicating that T may change slightly patient by patient. The maximum difference between case
1 and case 4 is increased to 60, owing to the variation of the CT morality. The maximum difference
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between case 1 and case 5 is increased as high as 74. This occurs because the contrast medium is
applied in case 5.
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Fig. 13: Distribution of average target threshold T, on two bones, (a) femur and (b) tibia.

Figure 15 depicts all bones segmented for the five lower limbs, where the T employed on each bone is
listed in Table 4. It is noted that each color represents an isolated bone region, in which the joints of
all bones are accurately separated. Each of the regions can be manipulated individually, such as in the
output of a set of triangular meshes for biomedical applications. The optimal target thresholds T
shown in Table 4 for various bones are generally smaller than the range of 180~220, which is
commonly chosen for constant thresholding. The advantage of multiple-level T for different bone
regions is illustrated in Figure 16. In general, if a constant threshold is employed, e.g. T=200 for all
bones, substantial defects are observed on most joints (left plots in Figure 16). However, after
multiple-level T is employed, where each bone has its own T, the incomplete growing problem on the
joints can be improved significantly (right plots in Figure 16).
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Fig. 14: Flowchart of evaluating the target threshold T, for each bone region.
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Fig. 15: Segmentation results for the five lower limbs in Figure 11.

Casel Case2 Case3 Case4 Case5
L R L R L R L R L R
Patella 145 141 147 141 164 167 162 176 119 112
Tibia 187 175 152 158 172 162 127 127 114 116
Fibula 190 189 180 178 189 182 161 161 118 115
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Femur 188 185 164 164 183 182 138 141 112 101
[lium 142 144 135 135 135 148 142 143 113 113

Tab. 4: The result of target threshold T for different area of skeletal structures.

T=101

©

Fig. 16: A comparison of constant threshold with multiple level thresholds, (a) left tibia in Case 2, (b)
left tibia in Case 4, and (c) right femur in Case 5.

Based on our experiences, the proposed algorithm works satisfactorily for normal bones as there is
always a layer of cartilage between two separated bones. Although all bones may not be extracted
completely with the proposed region growing algorithm, the employment of region re-segmentation
and region re-combination enables the correction of incomplete segmentation and over segmentation,
respectively. The processing time required for the overall process is more efficient than that of most
commercial software, in which the segmentation is performed slice by slice. However, for the
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segmentation of fractured bones, the fractured lines or fragments may not be recognized accurately
because the transition of the gray values may not be significant on some regions of adjacent
fragments. In Figure 17(a), a pelvis is broken into several pieces on the right ilium and the sacrum.
Figure 17(b) depicts the segmented results, in which the regions that are not segmented accurately are
expanded and displayed. The reason that they cannot be segmented correctly is because the fragments
are partially connected or compressed. A manual operation is necessary to segment these regions.

Fig. 17: A fractured pelvis not segmented correctly, (a) before segmentation, (b) after segmentation.

4 CONCLUSION

The purpose of this study is to present a method for multiple bone segmentation from CT images. It
has the following features. First, a seed-region growing algorithm is developed for initial growing of
the bone regions. The aim is to find an initial region for each bone of interest. A user’s interface is
provided so that the initial regions are displayed right after the initial threshold is specified. Second,
multiple region growing is proposed to grow all regions simultaneously. Each front of the region is
grown to an intermediate target threshold in each iterative cycle, which can ensure that all fronts are
moved to the surface boundary at the same speed. With this strategy, overflow owing to irregular
speed in region growing can be eliminated. Third, when a constant threshold is employed for all
bones, undoubtedly, some of the regions will not be grown correctly. A procedure is provided to
evaluate a target threshold for each region, enabling each region to be grown accurately and
completely. Finally, a post-processing process including region re-combination and re-segmentation is
presented to cope with all kinds of situations on CT images. The proposed method is not only suitable
for lower limbs, but can also be applied for other skeletal structures. However, the optimal target
threshold must be re-evaluated for different skeletal structures
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