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ABSTRACT

Compared to single-cutter machining, using multiple cutters in 5-axis finish machining
of freeform surfaces can produce shorter tool-paths; hence the increased machining
efficiency. In our previous work, a method to evaluate a cutter’s accessibility at any
point on a machining surface has been developed. In this paper, this method is used to
identify feasible cutters and construct their machining regions. These cutters can
make up many cutter combinations that can finish the entire machining surface,
among which there will be an optimal set that produces the shortesttool-path. To find
this optimal combination, we propose to use the tool of neural network to predict the
tool-path length for a machining regionwithout actually generating the tool-path. The
neural network is trained extensively with a large set of carefully designed training
data extracted from actual machining jobs. Finally the validityof our method is proved
with testing data sets that have never been exposed to the neural network before.
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1 INTRODUCTION

In 5-axis machining, the cutter is given two more degrees of freedom, allowing it to be positioned in
almost any direction relative to the machining surface. This feature not only enables the cutter to have
better accessibility but also increases machining efficiency by giving the cutter a larger cutting profile
[3]. However, this increased flexibility also brings the possibility of machining interference such as
gouging and global collision, which inevitably complicates the process planning job. In this paper, we
mainly deal with cutter selection, which is the first step in process planning.

Generally, large cutters have higher machining efficiency as they can remove more material in one
path. However, at a point on a freeform surface, a cutter’s interference-free posture range shrinks as
its size gets larger. There will be a size limit beyond which the cutter will always produce machining
interference at the point, no matter what posture it takes. On the contrary, smaller cutters tend to
have large interference-free posture ranges, but smaller cutting profiles. This means for the same area,
it will take smaller cutters more passes to finish, causing the machining efficiency to drop.

In most commercially available CAM (Computer-aided Manufacturing) systems, cutter selection is
conducted manually based on the user’s experience, which is both demanding and unreliable. On the
other hand, there has been some reported work for automatic 5-axis cutter selection [5-6]. But the
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reported methods all have flaws in one or more aspects, such as incomprehensive interference
checking or heavy computational load.

To meet the requirements for both quality and efficiency, one method is proposed in our previous
work, where the largest cutter that can traverse the whole surface without causingany interference is
selected for a machining job [8]. However, with this method, the selected cutteris constrained by the
point with the most critical cutting condition. Suppose the machining surface has a small fraction of
critical area, using a single small cutter for the rest of thenot-so-critical part of the surface will be a
waste of the machine’s capability. Therefore, we propose the idea of multi-cutter selection. The idea is
to assign different cutters to different machining regions on the surface so that maximized machining
efficiency can be achieved everywhere on the surface.

Currently, the idea of multi-cutter selection mainly focuseson 3-axis milling [1,4,11,12]. In this
paper, we will extend the idea to 5-axis machining. First, accessibility checking is conducted for all
available cutters, so that their accessible regions can be obtained. Based on this information, the
candidate cutter sets that can finish the entire surface are identified. In each set, every cutter’s actual
machining regions will be allocated based on their respective accessible regions. Then a neural
network is taken to predict the length of tool-path on each of these machining regions. The optimal
cutter set will then be identified as the one that has the shortest total tool-path length. Finally, tool-
path generation can be carried out with the optimal cutter set.

In section 2, a brief introduction for the concept and construction of the cutter accessibility map
(A-map) will be presented. Section 3 presents algorithms for the identification of candidate cutter sets
and the allocation of machining regions. In section 4, the construction and training of the neural
network forpredicting tool-path length is carried out. Section 5 presents the testing results and section
6 gives the conclusion.

2 A-MAP: CONCEPT AND CONSTRUCTION

A part surface is described by a set of NURBS patches with C2 continuity. A fillet-end cutter is

described by its major radiusR, minor radius f
r , and lengthL, as shown in Fig. 1(a). The accessibility

map (A-map) is defined with respect to a cutter positioned at a point on the part surface. It refers to
the posture range in terms of the two rotational angles, within which the cutter does not have any
interference with the part and the surrounding objects. The two rotational angles are defined in the

local frame at the point as shown in Fig. 1(a). The local frame ( , , )
L L L

X Y Z originates at the point of

interest C
P with L

Z axis along the surface normal vector, L
X axis along the surface maximum principal

direction, and L
Y axis the surface minimum principal direction. A cutter posture (λ, θ) means that the

cutter’s axis inclines λcounter-clockwiseabout L
Y axis and rotates θabout L

Z axis. Thus, the tool’s axis

vector can be given as


p  M

L

G(sin()cos(), sin()sin(), cos())T
, where G

L
M is the transformation matrix

between the local frame and the workpiece frame.

The algorithm used to determine the cutter’s A-map at a point on the machining surface is called
cutter accessibility (CA) algorithm. The CA algorithm finds the cutter’s A-map at a point as the
intersection of 4 accessible posture ranges, i.e., machine axis limits (ML), local-gouging-free region (LG),
rear-gouging-free region (RG) and global-collision-free region (GC). Figs. 1(b-d) show an example of this

process. The A-map for a cutter of size ( 5, 0.5, 60
f

R r L   )at point (u=0.2, v=0.8)as shown in Fig.

1(b) is constructed. The stock part contains a machining surface plotted in green and an arch-shape
over-hang acting as non-machining obstacles. As shown in Fig. 1(c), the green region indicates the
interference-free posture range. Finally, the interference-free posture range is mapped onto aunit-
sphere in the local coordinate system as shown in Fig. 1(d). Any cutter posture within this range is
considered interference free.
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(a) A cutter in the local frame (b) Cutter placed at (u=0.2, v=0.8)

(c) The A-map at (u=0.2, v=0.8) (d) Accessible range mapped onto a unitsphere

Fig. 1: A-map and its construction.

The A-map at a point provides important knowledge for process planning. One direct application is
in single cutter selection. To do this, the machining surface is first sampled into a point set with a
certain density. Then the CA algorithm is applied at every sampled point for all the cutters in the
cutter library. Finally, the optimal cutter will be selected as the largest cutter with non-empty A-maps
at all the sampled points. For more information on A-map and its applications, please refer to [8].

3 IDENTIFICATION OF CANDIDATE CUTTER COMBINATIONS

In a cutter library withncutters, there could be a total number of


C
n

i

i1

n

 cutter combinations, most of

which are null combinations that cannot finish the entire machining surface, or non-optimal
combinations that will produce low machining efficiency. That is why we need to add some constraints
to narrow down the range of search for optimal cutter combination. The input at this step would be: (1)
The machining and non-machining surface provided in NURBS (2)A cutter library containingncutters

with their dimensions ( , ,
f

R r L ).

3.1 Evaluation of a Cutter’s Accessible Area

The machining surface is firstly sampled into a point set ofm×mpoints. A-map construction is carried
out at all them×mpoints for all the cutters in the cutter library. The cutters are then divided into three
categories, i.e.,accessiblecutters, which have non-empty A-maps at all the sampled points, partially
accessible cutters, which have non-empty A-maps at some of the sampled points, and inaccessible
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cutters, which have non-empty A-maps at none
one accessible cutter, all accessible cutters except
ensure maximized machining efficiency. Besides

Fig. 2 shows an example ofthis cutter classification process
example part, the “FACE” (see Fig. 2(a).). The surface is sampled into 201
result is shown in Fig. 2(b) in which thered point
sampled points are plotted). Considering the fact that the gaps between the sampled points are not
checked, we propose a refinement process to expand
For our example, the refined accessibility checking result is shown in Fig. 2

(a) The “FACE”
(b) Original
accessibility

Fig. 2: An example of accessibility

Finally, the accessible areas for a cutter can be identi
inaccessible regions. To do that, we denote the
form a binary map of the surface. From there, a
Choi[10] is employed. The procedure is applied
area is highlighted in green and the boundaries are

3.2 Finding Candidate Cutter Sets

A feasible cutter set should contain the only the largest
some ofthe partially accessible cutters, so that the
interference. Although forming all the feasible cutter sets is quite straightforward, the total number is
very large. To reduce the overall search space for finding the optimal set, we propose to apply a
practical constraint to shortlist the candidate cutter sets from the feasible sets.

For a cutter in a feasible set, itsaccessible region
During tool-path generation, however, its actual machining regions will be equal or
accessible regions.This is due to the fact that the accessible regions of different cutters in the same set
may overlap and in practice, the larger cutters
efficiency. Following this principle, we propose a method to assign machining region
in a feasible set from large to small. The regions
effective accessible regions (eARs). Suppose we have a

small as  1
,..., ,...,

i i ij im
CSet C C C

.
The eARs of the



C
ij
.eARs C

ij
.A

An example is given here to illustrate this procedure of obtaining the
“FACE” shown in Fig. 2 is used as the machining surface.

listed from large to small in Tab. 1. The only accessible cutter

is constructedas  2 5 7
, ,C C C . The cutter’s accessibl
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maps at none of the sampled points. If a cutter library has more than
except the largest one are removed from the library to

ensure maximized machining efficiency. Besides, the inaccessible cutters are also removed.
this cutter classification process fora partially accessible cutter on an

e surface is sampled into 201×201 points. The checking
ed pointsmeans inaccessible (note that only half of the

Considering the fact that the gaps between the sampled points are not
checked, we propose a refinement process to expand the inaccessible regionby a certain safety margin

cking result is shown in Fig. 2(c).

(c) Accessibility after
refinement

(d) Boundary extraction
for accessible area

checking and accessible region identification.

Finally, the accessible areas for a cutter can be identified by findingthe boundaries of the
theinaccessible points by 0 and the accessible ones by 1to

. From there, a boundary tracing algorithm developed by Park and
dure is applied and the result is plotted in Fig. 2(d). The accessible

n and the boundaries are in blue.

the largest accessible cutter left in the cutter library and
ally accessible cutters, so that the entire surface can be machined without any

Although forming all the feasible cutter sets is quite straightforward, the total number is
very large. To reduce the overall search space for finding the optimal set, we propose to apply a

traint to shortlist the candidate cutter sets from the feasible sets.

accessible regions can be obtained as described in section 3.1.
path generation, however, its actual machining regions will be equal or less than its

accessible regions.This is due to the fact that the accessible regions of different cutters in the same set
may overlap and in practice, the larger cutters should machine as much area as possible to maximize

le, we propose a method to assign machining regions to all the cutters
The regions that are assigned to a cutter are called the cutter’

Suppose we have a feasible set with mcutters listed from large to

of the j-th cutter can be calculated recursively by:

ARs C
ij
.ARs  C

ik
.eARs

k1

j1













(

here to illustrate this procedure of obtaining the eARs of each cutter in a set. The
“FACE” shown in Fig. 2 is used as the machining surface.The feasible cutter library contains 7 cutters

accessible cutter is
7

C . A feasible set containing 3 cutters

s accessible regions are shown in Figs. 3(a-c), respectively. Based
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If a cutter library has more than
removed from the library to

on an
he checking

only half of the
Considering the fact that the gaps between the sampled points are not

safety margin.

(d) Boundary extraction

of the
to

boundary tracing algorithm developed by Park and
. The accessible

tter library and
surface can be machined without any

Although forming all the feasible cutter sets is quite straightforward, the total number is
very large. To reduce the overall search space for finding the optimal set, we propose to apply a

can be obtained as described in section 3.1.
less than its

accessible regions.This is due to the fact that the accessible regions of different cutters in the same set
should machine as much area as possible to maximize

to all the cutters
’s

listed from large to

(1)

The
ers

containing 3 cutters

. Based
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on Eqn. (1), their eARs are calculated and plotted
3eARs take up the machining area by52.7%, 37.2%

Cutter R (mm) f
r (mm) L (mm)

#1 10 0.5 60
#2 8 0.5 60
#3 6 0.5 60
#4 4 0.5 60

Tab. 1:

(a)
2
.C AR (b)

5
.C AR

Fig. 3:An example

Although large cutters can produce better material removal rate
necessarily rise with the number of large cutters in the
has to travel a rather long distance to machine a very small region, t
worth the cost of unproductive air travel and extra cutter change
necessary to restrict the number of cutters in each cutter set and make
sufficiently large.For implementation, right after the
ratio of each eAR against the whole machining area is calculated. If the ratio of an
threshold value, say 10%, this eAR is deemed not feasible and removed.I
removed, the cutter itself will be removed. This
exceptthe accessible cutter. With this heuristic, the number of feasible cutter sets will drop greatl
the remaining sets are taken as the candidate

4 FINDING OPTIMAL CUTTER SET WITH NEURAL NETWORK

Assuming the same average feed rate and ignoring air
tool-path length will produce the shortest machining time and
efficiency. Thus, overall tool-path length is set as the
Generating tool-paths for all the candidate cutter sets would be too time
work [7], an attempt was made to rank the performance
Cutting Time Index (CTI), which is calculated as the machining surface area divided by the average
strip width at all the sampled points. However, the method turned out to be less reliable than expected,
probably due to the many assumptions made during the calculation of strip w

Therefore, we here propose to predict tool
network without actually generating the tool-
the sum of tool-path lengths of all the machining regi
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and plotted in different colors in Fig. 3(d). Proportionally, these
37.2%,and 10.1%, respectively.

(mm) Cutter R (mm) f
r (mm) L (mm)

60 #5 3 0.5 60
60 #6 2.5 0.2 60
60 #7 1.5 0.2 60
60

:The cutter library.

(c)
7
.C AR (d) eARs of the cutters

An example for the construction of eARs.

better material removal rate, the machining efficiency does not
large cutters in the cutter set. According to [2], if a larger cutter

machine a very small region, the resultant time save may notbe
worth the cost of unproductive air travel and extra cutter change. Based on this observation, it is
necessary to restrict the number of cutters in each cutter set and make sure that each eAR is

For implementation, right after the eARs for a cutter are obtained, the proportion
against the whole machining area is calculated. If the ratio of an eAR is less than a

deemed not feasible and removed.If all the eARs of a cutter are
ill be removed. This heuristicapplies to all the cutters in a feasible set

his heuristic, the number of feasible cutter sets will drop greatly and
cutter sets.

WITH NEURAL NETWORK

ssuming the same average feed rate and ignoring air-travel time, the cutter set with shortest overall
shortest machining time and therefore the highest machining

path length is set as the criterion in our search for optimal cutter set.
he candidate cutter sets would be too time-consuming.In our previous

performance of cutter combinations using a criterion called
), which is calculated as the machining surface area divided by the average

strip width at all the sampled points. However, the method turned out to be less reliable than expected,
probably due to the many assumptions made during the calculation of strip width.

predict tool-path length for a machining region using neural
-paths. The overall tool-path length will be calculated as

path lengths of all the machining regions.

5
.C eARs

7
.C eARs

2
.C eARs
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se

of the cutters

not
larger cutter

be
, it is

is
obtained, the proportion

is less than a
are

feasible set
y and

overall
the highest machining

in our search for optimal cutter set.
In our previous

of cutter combinations using a criterion called
), which is calculated as the machining surface area divided by the average

strip width at all the sampled points. However, the method turned out to be less reliable than expected,

path length for a machining region using neural
calculated as

.C eARs
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4.1 Tool-path Generation Strategy

The tool-path pattern chosen in this study is iso-planar, also known as parallel cutting. The tool-paths
compose of a series of cutter contact (CC) points, each with a cutter posture assigned to it. These CC
points and cutter postures are generated based on certain strategies, which affect tool-path length
greatly. In our study,the following strategies are employed:

(a) The step-forward distances between neighboring CC points are maximized. It is assumed that
the cutter tip travels linearly between two neighboring CC points (see Fig. 4(a).). To maximize
machining efficiency, the step-forward distance is chosen such that the deviation between the cutter
tip trajectory and the machining surface reaches the given shape error tolerance.

(b) The cutter posture is selected as the one that produces the maximum strip width.The effective
cutting shape of a cutter normal to the cutting directionis an ellipse (see Fig. 4(b).), which leaves a
scallop on the machining surface. To maximize the scallop width, the two angles determining tool
postures will be selected based on a heuristic:θis chosen such that the cutter is aligned with the
cutting direction as much aspossible, λshould be kept as small as possible.

(c) Side-step between neighboring paths is maximized. The side-step value is selected so that the
maximum scallop height between them stays just inside the allowable scallop height (see Fig. 4(c).).

Based on these strategies, a tool-path generation method is developed in our previous work. For a
detailed explanation on how these strategies applied in tool-path generation, readers are advised to
refer to [9].

(a) Step-forward calculation (b) Cutter posture selection at a CC (c) Side-step calculation

Fig. 4:The adopted tool-path generation strategies.

4.2 Predicting Tool-path Length with Neural Network

A neural network takes in a fixed number of inputs. For our study, these inputs shouldrepresent the
geometric properties of the whole machining region faithfully. Besides, the machining strategies
mentioned in section 4.1 should also be incorporated in the inputs, so that they can carry the
necessary information about the machining characteristic over the whole machining region. Based on
these two requirements, we propose to collect a fixed number of carefully distributed data points from
a machining region and extract the inputs from these data points.

4.2.1 Input Data Extraction

As explained in Section 3, a high-density point set has already been sampled from the machining
surface. The A-maps at these points have also been constructed. It will be quite convenient to selectthe
input data points from the sampled points. The requirements forselection are: (1) fixed number (2)
even distribution on the surface.

To meet these requirements, an iterative grid sampling algorithm is employed. Suppose a total
number ofNpoints are to be extracted. The bounding box of the region on the x-y plane is firstly
segmented intoNgrids and all the sampled points in the region will fall into these grids.In each grid
that has points inside, the centroid of the sampled points is calculated and the one nearest to the
centroid is selected.
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As the machining region may have an irregular shape, not all the grids

inside. After one pass, the number of empty grids is recorded

again with these
e

N grids. This process will be

given in Fig. 5 showing this algorithm being applied to

data points are extracted in three passes (see Figs.
5(d).

(a) First sampling (b) Second sampling

Fig. 5: Data point sampling for neural network

Since these data points are evenly distributed
represent the geometric property well. Next, at each data point, we propose a
parameter (MCP) that has direct relationship with the

The strip width determines the side-step be
tool-paths. It is determined by the cutter posture and the surface properties at the CC point. As given
in strategy (b) in section 4.1, the cutter posture at a CC point is selecte
the cutting direction. To maintain the consistency, the cutting direction taken to calculat
width at the extracteddata points is set asthe
With this cutting direction, the postures at the data points are selectedfrom their A
samestrategy.

To calculate the strip width, the machining surface is
allowabletolerance for scallop height. On the plane normal to the cutting

effective cutting shape intersects this offset surface at two points,

distance between them along direction
L

Z f is

cutter’s posture is specified by the angle pair

cutting shape is given by:



E
L
() 

X
L

Y
L

Z
L















0

R cos s

R sin







whereαis the angle that indicates a point’s location on the c
the offset surface in the vicinity of the point can be approximated as:


Z

L

where



n
is the surface curvature at the data point on the plane normal to

location of the intersection points. However, f
makes us turn to numerical methods. Suppose the location of the




0
. The two intersection points will fall on separate

and

(

0
,

0
Pi / 2) respectively. Their exact locations can be

simple bisection method. After this, the strip width
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achining region may have an irregular shape, not all the grids will have sampled points

. After one pass, the number of empty grids is recorded as
e

N . Then sampling will be carried out

This process will be repeated till there is no empty grid left. An example is

showing this algorithm being applied to the first region of
5

C in Fig. 3. A total of 100

(see Figs. 5(a-c).). All the selected points are plotted in Fig.

(b) Second sampling (c) Third sampling (d) Selection results

Data point sampling for neural network.

distributed on the machining region, it is safe to say that they
Next, at each data point, we propose a machining characteristic

that has direct relationship with the tool-path length.

step between neighboring tool-paths, hence the number of
It is determined by the cutter posture and the surface properties at the CC point. As given
(b) in section 4.1, the cutter posture at a CC point is selected from the A-map with regard to

the consistency, the cutting direction taken to calculate the strip
same one taken to generate the tool-paths for the region.

t the data points are selectedfrom their A-maps based on the

, the machining surface is first offset upward by h, which is the
for scallop height. On the plane normal to the cutting directionf, the cutter’

offset surface at two points,
1

P and
2

P (see Fig. 4(b)). The

is the strip width at the point, denoted byW. Suppose the

pair

(, ) , on the plane normal tof, the cutter’s effective

sin  cosR cos sinR cos sin 

 cosR sin







(

s location on the cutting edge (see Fig. 4(b)).According to [13
in the vicinity of the point can be approximated as:

 1
2


n
Y

L
2  h (

is the surface curvature at the data point on the plane normal to f. Eqns. (2) and (3)give the

However, finding an explicit solution turns out to be difficult, which
methods. Suppose the location of the CC point on the cutter is indicatedby

separate sides of the CC point, in the ranges

(

0
Pi / 2,

0

ct locations can be found based on Eqns. (2) and (3) using the

After this, the strip width W can be easily calculated.
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have sampled points

. Then sampling will be carried out

xample is

100

n Fig.

say that they
machining characteristic

hence the number of
It is determined by the cutter posture and the surface properties at the CC point. As given

map with regard to
e the strip

paths for the region.
the

, which is the
’s

). The

Suppose the

s effective

(2)

3],

(3)

the

, which
by


0
)

using the
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In addition to the strip width, the area of the machining region, denoted by A is another factor that
determines the length of the tool-path and thus must be considered in the MCP. The MCP of a data
point is defined as A/W.

It is believed that with a set of data points of a certain density on the machining region, their
MCPswill carry enough information to determine the tool-path length. Therefore, for our neural
network, the inputs are taken as the MCPs at all the data points and the only output is specified as the
tool-path length in a machining region. Tool-paths will be generated using the algorithm given in [9].
For implementation, we fix the number of data points, i.e., the number of inputs for the neural network
to be 100. Finally, the data preparation algorithm for the neural network is presented as follows:

Algorithm: Data preparation for the neural network
Input: Cutter library; sampled points from the machining surface; cutting direction f.
Output:NN inputs for each machining region
Begin:
(1) Accessibility checking. Remove inaccessible cutters and redundant accessible cutters.
(2) Construct the accessible regions (ARs) for all the remaining cutters (section 3.1).
(3) Build the cutter sets. Make sure every set contains the accessible cutter.
(4)Foreach cutter inside a cutter set, construct the effective accessible regions (eARs). (Eqn. (1))

Surface area is recorded as
surf

A . Minimum area ratio for eARs is given as  .

(5) In each cutter set, for every cutter except the accessible one:

(a) Calculate the area for all the eARs. Remove the eARwhen

eAR / A

surf
  .

(b) If for any cutter,

{eARs}   remove the cutter set.

(6) Mark the remaining cutter sets as candidates. Record their eARsas machining regions.
(7) In each cutter set, for each machining region:

(a) Select 100 data points using the grid sampling algorithm. (Section 4.2.1)
(b) Calculate the MCPs at all the data points using f as the cutting direction. (Section 4.2.1)

(8) Generate tool-paths for each candidate set in direction f(Ref. [9]). Record actual tool-path length
in each region
(9) For candidate set i, the j-th machining region, a complete data set is given as:


MCP

ij

0...,MCP
ij

100 TP
ij

.

End

4.2.2 Training of the Neural Network

To generate the training data, 15 machining surfaceswere prepared. For each surface,several candidate
cutter sets were selected. Each cutter set is coupled with a randomly selected cutting direction.One set
of training data (100 inputs vs. 1 output) can be extracted from each machining region. For each cutter
set, the machining surface will be partitioned into several machining regions. Thus we managed to
collect 302 sets of training data from the 15 machining surfaces. Moreover, another 5 machining
surfaces were created as testing samples. In the same way, 112 sets of testing data were generated
from these surfaces. These testing data will not be exposed to the neural network during the training
process.

The classic feed-forward back-propagation neural network (BPNN) has been chosen in this study. It
is implemented with the MATLAB Neural Network Toolbox. The variance in our training sets is quite
large. For a faster convergence, all the inputs (MCPs) have been normalized to the range of [-1, 1]. Only
one hidden layer is used in our neural network. The number of training epochs is set as 20000, which
as our training result shows, is enough for the networks to converge. In the toolbox, the error of the
network is calculated as the mean absolute error (MAE). Suppose there are m sets of training data. The
neural network’s prediction of tool-path length is denoted as TPN and the real tool-path length is
denoted by TP. MAE is calculated as:


MAE 

TPN
i
TP

ii1

m


m

(4)
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During the training, the error goal is set as 0, which cannot be reached, so that the capabilities of the
network can be exploited.

To determine the number of hidden neurons, a trial-and-error method was used. Neural networks
with 3, 7, 13, 25 and 40 hidden neurons were constructed and trained. The best network is selected as
the one that produces the minimum mean relative error MRE, which is calculated as:



MRE 
1

m

TPN
i
TP

i

TP
i

i1

m

 (5)

Training results show that the neural network with 13 hidden neurons produces the smallest MRE. The
neural network’s structure is plotted in Fig. 6 and training parameters are given in Tab. 2.

Fig. 6: Structure of the proposed neural network.

Parameters
Input

neurons
hidden
layer

hidden
neurons

Learning
rate

Training
algorithm

Transfer
function

Error
goal

Max
epoch

Values 100 1 13 0.05 ResilientBP
1st layer: tansig
2nd layer: linear

0 20000

Tab.2:NN Parameters determined by experiment to have the best performance.

The performance curve (MAE vs. epochs) of the chosen neural network is shown in Fig. 7(a). The
absolute error (AE) and relative error (RE) for all the training samples is shown in Fig. 7(b). After
training, testing of the neural network is carried out using the testing examples collected from the 5
testing surfaces. Please note the testing inputs have been normalized using the same setting as the
training data. The AE and RE for testing samples is given in Fig. 7(c). Some of the training and testing
results are summarized in Tab. 3. Out of the 121 testing examples, only 10 have RE beyond 20%.

Parameters MAE MRE Max AE Max RE
Samples with

RE>20%

Training 19.19 mm 0.017 99.2 mm 0.152 N/A
Testing 84.25 mm 0.143 275.8 mm 0.472 10/112

Tab. 3: Training and testing results.

It is observed that the tool-paths of the samples with RE>20% are relatively short. They all fall
inside the range [54.2, 1024.5] while the longest tool-path in the training set stands at 30975.2 mm.
This is probablybecause during the training, the weights and bias of the network are updated based on



Computer

the MAE of the whole training set. Shorter tool
likely to produce smaller AE, even though the
shortcoming will have limited effect on our search for the optimal cutter combination.
a size limit on eARs, there cannot be many
these short tool-paths will only take up a small
we believe the resultant inaccuracies will be quite

(a) Performance of the network

(c) Testing result

Fig. 7: Training and testing of the neural network
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whole training set. Shorter tool-paths tend to have less influence as they are more
, even though the correspondingREcan be quite big. However, this

shortcoming will have limited effect on our search for the optimal cutter combination. As we have put
be many machining regions with very short tool-paths. Besides,

ake up a small percentage of the overall tool-path length. Therefore
will be quite limited.

(b) Training result

Training and testing of the neural network.
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as they are more
However, this

As we have put
. Besides,

path length. Therefore
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5 AN APPLICATION EXAMPLE

(a)
2 5 7
, ,C C C (b)

2 6 7
, ,C C C (c)

2 7
,C C (d) 1 4 7

, ,C C C

(e)
1 5 7
, ,C C C (f)

1 6 7
, ,C C C (g)

3 7
,C C (h)

4 7
,C C

Fig. 8: Machining regions for all candidate cutter sets.

The ‘FACE’ shown in Fig. 2(a) is used as the testing surface. The cutter library given in Tab. 1 is used.

After accessibility checking, the only accessible cutter in the cutter library is identified as
7

C . The

surface ratio limit for an eAR is set as 20%. Eight candidate cutter sets are identified based on this
ratio, as given in Tab. 4. Their machining region allocations are given in Fig. 8.

CSet Reg. # Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 Reg. 6 Total Rank

2 6 7
, ,C C C Actual 3438.7 1481.8 592.8 280.1 N/A N/A 5793.4 1

NN 3647.1 1603.6 697.1 314.7 N/A N/A 6262.5 2

2 5 7
, ,C C C Actual 3438.7 1045.8 554.9 214.3 226.8 321.6 5808.5 2

NN 3647.1 942.1 694.4 184.5 164.8 328.2 5961.1 1

2 7
,C C Actual 3438.7 2047.2 1035.5 N/A N/A N/A 6521.4 3

NN 3647.1 2388.5 1217.4 N/A N/A N/A 7253.0 4

1 4 7
, ,C C C Actual 1379.3 4833.7 235.4 251.2 335.1 N/A 7034.6 4

NN 1269.0 4547.5 195.5 275.5 286.4 N/A 6573.9 3

1 5 7
, ,C C C Actual 1379.3 5915.7 214.3 226.8 321.6 N/A 8057.7 5

NN 1269.0 6510.2 244.5 284.8 198.2 N/A 8506.7 5

1 6 7
, ,C C C Actual 1379.3 6656.9 280.1 N/A N/A N/A 8316.3 6

NN 1269.0 7330.8 310.5 N/A N/A N/A 8910.3 7

3 7
,C C Actual 7225.4 438.3 415.1 754.7 N/A N/A 8833.5 7

NN 7308.2 395.2 401.2 690.1 N/A N/A 8794.7 6

4 7
,C C Actual 9053.1 235.3 251.2 335.1 N/A N/A 9874.7 8

NN 10007.1 195.5 275.5 286.4 N/A N/A 10764.5 8

Tab.4: Tool-paths lengths from actual data and prediction by NN (unit: mm).

The cutting direction f is selected to be along one of the boundaries of the ‘FACE’, as shown in Fig.
8(a). Algorithm 1 is used to generate the inputs to the neural network. After this, the neural network
trained in section 4.2 is taken to predict the tool-path lengths for all the machining regions of each
candidate cutter set. The overall tool-path length for a cutter set is calculated as the sum of tool-path

1
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3 1
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5
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2

5
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2 3
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lengths from all the machining regions. Finally, tool-path generation is carried out along the cutting
direction f to obtain the accurate lengths of the tool-paths. The results from actual tool-path
generation and the prediction made by NN are given in Tab. 4.

From Tab. 4, it can be seen theneural network can predict the tool-path length with a certain level
of accuracy. This level of accuracy may not be enough to identify the cutter set with the shortest tool-
path length every time, but is enough to make sure the one that gets selected is one of the best

candidates. In our example, the actual tool-path length of optimal cutter set (
2 6 7
, ,C C C ) is quite close to

the one that gets selected by NN (
2 5 7
, ,C C C ). Finally, to complete our study, the tool-paths of these two

cutter sets are given in Fig. 9. Please note for a clearer view, the tool-postures for only a few tool-paths
are plotted.

(a) Tool-paths for
2 5 7
, ,C C C (by NN) (b) Tool-paths for

2 6 7
, ,C C C (optimal set)

Fig. 9: Tool-paths for optimal cutter set and optimal set predicted by NN.

6 CONCLUSIONS

In this paper, a new method for multi-cutter selection in 5-axis finish machining of sculptured
surfaces is proposed. The method is based on an accessibilitychecking method developed in our
earlier work, which provides the cutter’s accessibilityinformation in the form of A-maps. Based on the
cutter’s A-maps, the accessible regions for each cutter can be identified. Subsequently, the candidate
cutter sets for finishing the entire surface areconstructed. To predict the total tool-path length for the
candidate cutter sets, a neural network is developed with carefully chosen inputs. Finally the cutter set
that produces the shortest overall tool-path length is selected as the optimal cutter set. The neural
network is trained extensively and tested with samples that have never been exposed to it before.
Testing results prove that our method can produce satisfactory accuracy for multi-cutter selection.
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