
Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

407

Cell Segmentation-based Dynamical Loading for Efficient VE Navigation

Xiumei Kang1 and Qingjin Peng2

1University of British Columbia, kangx@interchange.ubc.ca
2University of Manitoba, Pengq@cc.umanitoba.ca

ABSTRACT

Navigation efficiency is one of the important performance measures of virtual
environments. A large-scale virtual environment (VE) is extremely computational
demanding for real-time rendering and manipulation. The cell segmentation is an
effective method to partition a VE into smaller universes or cells. It is frequently used
for rendering large-scale models to minimize demands of the computer capacity. This
paper discusses an improved cell segmentation method with a dynamic loading
strategy for the performance improvement of large-scale VEs. Case studies are
conducted using the proposed method in the product assembly simulation and the
building model navigation. Potentially visible sets (PVS) and visual regions are formed
based on the attributes of cells in VEs. The VE performance is improved comparedto
the non-segmented model.

Keywords:virtual environment, cell segmentation, simulation, 3D navigation.
DOI: 10.3722/cadaps.2011.407-420

1 INTRODUCTION

Virtual environments provide cost-effective user interfaces for the product development and
simulation. A virtual environment (VE) can consist of numerous 3D models with different colors,
textures, material properties and product behaviors. The construction of a VE includes the object
modeling, the model visualization planning, and the model manipulation design and processing using
virtual reality (VR) tools. A VE is modeled using texture mapping, lighting, animating and interactive
operations.

Alarge-scale VE results in a large computation load for the VR engine to processmodels in real-
time. In addition, the computer memory required for a large-scale VE can become very demanding.
Although the computer capability has been increased significantly, a large-scale VE can severely
influence the performance of a VR system.

Model management techniques are frequently used for VR enginesin rendering large-scale VEs to
maintain the simulation quality. The model management techniques include methods of levels of
detail, cell segmentation, off-line pre-computation, and database management. A combination of these
methods is often used for the simulation improvement.Cell segmentation methods partition a virtual
world into smaller parts, or cells. The model complexity can be significantly reduced as only a small
amount of objects is rendered within the current visible VE.

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

408

As a navigator can only see a small area of the whole model in a VE,alarge-scale VE can be divided
into several regions. Since other objects of the model are invisible to the navigator at a particular time,
it is possible to only load the visible objects to lessen the computer memory usage. Along with the
viewpoint moves, new cells are dynamically added and removed from the scene. Thus, the set of
polygons that appears in each view can be kept small. Cell segmentation can not only improve the
performance of a simulation, but also benefit designers. One important role of the simulation is to
facilitate modifications during the design stage. For example, a designeroftenonly needs to
changepartsof a product. In this case, it is possible to only loadthe parts to be changed, not the whole
product model.

A VE with the poor performance in navigation is unconvincing, hard to use, and difficult to engage
users into the environment [1]. One of the performance measurements for VEs is the frame rate. The
frame rate is the refreshed frequency of an image in adisplay device, whichis often expressed in frames
per second (fps). If the frame rate is too low, the scene will lag and flash between frames leading to
unsatisfactory effects. Frame rate is affected by the number of polygons loaded for a geometry model
in a VR simulation. In this research, a cell segmentation method is used to reduce the number of
polygons to be loaded to increase the frame rate in simulation. The number of polygons and the frame
rate are measured to evaluate the performance improvement using the cell segmentation method.

Fig.1 shows architectureof the dynamic loading VR system based on the cell segment.In the pre-
processing stage, cells are grouped based on potentially visible sets (PVS), prototypes are created and
stored in a prototype library. During the simulation, a navigator’s position is monitored
simultaneously. When an entry of a new region is detected, the corresponding region will be searched
from the database, and the prototype will be dynamically loaded from the prototype library for the
navigation.

In following parts of the paper, related work is reviewed in Section 2. Section 3 presents the cell
segmentation and dynamic loading strategies for VEs’ performance improvement. Section 4 introduces
two case studies for the cell segmentation based dynamic loading followed by conclusions and further
work discussed in Section 5.

Fig.1: Architecture of the dynamic loading system.

Run the Dynamic
load simulation

Monitor viewport
position

Divide model
into cells

Form region
based on PVS

Create
prototypes

Prototypes
Library

Change prototype
(region) dynamically

Model loading

Store

Run-time simulation

Pre-processing

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

409

2 RELATED WORK

The large-scale display of VR applications demands the large computer capacity [2]. The behavior
modeling of objects and the sophisticated application of VEs lead to rapidly growing demands for
computer systems which pose new challenges for the model interaction and visualization [3].Different
methods have been proposed to increase the capacity of computers in the process of large-scale
display of VEs. The parallel selective rendering was used for a viewer-based scene to achieve high-
fidelity virtual environments [4]. Allard et al used a modular design method in developing highly
animated VR applications with numerous animated objects managed for physical based simulations
[5].

Using levels ofdetail (LOD) methods, the number of polygons can be reduced to meet the need of
dynamic real-time simulations [6]. A LODmodelwas used for the generation of effective indoor route
visualization [7]. Chu et al used a product model at various LOD to represent the feature hierarchy of
CAD construction to enable the real-time visualization of different LOD models in distributed
environments[8]. Zhang et al used LOD in real-time visualizationofthe large-scale digital elevation
model, which improves the dynamic and visual multi-resolution performance of large-scale terrain in
real-time[9]. Zhang and Wu proposed a method to generate multiresolution animation
models[10].Different geometrical representations are used for the visualizationof ontologies as a
graph[11]. The graph can be built for each concept with different levelsof depth. LOD was used based
onmodels’ geometric parameters and topology information to achieve considerable speedups in frame
rate with little loss in image quality for the visualization of 3D plant models [12]. LOD is also used in
the visualizationof complicated 3D buildings [13].

Similar as LOD, an effective approach to improve the system scalabilityis to partition the virtual
world in smaller segments called cells. The partition can be used as a standard division of the
environment whichis divided into n regions or cells.Cell segmentation has many applications, such as
in the 3D models retrieve and reuse [14], in autonomic microcell assignment [15], in the crowd
simulation [16], and in the understanding of biological regulations [17]. Zhang scales virtual
environments to improve the integration of spatial knowledge and spatial action [18]. It uses a
multiscale progressive model in navigation of virtual environments.

Highly interactive visualization of large-scale models for VR facilities is a challenge [19]. By
organizing the model into a multi-resolution partition hierarchy, the client-end visualization ensures a
fast view reconstruction with efficient occlusion culling and view-dependent levels of detail control.
Cell segmentation decreases the dependence on remote computation performance and network
requirements for the interactive visualization.

When the environment is dynamic, the optimal partitioning changes over time. Tracking this
optimal process is the key challenge of load balancing. For the object extraction in highly complex
scenes, Merchán and Adán proposed a method based on a distributed segmentation technique to
explore 3D data by establishing a set of suitable observation directions [20]. Using partition for parallel
simulation, the dynamic load balancing can significantly reduce the overall calculation time required
for the problem [16].

Airey et al [21] presented an automatic model-space subdivision and potentially visible set
calculation methods. Potential visible set (PVS) is the union of visible polygons for all viewpoints in a
cell. For any viewpoint in a cell, rendering the PVS for that cell gives the same scene as if the whole
model is rendered. Since the PVS is much smaller than the total size of the model, rendering takes
much less time.

Forming potentially visible sets based on the attribute of cells is the next step after the cell
segmentation, which also refers to the visibility calculation. The main algorithms can be classified as
point visibility culling, and region visibility culling. The point visibility culling method computes the
visibility from a point which is applied in each frame during rendering [22]. The region visibility culling
method computes visibility for a region rather than a single point [23].

Visibility culling algorithms have been used for large models. There are exact pre-processing
algorithms and conservative runtime algorithms of visibility culling algorithms [24].When an observer
moves in VEs for a real-time simulation, the relevant PVS are retrieved from storage. An approach for
dynamically determining PVS of cells in the real-time simulation was developed by Luebke and Georges
[25]. It uses a screen space projection to compute a conservative estimate of PVS at rendering time,
providing increased interactive performance for large architectural models.

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

410

The existing research mainly focuses on the visibility algorithmbased on object polygons and
meshes without considering the nature of objects. It normally tags each polygon with a number
andstores the geometric structure in a database. Instead of this method, a practical solution is
proposed in this research to form a local region and store it as a PVS group, which allowsVR systems to
only load a part of the model. It improves the navigation performance in large-scaleVEs.The following
section describes the proposed cell segmentation and dynamic loading method.

3 CELL SEGMENTATION, REGION CONNECTION, AND DYNAMICAL LOADING

It is highly computational demand for the simulation of large product assembly models in VEs, such as
models of an aircraft, a ship or a mine machine. The loading time may be too long if many detailed
objects are to be loaded simultaneously. Effective rendering and manipulation techniques are required
to overcome such computational demand. A user may observe details of a small portion of the whole
product at a time. Many unseen objects can be unloaded at that time to reduce the computer memory
usage so that the navigation performance is improved. A product assembly can be modeled as two
levels, a detailed level of the model from CAD design, and a level of the model from the product
assembly. If a subassembly is defined as a cell or a region,anassembled product can be represented as
a simplified product model consisting of several link parts and subassemblies. The component models
in the detailed level can be included into cells for the dynamic loading.

3.1 Forming Visual Regions based on Subassemblies

A productcouldconsist of several sub-assemblies. Each sub-assemblyor cell consists of several
components. Partitioning a product model into cells to form visual regions is a pre-processing for the
dynamic loading.Besides the separation of subassemblies, there are cross parts linking these sub-
assemblies. Such parts are defined as cross links. As avisual region is defined based on the
subassembly, the cross parts are used as links of regions. The region formation is based on the PVS of
cells and cross links.The adjacent visible cells are linked together to form the region for visulization.

3.2 Forming Visual Regions based on PVS

Let’s examine the visibility of a product 2D outline shown in Fig.2 (a). Assume that the
productconsistsof subassemblies or parts, SA1,SA2and SA3. If the part SA2is a fastener to link other
cells,we call this partasa link of cells. SA3 is visible when a designerexamines the subassemblySA1. As
thecell SA3 is a neighbor cell of SA1 which is visible to the designer and should be included in the PVS.

On the other hand, if there is not a direct link between the subassemblies, for example,
subassembly SA7 in Fig.2 (b). This cellwill be ignored for the detail review of the cell SA3 as no direct
relation between SA7 and SA3.

Fig.2 (a) shows the cellSA1’s PVS group GSA1based on SA1. Taking a cellSA1 as the example, a link
matrix LSA1(+x, -x, +y, -y) is defined as the linking property of the cell in the +x, -x, +y, and -y directions,
respectively. If there is a link in the direction, the value is 1, otherwise, the value is 0. A neighbor
matrix NSA1(SA+x,SA-x,SA+y,SA-y) defines the neighbors of this cell in eachdirection, respectively. For
example, the value SA+xis the cell number connected to cellSA1in the +x direction so SA+x equals to SA3.
Then the group GSA1 of cell SA1 is expressed as:

GSA1= SA1+LSA1*NSA1
T =SA1+ (1010) * (SA30 SA2 0)T= SA1+SA2+SA3 (1)

Since the cellSA3is included in the group, its neighbors which have a link to SA3 may be visible if the
navigator reviewsSA1. Thus the group GSA3 has to be calculated and included in the group GSA1. This
calculation is recursively used until no further cell is included in the group GSA1.

Fig.2 (b) shows a link P1’s PVS group. It has neighbors in the +y and -ydirections. LinkP1’s PVS
depends on its neighbors’ property. If a subassemblyhas a link to other subassembly, it will be
included in the PVS group. The cellsSA1

,
SA2

,
SA3toP1 have link matrixes L1(0,0,0,1), L2(0,0,0,1), L3(0,0,0,1).

The link property of SA1withP1 can be expressed as L1(1,4)=1, which is the value at the first row, forth
column of matrix L1(0,0,0,1). If this value equals to 1, this cell group should be included in the PVS
group of P1

.
. For example, the P1’s +y PVS groupcan be calculated as:

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

411

GP1+y= LP1+y*NP1+y
T=(L1(1,4) L2(1,4) L3(1,4))(GSA1 GSA2 GSA3)T =(1,1,1) (GSA1 GSA2 GSA3)T= GSA1+

GSA2+ GSA3(2)

The P1’s - y PVS group can be calculated as:

GP1-y= LP1-y*NP1-y
T=(L4(1,3), L5(1,3), L6(1,3), L8(1,3))(GSA4 GSA5 GSA6GSA8)T

=(1,1,1,1) (GSA4 GSA5 GSA6 GSA8)T= GSA4+GSA5+ GSA6+GSA8(3)

P1’sPVS group is the sum of P1 and its 4 direction links as follows:

GP1= P1+ GP1+x+ GP1-x + GP1+y+ GP1-y(4)

Besides the cells included in the PVS group, there are some surfaces of other parts which are
potentially visible to the navigator. Here the decision making is based on the importance of these
surfaces to get a reasonable view. For example, P2

,
and P3 that linkP1, are included in the PVS group to

decrease the effect of sudden switch from one cell to another. Removing the repeated nodes from the
final PVS group, the whole group can be formed and ready to create a prototype for dynamical loading
and unloading in real-time simulation.

(a) (b)

Fig.2:(a) SA1’s PVS group, (b) P1’s PVS groups.

3.3 Dynamic Loading Strategy

Thedynamic loading is used to load, unload the cell prototypesdynamically during simulation. All
loaded models are stored in a prototype library.DynamicPrototype nodeloads and viewsthe model
dynamically. This node has a PrototypeName field that holds the name of the modelprototype of
library files. There is a default prototype tobe loaded upon the start of the simulation.

During the simulation, the PrototypeName field can use the corresponding prototypefilename,
which means that a new prototype will be loaded and inserted into the running of the simulation. The
loading order is controlled using a script code to track current viewport. When the navigator moves to
the link of another region, the system will search the database and find out which region should be
loaded. In the meantime, the previous region is unloaded.

Fig.3 shows the flowchart of the dynamic loading. The position of the viewport is sent to a script
code. In the script code, whenever it receives a new position (x, y, z), it will determine whether this
position relates to anlink, if yes, it will search the corresponding prototype in the database according
to current prototype and the link number. The new prototype will then be loaded and old prototype
will be unloaded. If the position is not located in any link, the process will continues.

SA1 SA2 SA3

SA4 SA5

SA6

SA7

SA8

P1

P2 P3

SA
1

SA2

SA
3

+x

+y

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

412

Fig. 3: Flowchart of the dynamic loading.

4 CASE STUDY

4.1 Dynamic Loading for a Product Assembly Simulation

A product assembly model called six motor drive assemblies is used for this case study. In the pre-
processing stage, the product assembly is divided into subassemblies based on the function and
structure. The motor drive assembly is divided as a pneumatic shifting mechanism, a transmission, a
dual motor, and an output shaft subassembly, where the last three subassemblies are located in the
left and right sides. There are seven subassemblies in total. A subassembly consists of a group of
parts. Fig.4 shows the product assembly model and its seven subassemblies.

Each subassembly is defined as a visual region, the region division based on subassemblies and
their constituted parts are shown in Fig.5.Two subassemblies may be connected to each other by one
or several parts. The connecting parts are essential to show the adjacency of these regions. Fig.6 shows
the adjacency graph of these regions by connecting parts. For example, region 1 is connected with
region 2 by part 27. The connecting parts are included in the initial product assembly to demonstrate
the adjacency between regions.

In order to provide a general product assembly, the initial scene includes a simplified product
assembly consisting of several link parts. The link parts are identified based on its profile and
function. The parts forming the outer profile of a subassembly and the connection parts are identified
as link parts. For example, Twolink parts are identified in region 1 including parts 115 and 27. Part 115
is assigned as a link part because of its big size. Part 27 is chosen since it is a connecting part. All link
parts in each region form a simplified product assembly model for the initial display. A click sensor is
attached to link parts for responding to user’s action.

Read in viewport position

Is there any
cell link?

Yes

No

Search database,
find LoadName

Load new
prototype, unload
old prototype

Navigation start

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

413

Fig.4: Motor drive assembly.

A region is determined based on the parts included in a subassembly. Since link parts have been
included in a simplified product assembly model, they are excluded from the region formation. The
remaining parts in each region are saved in prototype files and are stored in a prototype library.
Tab.1shows all link parts identified in each region and the prototypes generated.

These link parts form a simplified product assembly model shown in Fig.7. The details of each
subassembly are omitted from the simplified product model in Fig 7. But the main structure and
connection relationships are clear. A user may proceed to examine the detailed structure of a
subassembly by clicking alink part.

The creation of prototypes follows five steps: (1) import models into the VE, configure the materials
and actions; (2) copy relevant nodes into the same model frames, such as mesh, and materials; (3)
Right click the model frame, select “Create Prototype”, a prototype will be created; (4) in the New
Component window, click New, save it as a prototype file;and (5) move the generated prototype from a
local prototype window to a new component window.

During the model simulation, the initial scene displays a simplified product assembly without
details of most parts. Only link parts are included in the simplified product assembly. These link parts
are selectable. When a link part is selected by a user, details of the corresponding visual region will be
dynamically loaded. In the meantime, the scene will navigate automatically to a closer viewport for the
observation.

Tab.2 shows the relationship of link parts and their dynamic loading prototypes. For instance, if a
user selects the part 115 in the product assembly level, the corresponding prototype “R1.eop” will be
loaded. The scene will automatically move to that region for a detailed view. When a user selects the
part 115 again, the scene will restore to its initial product assembly model. As soon as another link
part is selected, a current prototype will be dynamically replaced with a new prototype.

The dynamic loading is implemented using a Scriptnode and a DynamicPrototype node. The
ClickSensor sends the part name to the script. In the Script, the required loading region is found based
on the selected part. This region’s name is then sent to the PrototypeName field of DynamicPrototype
node, and the prototype is loaded automatically. The routing is as follow:

ClickSensor.Target->Script.ObjectName
Script.RegionName->DynamicLoading.PrototypeName

Transmission 1
Transmission 2

Pneumatic shifting
mechanism

Dual motor 1

Dual motor 2

Output shaft 1

Output shaft 2

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

414

Fig.5: Region division and its constituted parts.

When a subassembly is loaded, the scene will automatically navigate to the newly loaded
subassembly. An ObjectNavprototype is assigned to each subassembly. ObjectNav is a prototype that
allows a user to rotate, zoom, and pan a 3D object using mouse or mouse and key combinations. It
automatically resets the camera when ObjectNav becomes active by presetting the camera’s
coordinates. ObjectNavManagerprototype controls the shifting between ObjectNavs. It turns off the
previous ObjectNav when a new ObjectNav becomes active. Fig.8 shows the system implementation in
EON Studio [26]. The left side is the routing between different nodes and the Script code. The middle is
the simulation tree of all nodes and models.

Region 1

Region 4

Region 3

Region 2

Transmission
subassembly 1

Dual motor
subassembly 1

27, 112, 113, 114, 119, 115, 116, 117, 118

Motor Drive
Assembly

Pneumatic
shifting
mechanism
subassembly

Output shaft
subassembly 1

1, 3, 4, 6, 15, 16, 17, 125, 110, 2, 5, 9, 10, 26, 120, 111

7, 8, 11, 12, 13, 14, 121, 124, 108, 109, 101, 122, 123

22, 102, 103, 104, 23, 24, 25, 107

18, 19, 20, 21, 105, 106

Region 5
The same objects with Transmission subassembly 1

Transmission
subassembly 2

Region 7
The same objects with Output shaft subassembly 1

Region 6
The same objects with Dual motor subassembly 1

Dual motor
subassembly 2

Output shaft
subassembly 2

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

415

Fig.6: Adjacency graph representation of subassemblies.

Region No. Link parts Parts in Prototype Prototype Name
R1 115, 27 The rest parts of R1 R1.eop

R2
1-1, 2-1, 3-1, 4-1, 5-1, 6-1, 101-
1

The rest parts of R2 R2.eop

R3 None All parts of R3 R3.eop
R4 18-1, 105-1 The rest parts of R4 R4.eop

R5
1-2, 2-2, 3-2, 4-2, 5-2, 6-2, 101-
2

The rest parts of R5 R5.eop

R6 None All parts of R6 R6.eop
R7 18-2, 105-2 The rest parts of R7 R7.eop

Tab. 1:Link parts in the simplified model and prototype forming.

Fig.7: Simplified product assembly model with link parts.

Region 6

Region 1

Region 3

27

105-2

101-2

27

Region 4 Region 7

Region 5Region 2

Pneumatic shifting
mechanism
subassembly

Transmission
subassembly 2

Dural Motor
subassembly 2

Output shaft
subassembly 2

105-1

101-1

Transmission
subassembly 1

Dural Motor
subassembly 1

Output shaft
subassembly 1

115

101-1 101-2

105-2

105-1

18-1

18-2

4-1

4-2

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

416

Part Name Prototype Name
115 R1.eop
4-1 R2.eop
101-1 R3.eop
18-1 R4.eop
4-2 R5.eop
101-2 R6.eop
18-2 R7.eop

Tab.2: The relationship of link parts and dynamic loading prototypes.

Fig.8:Implementation of the dynamic loading in Eon Studio.

The cell segmentation based dynamic loading for the product assembly shows the performance
improvement in the VE navigation. The performance measure uses the number of polygons and the
frame rate in the real-time simulation. Fig.9 shows the dynamically loaded regions based on user’s
selection. In Fig.9 (a), the parts in region 1 are dynamically loaded when part 115 is selected. In Fig.9
(b), the initial transmission model is a frame without the inside parts. When part 4-2 is selected, the
parts in region 5 are loaded including gears, axes, and dog mate. Fig.9 (c) shows the loaded dual
motors. Fig. 9 (d) shows the loaded parts in output shaft 2.

Tab.3 shows a comparison of the number of polygons and frame rate before and after the cell
segmentation. There are 65,484 polygons in the original assembly. The number of polygons is reduced
to 32,816 in the simplified assembly, which accounts to 50% reduction of polygons. The frame rate
increases from 50 fps to 63fps, a 26% performance improvement. When a region is dynamically loaded,
the polygon’s reduction rate ranges from 23% to 47%, and the frame rate increases up to 20%,

Code in Script

Routing

Simulation
Tree

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

417

comparing to the original assembly. It shows that the cell segmentation and dynamic loading decreases
the number of polygons in the computer’s memory, thus the navigation performance is improved.

(a) (b)

(c) (d)

Fig.9:Four dynamic loaded regions based on a user’s selection (a) the transmission (b) the pneumatic
shifting mechanism (c) the dual motor (d) the output shaft.

Models
Number of
polygons

Reduction
rate

Frame rate
(fps)

Frame rate
increased

Original assembly 65484 0 50 -
Simplified assembly 32816 50% 63 26%
Simplified assembly + R1 36976 44% 59 18%
Simplified assembly + R2 50610 23% 55 10%
Simplified assembly + R3 42580 35% 57 14%
Simplified assembly + R4 34616 47% 60 20%

Tab.3: Comparison of the number of polygons and frame rate.

4.2 Dynamic Loading for a Building Model Simulation

In order to test the performance of the proposed method, a much larger model is used. The proposed
method is tested usinga building model. The Engineering Buildings E1 and E2 at the University of
Manitoba, shown in Fig. 9, are segmented and then grouped into PVS regions according to the cell
properties.

Tab.4 shows a comparison of non-segmented models and segmented models of Building E1 and E2.
The test is conducted in a HP XW4400 Workstation, with Intel (R) Core (TM) 2 CPU 6700@2.66 GHz, and
2.0GB RAM. The segmented modelsare simplified into smaller models that only include external walls,

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

418

atrium, ceilings, railings, and a default region. Separated regionsare dynamically loaded according to
navigator’s position. The number of polygons is read from the PolygonCountAfterReduction in the
Meshes node. The frame rate is read from theStatisticDataunder Simulayion node. For the Building E1,
the number of polygons in non-segmented models is 181,408, while the number of polygons in
segmented models decreases to 60,472. The reduction rate of E1 is 67%. The frame rate increases by
71%, from 62 fps to 106 fps. For Building E2, the number of polygons in non-segmented model is
297,124, while the number of polygons in segmented models decreases to 65,976. The reduction rate
of E2 is 78%. The frame rate increases by 88%, from 49 fps to 92 fps. It shows that the simulation
performance is improved after using the cell segmentation method.

(a) (b)

Fig.9: Building models, (a) Exterior of Engineering Building E1 (left) and E2 (right), (b) Interior of
Engineering Building E1 (right side) and E2 (left side).

Models of Building
Number of
Polygons

Reduction
Rate

Frame rate
(fps)

Frame rate
increased

E1
Non-segmented model 181,408 - 62 -
Segmented model 60,472 67% 106 71%

E2
Non-segmented model 297,124 - 49 -
Segmented model 65,976 78% 92 88%

Tab.4: Comparison of polygons and frame rates for non-segmented and segmented models.

5 CONCLUSIONS AND FURTHER WORK

This paper presentedanimproved navigation and dynamic loading method in VEs. For the product
simulation, regions were formed based on subassembly divisions and visibility. Cell properties were
used to form regions according to the potential visibility during simulation. Dynamic loading strategy
was applied using real-time monitoring of viewers’ position or conducted by user’s selection on some
predefined link parts. The developed methods are very useful in the navigation of large-scale VEs. It
has advantages of reduced computer memory usage and improved navigation performance.

Two case studies were conducted. The frame rate was improved significantly for large models. By
loading separate regions, the number of polygons in simulation can be greatly decreased while
maintaining the visulization performance of VEs. Although the real-time monitoring of viewers’
position takes time leading to lower performance than what was expected, the size of loaded region is
much smaller than the whole model.

A problem in the dynamic loadingis the sudden switch between different regions when the model is
loaded and unloaded. One possible solution is to includemore polygons in the overlapped area.

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

419

Another strategy isto maintain two adjacent regions simultaneously, and to load a newregionbefore the
navigator approaches the region. It is promising to dynamically generate regions and link parts based
on user’s viewpoint in VEs.

ACKNOWLEDGMENTS

This research is supported by the Discovery Grants of Natural Sciences and Engineering Research Council of
Canada (NSERC), and NSERC Postgraduate Scholarships.Thanks Mr. MawuliGavifor modeling of the motor
drive assembly.

REFERENCES

[1] Just, C. D.: Performance analysis of a virtual reality development environment: Measuring and
tooling performance of VR Juggler, Master thesis, Iowa State University, 2000.

[2] Yang,X.B.; Choi,S. H.; Yuen K. K.; Chan,L. K. Y.: An Intuitive Human-Computer Interface for Large
Display Virtual Reality Applications, Computer-Aided Design & Applications, 7(2), 2010, 269-278.

[3] Klein, R.:Data preparation for real-time high quality rendering of complex models, Computer
Graphics Forum, 25(3),2006, xviii.doi:10.1111/j.1467-8659.2006.00943.x

[4] Debattista, K.; Chalmers, A.; Gillibrand, R.; Longhurst, P.; Mastoropoulou, G.; Sundstedt, V.:
Parallel selective rendering of high-fidelity virtual environments, Parallel Computing, 33, 2007,
361–376.doi:10.1016/j.parco.2007.04.002

[5] Allard, J.; Raffin, B,:Distributed physical based simulations for large VR applications, Proceedings
- IEEE Virtual Reality, 2006, 12.

[6] Liu, S.Q.;Ong, S.K.;Chen, Y.P.;Nee, A.Y.C.: Real-time, dynamic level-of-detail management for three-
axis NC milling simulation, Computer-Aided Design, 38, 2006, 378–
391.doi:10.1016/j.cad.2005.11.003

[7] Hagedorn, B.; Trapp, M.; Glander, T.; Dollner, J.: Towards an indoor level-of-detail model for route
visualization, 2009 Tenth International Conference on Mobile Data Management: Systems,
Services and Middleware, 2009, 692-697.

[8] Chu,C-H.;Wu,P-H.; Hsu Y-C.: Multi-agent collaborative 3D design with geometric model at
different levels of detail, Robotics and Computer-Integrated Manufacturing, 25, 2009, 334–
347.doi:10.1016/j.rcim.2007.01.005

[9] Zhang, J.; Fei, L.; Chen, Z.:Quadtree of TIN: a new algorithm of dynamic LOD, Proceedings of the
SPIE - The International Society for Optical Engineering, 7492, 2009, 749210 (9 pp.).

[10] 10Zhang, S.; Wu, E.: An improved method for generating multiresolution animation models,
Proceedings - 2009 11th IEEE International Conference on Computer-Aided Design and Computer
Graphics, CAD/Graphics 2009, 58-61.

[11] Dmitrieva, J.; Verbeek, F.J.: Different geometries in ontology visualization,Proceedings of the SPIE
- The International Society for Optical Engineering, 7530, 2010, 753007 (12 pp.).

[12] Su, Z.; Xia, M.; Li, W.; He, T.;Tang,W.: Feature-based simplification of process plant models over
network, International Journal of Virtual Reality, 8(2), 2009, 51-58.

[13] Zhu, Q.; Zhao, J.; Du, Z.; Zhang, Y.: Quantitative analysis of discrete 3D geometrical detail levels
based on perceptual metric, Computers & Graphics, 34(1), 2010, 55-
65.cdoi:10.1016/j.cag.2009.10.004

[14] Li, M.; Zhang, Y. F.; Fuh,J. Y. H.:Retrieving Reusable 3D CAD Models Using Knowledge-Driven
Dependency Graph Partitioning, Computer-Aided Design & Applications, 7(3), 2010, 417-430.

[15] Bossche, B.;Vleeschauwer,B.; Verdickt,T.; Turck,F.;Dhoedt,B.; Demeester, P.: Autonomic microcell
assignment in massively distributed online virtual environments, Journal of Network and
Computer Applications, 32, 2009, 1242–1256.doi:10.1016/j.jnca.2009.04.001

[16] Wang, Y.; Lees, M.;Cai, W.; Zhou, S.; Yoke, M.; Low, H.: Cluster based partitioning for agent-based
crowd simulations, Proceedings of the 2009 Winter Simulation Conference, 1047-1058.

[17] Kojima, K.; Nagasaki, M.; Miyano, S.: An efficient biological pathway layout algorithm combining
grid-layout and spring embedder for complicated cellular location information, BMC
Bioinformatics, 2010, 10.1186/1471-2105-11-335.doi:10.1186/1471-2105-11-335

Computer-Aided Design & Applications, 8(3), 2011, 407-420
© 2011 CAD Solutions, LLC, http://www.cadanda.com

420

[18] Zhang, X.:A multiscale progressive model on virtual navigation, Int. J. Human-Computer Studies,
66, 2008, 243–256.doi:10.1016/j.ijhcs.2007.09.004

[19] Ge, J.; Sandin, D. J.; Johnson, A.; Peterka, T.; Kooima, R.; Girado, J. I.; Defanti, T. A.: Point-based
VR visualization for large-scale mesh datasets by real-time remote computation, Proceedings -
VRCIA 2006: ACM International Conference on Virtual Reality Continuum and its Applications,
2006, 43-50.

[20] Merchán, P.; Adán, A.: Exploration trees on highly complex scenes: A new approach for 3D
segmentation, Pattern Recognition, 40, 2007, 1879- 1898.doi:10.1016/j.patcog.2006.11.017

[21] Airey, J.M.: Increasing update rates in the building walkthrough system with automatic model-
space subdivision and potentially visible set calculations, PhD thesis, University of North
Carolina, 1990.

[22] Bittner, J.;Havran,V.; Slavik, P.: Hierarchical visibility culling with occlusion trees, Proceedings of
Computer Graphics International’98, 1998, 207-219.

[23] Leyvand, T.;Sorkine, O.; Cohen-Or.D.: Ray space factorization for from region visibility, ACM
SIGGRAPH, 2003, 595-604.

[24] Roden, T.;Parberry, I.: 2005. Portholes and Planes: Faster Dynamic Evaluation of Potentially
Visible Sets,ACM Computers in Entertainment, 3(2), 2005, 1-9.

[25] Luebke, D.; Georges, C.: Portals and mirrors: Simple, fast evaluation of potentially visible
sets.Proceedings of the Symposium on Interactive 3D Graphics, 1995, 105-106.

[26] Eon Studio, Eon Reality Inc. www.eonreality.com, 2010.

