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ABSTRACT

This paper presents a new algorithm for torus/torus intersection. The pre-image of the
intersection in the parametric space of one torus is represented by an implicit
equation. The pre-image is divided into one-valued function curve segments by
characteristic points. The topological feature of these characteristic points is analyzed
to obtain the structure of the pre-image. Intersection curves satisfying required
precision are found by a self-adaptive refinement method. Experiment results are
presented to illustrate the stability and efficiency of the method.
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1 INTRODUCTION

Surface/surface intersection is a fundamental problem in CAD/CAM applications, such as
trimming and Boolean operations [13]. The torus is one of the CSG primitives in solid modeling
systems [8] and has several important applications, such as producing rounds and fillets for objects
with sharp edges and the shape of cutter heads of numerically controlled machine tools [12]. We often
need to compute the intersection curves of two tori in CAD/CAM systems.

General intersection problems are analyzed in [10]. Tracing methods [1-4, 16, 17] are widely used
in computing the intersection curves. They can efficiently generate sequences of points of an
intersection curve branch by stepping from a given point on the required curve in a direction
prescribed by the local differential geometry. However, such methods require starting points for every
branch of the solution and it is not a trivial problem when small loops exist. Step size selection is also
complex and too large a step size may lead to straying or looping [10].

Lattice methods [9, 10, 13] reduce the dimensionality of surface/surface intersection by
computing intersections of a number of iso-parametric curves of one surface with the other surface
followed by connection of the resulting discrete points to form intersection curves. This method
avoids solving a large number of uncertain non-linear equations, but it is difficult to find out the
intersection curves of all small loops and singular points.
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The initial idea of this paper comes from the lattice method. The iso-parametric curves of a torus
are a set of circles and the problem of circle/torus intersection has closed-form solutions. The
difficulty is determining the structure of the intersection curves, which is also important for finding
all small loops and avoiding unnecessary computation of the circle/torus intersection. Grandine and
Klein [6] proposed the topology resolution of B-Spline surface intersections. They determine the
structure of the intersection curves including close loops prior to numerical tracing. In this paper,
their method is developed to obtain the structure of the torus/torus intersections. After the structure
of the intersection curves is fixed, the intersection curves are refined by a self- adaptive method until
satisfying the required precision.

The rest of the paper is organized as follows. Sect. 2 develops the topology resolution for the
torus/torus intersections. Sect. 3 gives intersection curves refinement method. Sect 4 finds the circles
of the torus/torus intersections. The experimental results are given in Sect. 5. Finally, Sect. 6
concludes the paper.

2 TOPOLOGY RESOLUTION OF TORUS/TORUS INTERSECTIONS

2.1 The Pre-image Curves of the Intersections in the Parametric Space of a Torus

Suppose that we need to compute the intersections of two tori,
1

T and
2

T . By means of translation and

rotation of 3-D coordinate system, the major circle of
2

T is transformed into a standard circle in XOY

plane and the axis direction of
1

T is ( ,0, )
x z

N NN . Suppose that the center of
1

T is
0 0 0

( , , )x y z and its

major radius and minor radius are
1

R and
1
r , respectively. The parametric equation of

1
T is



x  x
0
N

z
(R

1
 r

1
cos(v))cos(u)N

x
r
1
sin(v)

y  y
0
 (R

1
 r

1
cos(v))sin(u)

z  z
0
N

x
(R

1
 r

1
cos(v))cos(u)N

z
r
1
sin(v)











, (2.1)

where the parameters ,u v belongs to [0,2 ] . Suppose that the major radius and minor radius of
2

T is

2
R and

2
r , respectively, and the implicit equation of

2
T is

2 2 2 2 2 2 2 2 2
2 2 2

4( ) ( ) 0x y R x y z R r      
. (2.2)

Substituting Eqn. (2.1) into Eqn. (2.2) yields an implicit equation in ,u v :

2 2 2
1 1 1 0 1 1 0 2

2 2
1 1 1 0 1 1 0

2 2 2 2
1 1 1 0 2 2

( , ) 4(( ( ( )) ( ) ( ) ) (( ( )) ( ) ) )

(( ( ( )) ( ) ( ) ) (( ( )) ( ) )

( ( ( )) ( ) ( ) ) ) 0

z x

z x

x z

F u v N R r cos v cos u N r sin v x R r cos v sin u y R

N R rcos v cos u N r sin v x R rcos v sin u y

N R rcos v cos u N r sin v z R r

      

      

       

. (2.3)

It is the pre-image of the intersections in the parametric space of
1

T . Thus the problem of torus/torus

intersections is transformed into computing the pre-image curves ( , ) 0F u v  .

Eqn. (2.3) is an equation in two variables ,u v . By means of tangent half-angle formula, it can be

transformed into a polynomial equation in two variables tan( / 2)u and tan( / 2)v where the degree of

each variable is less than 4. If u is a constant value
0

u , substituting
0

u u into Eqn. (2.3) will yield a

quartic equation in tan( / 2)v , which has closed-form solutions. Thus, v can be determined. In a similar

way, u can be determined if v is a constant value. In the geometric view, it is equivalent to finding the

intersection of
2

T and the iso-parametric circles of
1

T , which is also a problem with closed-form

solutions.
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2.2 Characteristic Points of the Pre-image Curves

The structure of pre-image ( , ) 0F u v  can be determined by finding the following characteristic points

[6, 10].

Fig. 1: A pre-image of torus/torus intersections with various characteristic points.

1. Boundary points: The intersections of ( , ) 0F u v  with four boundary edges of the parameter

space 2[0,2 ] , including left-right boundary points and top-bottom boundary points, which can be

calculated by solving the equations (0, ) 0F v  and ( ,0) 0F u  , respectively.

Considering (0, ) (2 , )F v F v , left boundary points and right boundary points always come in pairs.

As illustrated in Fig. 1, points 1 and 12, 2 and 13 are two pairs of left-right boundary points.
Similarly top boundary points and bottom boundary points always come in pairs, such as the
points 5 and 6, 10 and 11 in Fig. 1.

2. Turning points: The u-tuning points are the points where the tangent of ( , ) 0F u v  is parallel to

the 0u  axis, which satisfies

( , ) 0
v

F u v  . (2.4)

Similarly, the v-turning points also exist, but it is not necessary to consider it in this paper. So
turning points is short for u-turning point in this paper. Eqns. (2.3) and (2.4) form a system of two
trigonometric equations in two unknowns. By means of tangent half-angle formula, it can be
transformed into a polynomial system of two equations in two variables and each variable has a
degree less than 4. Solving this polynomial system by Interval Projected Polyhedron algorithm [10,

14] or other numerical methods [5, 11], we obtain all the points satisfy ( , ) 0
v

F u v  . A point is a

turning point if it satisfies ( , ) 0
v

F u v  and ( , ) 0
u

F u v  simultaneously. As illustrated in Fig. 1,

points 3, 4, 7 and 8 are turning points.

3. Singular points: The points on the curve which satisfy 0
u v

F F  are called singular points.

Supposing that the tangent of the curve ( , ) 0F u v  at a singular point
0 0

( , )u v is

(,) , we have [15]


2F

uu
 2F

uv
 2F

vv
 0 . (2.5)

We compute the discriminant

  F

uv

2 F
uu

F
vv

. If the discriminant is negative, the singular point

0 0
( , )u v is an isolated point, which can be omitted when computing the continuous intersection

curves. If the discriminant equals zero, the singular point
0 0

( , )u v is a cusp, which is treated as

degenerated turning point and handled by perturbation (Sect. 3.4). If the discriminant is positive,
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0 0
( , )u v is a branch point. We can calculate the slope

1,2
k of the curve ( , ) 0F u v  at the branch

point by solving

 / from Eqn. (2.5), which has two real roots if


F

vv
 0 . If

vv
F equals zero, we get

1
/ 2

uu uv
k F F and


k

2
  .

Following the fundamental principle of algebraic geometry, each branch of ( , ) 0F u v  has

characteristic points [15]. Moreover, the following theorem makes it clear that all characteristic points
of ( , ) 0F u v  divided it into curve segments of one-valued functions.

Theorem 1. Suppose that : ( , ) 0F u v G is the pre-image of intersections of two tori. If we remove all of

its characteristic points (including boundary points, turning points and singular points) from it, then

1. : ( , ) 0F u v G is divided into n explicit function curve segments : ( ) , 1,...,
i i

v g u i n G with 1C

continuity. Each two curve segments
i

G and

G

j
(i  j)have no intersections.

2. The endpoints of every curve segment
i

G are characteristic points ofG .

3. Let the domain of : ( ) , 1,...,
i i

v g u i n G be
0 1

( , )
i i i

D u u .If
i

G and
j

G satisfy
1 1

( ) ( )
i j

g u g u at

some
1

u , then ( ) ( )
i j

g u g u will be satisfied for all

u  D

i
D

j
.

Prove:

1. Removing all the characteristic points of : ( , ) 0F u v G , we can get n 0C continuous curve

segments , 1,...,
i

i nG . If
i

G and

G

j
(i  j)have an intersection point, it must be a self-intersection

point of : ( , ) 0F u v G . The self-intersection point must be singular points, contradict with the fact

that all characteristic points have been removed. Therefore,
i

G and

G

j
(i  j)have no intersections.

Similarly,
i

G has no self-intersections. Computing the derivative /dv du of the implicit function

( , ) 0F u v  , we have

/ /
u v

dv du F F . (2.6)

Because all points satisfying 0
v

F  are removed for they are turning points or singular points,
i

G

has first-order derivate /dv du everywhere and it has 1C continuity. If the line
0

u u and
i

G have

two or more intersection points, there must exist points on
i

G satisfying 0
v

F  according to

Rolle’s Theorem. Clearly there are contradictions. So
i

G is one-valued, and can be expressed as an

explicit function ( )
i

v g u .

2. The endpoints of
i

G must be the endpoints of G or the characteristic points ofG . The endpoints

of G are also the characteristic points of G . Therefore, the endpoints of
i

G are characteristic

points ofG .

3. Suppose that there exists

u

2
 D

i
D

j
satisfying

2 2
( ) ( )

i j
g u g u . Defining a

function

f (u)  g

i
(u)g

j
(u) , we have

1
( ) 0f u  and

2
( ) 0f u  . Because ( )f u is a continuous function,

according to intermediate value theorem there must exist
0

u between
1

u and
2

u , which

satisfies

f (u

0
)  g

i
(u

0
)g

j
(u

0
)  0 . This means that

i
G and

j
G have intersections and leads to

contradiction.

For the equation
0

( , ) 0F u v  in v , we consider the changes of the number of its roots, when

0
u changes from 0 to2 . Suppose that D is an open interval not containing u coordinates of the
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characteristic points. Because the boundary values of
i

D must be u coordinates of the characteristic

points, D and
i

D have two possible relationships:

D  D

i
or


D D

i
  . Supposing that there are

m intervals
i

D satisfying

D  D

i
, the equation

0
( , ) 0F u v  has always m roots, when

0
u changes in the

interval D . Only when
0

u moved from the left side of a u coordinate of a characteristic point to the

right side of it, the number of roots may change. According to the changes of the number of roots, the
topological features of the characteristic points can be classified as follows.

 The number of roots increases by 1. The characteristic point is the starting point of a curve
segment and we call it “single starting point (SSP)”. As illustrated in Fig. 1, points 1, 2, 5, 10 are
SSPs.

 The number of roots decreases by 1. The characteristic point is the end point of a curve
segment and is called “single end point (SEP)”. As shown in Fig. 1, points 6, 11, 12, 13 are SEPs.

 The number of roots increases by 2. The characteristic point is the starting point of two curve
segments and is called “double starting point (DSP)”. As show in Fig. 1, points 4, 7 are DSP s.

 The number of roots decreases by 2. The characteristic point is the end point of two curve
segments and is called “double end point (DEP)”. As illustrated in Fig. 1, points 3, 8 are DEPs.

If the number of roots does not change, they have the following two types of topological features.
 The characteristic point is the starting point of a curve segments and is also the end point of

another curve segment. We call it “single starting&end point (SSEP)”.
 The characteristic point is the starting point of two curve segments and is also the end point

of two other curve segments. We call it “double starting&end point (DSEP)”. As illustrated in Fig.
1, the point 9 is a DSEP.

2.3 Topological Features of Characteristic Points

Let us consider the topological features of four kinds of simple characteristic points at first.

Fig. 2 Topological features of characteristic points: left-right boundary points (a); top-bottom boundary
points with a negative slope (b) or a positive slope (c); turning point with right open side (d) or left
open side (e); branch point (f); turning points at corner with right open side (g) or left open side (g);
branch points at corner with two positive slopes (i) or two negative slopes (j) or two slopes of opposite
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signs (k); corner points with a negative slope (l) or a positive slope (m); turning points at left-right
boundaries with right open side (n) or left open side (o); turning points at top-bottom boundaries with
right open side (p) or left open side (q); branch points at left-right boundaries (r); branch points at top-
bottom boundaries with two positive slopes (s) or two negative slopes (t) or two slopes of opposite
signs (u).

1. Left-right boundary points. As illustrated in Fig. 2-a, they come in pairs and the left boundary
point is a SSP and the right boundary point is a SEP.

2. Top-bottom boundary points. They come in pairs, and we calculate their slope according to Eqn.
(2.6) firstly. If the slope is negative, the top boundary point is a SSP and the bottom boundary
point is a SEP, as illustrated in Fig. 2-b. If the slope is positive, the top boundary point is a SEP and
the bottom boundary point is a SSP, as show in Fig. 2-c. The cases that the slope equals zero or

will be discussed in Sect 2.4.
3. Turning points. Compute the second order derivative:

 2 2 3
vv u v u uv uu v u

2 2 F F 2F F F F F/ / Fd u dv     . (2.7)

If the derivative is positive, the open side of G there is directed to right, as illustrated in Fig. 2-d,
and the turning point is a DSP. If the derivative is negative, there the open side of G is directed to
right, as shown in Fig. 2-e, and the turning point is a DEP. The cases that the derivative equals zero
will be discussed in Sect 2.4.

4. Branch points. They are DSEPs, as illustrated in Fig. 2-f.
When various kinds of characteristic points coincide in position, we called them multiple characteristic
points. For example, when a left-right boundary point is also a turning point, we called it as a “left-right
boundary point + turning point”. Treating cusps as degenerated turning points, there are 7 kinds of
multiple characteristic points.
1. Left-right boundary point + top-bottom boundary point + turning point. The turning point is at the

corner of the parametric domain. Firstly, compute the second order derivative 2 2/d u dv according

to Eqn. (2.7). If it is positive, the open side of G is directed to right and G is divided into two
pieces by the top-bottom boundaries there, as illustrated in Fig. 2-g. Therefore, two SSPs are set at
the left-top and the left-bottom corners, respectively. If the derivative is negative, the open side of
G is directed to right and G is divided into two pieces by the top-bottom boundaries there, as
illustrated in Fig. 2-h. Two SEPs are set at the right-top and the right-bottom corners. The cases
that the derivative equals zero will be discussed in Sect 2.4.

2. Left-right boundary point + top-bottom boundary point + branch point. The branch point is at the

corner of the parametric domain. Solve the slopes
1

k and
2

k of two branches from Eqn. (2.5) at first.

 If
1

k and
2

k are both positive, two branches are at first and third quartiles, as illustrated in Fig.

2-i. A DSP and a DEP is set at the left-bottom corner and the right-top corner, respectively.

 If
1

k and
2

k are both negative, two branches are at second and fourth quartiles, as illustrated in

Fig. 2-j. A DSP and a DEP is set at the left-top corner and the right-bottom corner, respectively.

 If
1

k and
2

k have opposite sign, two branches are located in different quartiles, as illustrated in

Fig. 2-k. Two SSPs are set at the left-top corner and the left-bottom corner, and two SEPs are
set at the right-top corner and the right-bottom corner.

 The cases that the slope equals zero or will be discussed in Sect 2.4.
3. Left-right boundary point + top-bottom boundary point. It is a normal corner point and the slope

can be calculated by Eqn. (2-6). If the slope is negative, the curve segment is at second and fourth
quartiles, as illustrated in Fig. 2-l, and a SSP and a SEP are set at the left-top and right-bottom
corners, respectively. If the slope is positive, the curve segment is at first and third quartiles, as
illustrated in Fig. 2-m, and a SSP and a SEP are set at the left-bottom and right-top corners,
respectively. The cases that the slope equals zero will be discussed in Sect 2.4.

4. Left-right boundary point + turning point. Compute the second order derivative 2 2/d u dv according

to Eqn. (2.7). If it is positive, the open side of G is directed to right there, as illustrated in Fig. 2-n,
and a DSP is set at the left boundary. If it is negative, the open side of G is directed to left there,
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as illustrated in Fig. 2-o, and a DEP is set at the right boundary. The cases that the derivative equals
zero will be discussed in Sect 2.4.

5. Top-bottom boundary point + turning point. Compute the second order derivative
2 2/d u dv according to Eqn. (2.7). If it is positive, the open side of G is directed to right there, as

illustrated in Fig. 2-p, and two SSPs are set at the top and bottom boundaries, respectively. If the
derivative is negative, the open side of G is directed to left there, as illustrated in Fig. 2-q, and two
SEPs are set at the top and bottom boundaries, respectively. The cases that the derivative equals
zero will be discussed in Sect 2.4.

6. Left-right boundary point + branch point. As illustrated in Fig. 2-r, a DSP and a DEP are set at the
left boundary and the right boundary, respectively.

7. Top-bottom boundary point + branch point. Solve the slopes
1

k and
2

k of two branches from Eqn.

(2.5).

 If
1

k and
2

k are both positive, as illustrated in Fig. 2-s, a DSP and a DEP is set at the bottom

boundary and the top boundary, respectively.

 If
1

k and
2

k are both negative, as illustrated in Fig. 2-t, a DSP and a DEP is set at the top

boundary and the bottom boundary, respectively.

 If
1

k and
2

k have opposite sign, as illustrated in Fig. 2-u, two SSEPs are set at the top boundary

and the bottom boundary, respectively.
 The cases that the slopes equal zero or will be discussed in Sect 2.4.

2.4 Deal with Degeneration by Method of Perturbation

In previous section, the topological features of characteristics points are often determined by the signs
of slopes and second order derivatives. However, if these values vanish, such differential method will
fail. Moreover, the topological features of cusps are not determined by the differential method. [7]
proposed method of perturbation dealing with the degeneration of topology resolution of [6].
Perturbation methods are applied in this paper as follows. In this section,  is a small perturbation
value.

1. If the slope /dv du at
0 0

( , )u v vanishes when computing it according to Eqn. (2-6), we perturb
0

u

bilaterally and search the roots of the equations

F(u

0
 ,v)  0 and


F(u

0
 ,v)  0 near

0
v ,

respectively. If the roots near
0

v we get are
1

v and
2

v , respectively, we treat the sign of
2 1

v v as

the sign of /dv du .

2. If the second order derivative 2 2/d u dv at
0 0

( , )u v vanishes when computing it according to Eqn.

(2-7), or if the characteristic point is a cusp, we perturb
0

u bilaterally and search the roots of the

equations

F(u

0
 ,v)  0 and


F(u

0
 ,v)  0 near

0
v , respectively. If


F(u

0
 ,v)  0 has two roots

near
0

v and

F(u

0
 ,v)  0 has no root near

0
v , we treat 2 2/d u dv as negative. If


F(u

0
 ,v)  0 has

two roots near
0

v and

F(u

0
 ,v)  0 has no root near

0
v , we treat 2 2/d u dv as positive. If


F(u

0
 ,v)  0 and


F(u

0
 ,v)  0 have roots

1
v and

2
v near

0
v , respectively,

0 0
( , )u v is a negligible

characteristics point and we omit it when it is at the inner of the domain. And if it is at the

boundary, we treat the sign of
2 1

v v as the sign of /dv du .

3. When we calculating the slopes
1

k and
2

k of two branches by solving Eqn. (2-5), if
uu

F vanishes, we

will get
1

0k  . We perturb
0

u bilaterally and search the nearest roots of the equations


F(u

0
 ,v)  0 and


F(u

0
 ,v)  0 to

0
v , respectively. If the nearest roots near

0
v are

1
v and

2
v ,

respectively, we treat the sign of
2 1

v v as the sign of
1

k .
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4. When we calculating the slopes
1

k and
2

k of two branches by solving Eqn. (2-5), if
vv

F vanishes, we

will get

k

2
  . We perturb

0
v bilaterally and search the nearest roots of the equations


F(u,v

0
 )  0 and


F(u,v

0
 )  0 to

0
u , respectively. If the nearest roots near

0
u are

1
u and

2
u ,

respectively, we treat the sign of
2 1

u u as the sign of
2

k .

When the characteristic point
0 0

( , )u v is at or near the boundary of the domain, the intersection points

of the line

u  u

0
  (or


v  v

0
  ) and G may be out of the domain


[0, 2]2 . Therefore, we need to

search the roots of the perturbation equations near
0

v (or
0

u ) at the entire real field

(,) .

2.5 Construct the Pre-image Curves

After obtaining all the characteristic points and their topological features, we sorted them ascending
by the u coordinates (if the u coordinates equal, sort them by v coordinates). Suppose that the sorted

characteristic points are ( , ), 1,...,
i i i
u v i nP . Moreover, the vertical sequence number (VSN) of every

( , )
i i i
u vP needs to be calculated where VSN is the sequence number of

i
v in the increasing roots

sequence of ( , ) 0
i

F u v  , zero based. Thus the VSN of bottom boundary points is zero, and the VSN of

top boundary points is 1m  , if ( , ) 0
i

F u v  has m real roots.

From Sect. 2.2, we know that the number of roots of
0

( , ) 0F u v  is alwaysm , when
0

u changes in

an open interval D not containing u coordinates of characteristics points. The number m is the
number of pre-image curve segments that have definition on the open intervalD . An active list C of
the pre-image curve segments is constructed and maintained to record the curve segments in vertical

order, which have intersections with the line
0

u u . Considering the change of the active list C when

the line
0

u u passes through every characteristic point, we get the following algorithm for

torus/torus intersection.

Algorithm 1: computing the intersections of two tori.

Input: two tori;

Output: all of the pre-image curve segments of the intersections of the two tori.

1. Compute all characteristic points. Determine their topological features and VSN. Sort them and
save them into a list L of characteristic points.

2. Initialize the active list A of characteristic points, the active list C and the resultant list R of pre-

image curve segments.

3. If L is empty, goto 14.

4. Take out characteristic points with same u coordinates from the head of L and save them into A .

Let
0

u be their u coordinate.

5. Initialize and empty a list S of the pre-image curve segments, which need to be refined.

6. Take out the first characteristic point P from A . Let i be its VSN.

7. If P is a SEP or a SSEP, take out the i th curve segmentB fromC , push P intoB , push B intoR ,

record the last segment of B inS .

8. If P is a DEP or a DSEP, take out the i th and ( 1)i  th curve segments
1

B and
2

B fromC , push

P into
1

B and
2

B , push
1

B and
2

B intoR , record the last segment of
1

B and
2

B inS .

9. If P is a SSP or a SSEP, create one new curve segment B with P as its head, insert B into C before
the i th curve segment ofC .
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10. If P is a DSP or a DSEP, create two new curve segments
1

B and
2

B with P as their head, insert
1

B

and
2

B into C before the i th curve segment ofC .

11. If A is not empty, goto 6.

12. Solve the equation
0

( , ) 0F u v  . For each curve segmentB inC , if the u coordinate ofB ’s last point

is not
0

u , push a new point into B according to the roots of the equation and record the last

segment of B inS .

13. Refine the list S of the pre-image curve segments. Goto 3.

14. Output R

The refinement of the pre-image curve segments will be introduced in Sect.3.

3 REFINE THE INTERSECTION CURVES

After getting the structure of the intersection curves, in order to ensure that the error of the
intersections we get is less than a prescribed precision, we apply self-adapting method to refine the
intersection curves.

Suppose that the 3-D line segment AB is a segment of the intersection curve we get and the point
A and the point B are exactly on the real intersection curves, and their parameters in the parametric

space of the torus
1

T are
1 1

( , )u v and
2 2

( , )u v , respectively. Suppose AB be the real intersection segment.

The exact error of the intersection curve segment is the Hausdorff distance between AB andAB , but it
is expensive to compute the Hausdorff distance. In this paper, we propose a method to estimate an

approximate error. Firstly, solve the equation
1 2

)/ 2(( , ) 0F u u v  , and obtain a point C exactly onAB

with the parameter
1 2 0

(( ) 2, )u u v . After that, compute the minimal distance d between the point

C and the line segment AB , and regard d as the approximate error. With the analyses of lots of
experimental data, we find that the real error is 22% larger than the approximate error we estimate.

Therefore, if the required precision is , it is feasible to set the tolerance to be

 /1.22 .

Algorithm 2: refine the intersection curves

Input: the required precision ; the list S of m intersection curve segments , 1,...,
i

E i m ; the left and

right endpoints of
i

E are
i

L and
i

R , respectively; all the u coordinates of
i

L and
i

R equal
1

u and
2

u ,

respectively.
Output: intersection segments satisfying required precision.

1 Let
10 2

: )(uu u . Solve the equation
0

( , ) 0F u v  and get an increasing roots sequence , 0,1,...
i

v i  ；

2 Initialize and empty two list
l

S and
r

S of intersection curve segments.

3 for (each intersection curve segment
i

E in S )

3.1 Let j be the VSN of
i

E ;

3.2 Compute the point C on the torus
1

T by the parameter
0

( , )
j

u v ;

3.3 Compute the minimal distance d between C and the line segment
i i

L R ;

3.4 If d is larger than

 /1.22 , insert C into the intersection curve between

i
L and

i
R , push

i
L C and

i
CR into

l
S and

r
S , respectively.

4 If
l

S is not empty, refine
l

S and
r

S by calling this algorithm recursively.

5 Output the intersection curve segments refined.
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4 COMPUTE INTERSECTION CIRCLES

The intersection curves of two tori may contain a circle. If the intersection circle is the minor circle of

the torus
1

T , the pre-image curves contain a line segment
0

u u and all points on the line-segment

satisfy Eqns. (2.3) and (2.4). At that time, it is difficult to solve this system. Before applying topology

resolution, it is necessary to compute the minor circle of the torus
1

T if it coincides with a circle of
2

T .

a b c

Fig. 3: Circles on a torus: (a) profile circles, (b) cross sectional circles, (c) Yvone-Villarceau circles.

There are three types of circles on a torus: profile circles, cross sectional circles (i.e. minor circles)
and Yvone-Villarceau circles [8], as illustrated in Fig.3. A torus contains Yvone-Villarceau circles only if
its major radius is larger than its minor radius. The radius of the Yvone-Villarceau circles is the major

radius of the torus. Thus, if we assume that the minor radius of the torus
1

T is less than that of the

torus
2

T , the minor circle of
1

T would never coincide with one Yvone-Villarceau circle of
2

T .

4.1 The Minor Circle of
1

T Coincides with a Minor Circle of
2

T

The center of a minor circle is on the major circle of the torus. If the minor circles of two tori coincide,
it must be satisfied that: 1) the two tori have similar minor radius; 2) the two major circles of two tori
have intersection point at which the two major circles have similar tangent direction. Fig. 4-b
illustrates the case.

4.2 The Minor Circle of
1

T Coincides with a Profile Circle of
2

T

The center of a profile circle of
2

T is on the axis of
2

T , and the normal of the plane containing the

profile is the axis direction of
2

T . The center of a minor circle of
1

T is on the major circle of
1

T , and the

normal of the plane containing the minor circle is the tangent direction of the major circle there. If a

minor circle of
1

T coincides with a profile circle of
2

T , it must be satisfied that: 1) the axis of
2

T is

coplanar and tangent with the major circle of
1

T ; 2) the radius of
2

T ’s profile circle crossing the tangent

point equals the minor radius of
1

T . Fig. 4-c illustrates the case.

If a minor circle of
1

T whose u coordinate is
0

u coincides with a circle of
2

T , the circle is treated as an

intersection curve segment and the left side of Eqns. (2.3) and (2.4) are divided by
0

u u before it is

solved to compute the characteristics points.
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5 EXPERIMENTAL RESULTS

The algorithm described in previous sections has been implemented with VC++ 2005, and the data in
this paper are obtained using a personal computer with E5300 2.6G CPU and 3G memory. For
comparisons, we also implement the tracing method which tracing the intersection curves with a fixed
advance step 0.1 after the structure of them has been determined by the topology resolution.

a b c d

Fig. 4: Examples of torus/torus intersection: (a) The intersection curve is a small loop, (b) Two tori have

a common minor circle, (c) A minor circle of
1

T coincide with a profile circle of
2

T , and (d) Two tori

have 4 tangent points and the intersection curves have 4 corresponding branch points.

Four examples of the torus/torus intersections are illustrated in Fig. 4. Tab. 1 lists the parameters of
two tori in Fig. 4, including centers, axis directions, major radii and minor radii. Because the center and

the axis of the torus
2

T are always the origin of coordinates and z-axis, respectively, they are not listed

in Tab. 1. In addition, Tab. 1 lists the execute time and the number of the points on the intersection
curves obtained, when the precision  is set to be 0.01, 0.001 and 0.0001. The last two columns of Tab.
1 list the experimental data of the tracing method.

Lots of experiment data show that our algorithm can robustly process the tangent intersection and
the case that straying or loop missing may take place when applying the tracing method. The points
obtained by analytic method are exactly on the real intersections, and the precision of the entire
intersection curve is controllable. When the precision is improved by one order of magnitude, the
number of points is up about two times. The execute time is nearly in proportion to the number of
points. When the precision is set to be 0.001, it takes only several milliseconds to produce enough
dense points on the intersection curves to satisfy the demand of normal Boolean operation in
geometric modeling. From the data of Tab.1, the tracing method seems slightly faster than our method.
From the algorithm 2 we can see that half of the intersection points computed in step 3.2 are
discarded because the required precision has already been satisfied. It is the price we pay for the
controllable precision. As a matter of fact, the average time on computing one intersection point by
our method is much less than that by the tracing method because the analytic method is faster than
the numerical method when solving an equation.

1
T (red)

2
T (blue)

Our method Tracing
method =10-2  =10-3  =10-4

Center Axis 1
R

1
r

2
R

2
r ET NP ET NP ET NP ET NP

a (-1,4,5) (1,0,2) 5 0.86 4 2 0.17 15 0.35 40 0.83 120 0.19 13

b (3,0,4) (4,0,3) 5 2 6 2 0.85 85 2.1 269 6.0 799 2.0 240

c (0,4,2.4) (1,0,0) 4 2.2 4 3 1.0 93 2.6 259 8.8 923 0.8 92

d (0,0,0) (3,0,4) 4 1 5 2 1.8 161 4.4 537 14 1709 3.8 566

Tab.1: Experimental data of the torus/torus intersection in Fig. 4. (ET = Execute Times in milliseconds,
NP=Numbers of the Points on the intersection curves).
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6 CONCLUSION

Topology resolution has been developed to solve the torus/torus intersection problem. After the
structure of the intersection curves has been determined, the self-adapting refinement method is
applied to obtain the intersection curves with controllable precision. Compared with the tracing
method, our algorithm has the following advantages. 1) Our algorithm can overcome the drawbacks of
straying and loop missing of the tracing method. 2) The points on the intersection curves obtained by
our algorithm are computed by the analytic method, whose precision is higher than the points
obtained by iteration when using the tracing method. 3) The tracing method can only control the
precision roughly by estimating the advance step, while our method can control the precision
accurately.
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