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ABSTRACT

This paper introduces a new approach for computing large number of approximate
geodesic paths from a given point to all directions on a 3D model (mesh or surface) of
arbitrary topology. The basic idea is to unfold the 3D model into a °at surface so that
the geodesic from a given point in a given direction can be obtained simply by drawing
a straight line from the given point along the given direction on the unfolded surface.
Hence our method does not require setting up any linear systems, nor any expensive
matrix computation, but is simply done by iteratively extending the geodesic path
along the given direction until the geodesic path reaches a certain length. The iterative
process proceeds with a linear complexity. Therefore the new approach is very fast
and can be used for meshes with large number of vertices. The smooth surface
representation scheme used in this paper is Catmull-Clark subdivision surfaces, but
the same idea can be applied to other subdivision schemes as well. Some test results
obtained using this method are included. They show the effectiveness of our
approach.
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1 INTRODUCTION

In mathematics, a geodesic is a generalization of the notion of a “straight line” to “curved spaces”. In
the presence of a metric, a geodesic is defined to be (locally) the shortest path between two points in
the space. In the presence of an affine connection, a geodesic is defined to be the curve whose tangent
vectors remain parallel if they are transported along it. The computation of geodesic paths is needed
in many computer graphics applications. As a matter of fact, recent research in finding algorithms for
robot motion, terrain navigation and surface cutting has resulted in a number of interesting variants
of the shortest path problem. However, most of the research work deals with the shortest path
between two points in three dimensions in the presence of polyhedral obstacles. In this paper we
present an approach to geodesic paths from a given point along any given directions on smooth
surfaces of arbitrary topology.

Subdivision surfaces [1] have become popular recently because of their capability in
modeling/representing any complex shape with only one surface and because of their relatively high
visual quality, numerical stability, simplicity in implementation. Subdivision surfaces cover both
parametric forms [2, 3] and discrete forms. Parametric forms are good for design and representation
and discrete forms are good for machining and tessellation (including FE mesh generation). Therefore
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we have a representation scheme that is good for almost all applications. Geodesic computation
techniques using subdivision surfaces as a representation scheme certainly are needed for subdivision
surface based modeling/design.

In this paper we describe a new approach for computing approximate geodesic paths from a given
point to all directions on a 3D model (mesh or surface) of arbitrary topology. The basic idea is to
unfold the 3D model into a flat surface so that the geodesic from a given point in a given direction can
be obtained simply by drawing a straight line from the given point along the given direction on the
unfolded surface. Hence our method does not require setting up any linear systems, nor any expensive
matrix computation, but is done by iteratively extending the geodesic path along the given direction
until the geodesic path intersects with itself or reaches a certain length. The iterative process proceeds
with a linear complexity. Therefore the new approach is very fast and can be used for meshes with
large number of vertices. The geodesic computation algorithm presented in this paper is obtained
using the concept of Catmull-Clark subdivision surfaces, but the same idea can be applied to other
subdivision schemes as well. The capability of the new approach is demonstrated with test examples
shown in the paper.

2 PREVIOUS WORK

2.1 Related work on Computing Geodesics

Mitchell, Mount, and Papadimitriou (MMP) [4] first presented an efficient implementation of the exact geodesic
algorithm for triangular mesh in 1987. Their algorithm has O(n2 log n) worst-case time complexity, but in
practice can work with million-node meshes in reasonable time. The MMP algorithm [4] provides an exact
solution for the “single source, all destinations” shortest path problem on a triangular mesh. Their algorithm
partitions each mesh edge into a set of intervals (windows) over which the exact distance computation can be
performed automatically. These windows are propagated in a “continuous Dijkstra”-like manner. An exact
geodesic algorithm with worst case time complexity of O(n2) was described in [6]. Kapoor [7] described an
algorithm for the “single source, single destination” geodesic path between two given mesh vertices, in time of
O(n log2 n).

Approximate geodesics with guaranteed error bounds can be obtained by adding extra edges into the mesh
and running Dijkstra on the one-skeleton of this augmented mesh [8]. Many extra edges are required to obtain
accurate geodesics. Many of these methods require special processing of triangles with obtuse angles. In 2005, a
fast algorithm for exact or approximate geodesic computation was presented in [9]. This new approach shows
that MMP-based approximation algorithm yields more accurate solutions than the fast-marching method when
applied to meshes. They proved that the new algorithm runs in O(n log n) time even for small error thresholds.
Kobbelt etc. also presented an algorithm for efficient and accurate computation of geodesics [10]. This nice
algorithm can handle arbitrary, possibly open, polygons on the mesh to define the zero set of the distance field.

An algorithm for computing geodesics on smooth surfaces can be found in [5], which introduces a novel
approach for rapidly computing a very large number of geodesics on a smooth surface. Their idea is based on the
phase flow method [5].

2.2 Smooth Surface Representation using Subdivision Surfaces

Given a control mesh, a subdivision surface is generated by iteratively refining (subdividing) the control mesh to
form new and finer control meshes. The refined control meshes converge to a limit surface called a subdivision
surface. So a subdivision surface is determined by the given control mesh and the mesh refining (subdivision)
process. The control mesh of a subdivision surface can contain vertices whose valences (numbers of adjacent
edges) are different from four. Those vertices are called extra-ordinary vertices. Popular subdivision surfaces
include Catmull-Clark subdivision surfaces (CCSSs) [1], Doo-Sabin subdivision surfaces and Loop subdivision
surfaces.

Subdivision surfaces can model/represent complex shape of arbitrary topology because there is no limit on
the shape and topology of the control mesh of a subdivision surface. Subdivision surfaces are intrinsically
discrete. Recently it was proved that subdivision surfaces can also be parametrized [2]. Therefore, subdivision
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surfaces cover both parametric forms and discrete forms. Parametric forms are good for design and
representation; discrete forms are good for machining and tessellation (including FE mesh generation). Hence,
we have a representation scheme that is good for all graphics and CAD/CAM applications. Subdivision surfaces
by far are the most general surface representation scheme. They include non-uniform B-spline and NURBS
surfaces as special cases. In this paper we only consider objects represented by CCSSs. But our approach works
for other subdivision schemes as well.

3 PRELIMINARIES

In this section we discuss some properties of geodesics of a given mesh M or a given smooth surface S. The
proof of these properties can be found in [4, 5]. These properties are the theoretical foundation of our approach.

 Property 1: There exists a geodesic path from a given point to any other point on the given mesh M or
the given smooth surface S.

 Property 2: When M or S is unfolded, a geodesic path of M or S becomes a straight line segment.
 Property 3: If S is continuous everywhere, so is any geodesic path of S.
 Property 4: When a geodesic path of S passes through a point of S, the geodesic path has the same

tangent vector on the left side of the point as the right side of the point.
 Property 5: Geodesic paths starting at the same point P, but going along different directions may

intersect. If they do intersect, say at point Q, then the lengths of the geodesic paths between P and Q are
the same, even though they go different directions starting from point P.

4 BASIC IDEA

Given a mesh M, we can find its limit surface S using Catmull-Clark subdivision. The limit surface S is a smooth
surface which has C2 continuity almost everywhere except at a few extra-ordinary points. The task of this paper
is to find an approximate geodesic path from a given point P on S along any initial direction vector W.

The basic idea of our approach is to unfold the surface S so that the geodesic path can be achieved directly
using a straight line from the given point P along the given vector W in the flattened surface. We can compute S
from a given sparse 3D mesh M using subdivision surface parametrization techniques. The question is how to
flatten the smooth surface S. This is done with the following three steps.

 Discretize S to get a dense mesh S ;

 Unfold S along a given initial direction;

 Compute geodesic paths on S .

As they will be shown below, all the three steps can be directly computed, without setting up any linear
system or applying any costly matrix computation, but only uses linear combination of vertices locally. Hence
this is a linear local method which is very easy to implement and can deal with meshes of large number of
vertices effectively.

5 DISCRETIZATION OF A SMOOTH SURFACE S

In this section we show how to discretize a smooth surface in order to get a dense mesh approximation. Here we
assume the smooth surface is a Catmull-Clark subdivision surface (CCSS). Therefore we can evaluate an
ordinary or extraordinary CCSS patch and its tangent vectors at any given point of the smooth surface. These
techniques are needed in the construction of the approximating polyhedron for the surface unfolding process.
Several approaches [2, 3] have been presented for exact evaluation of an extra-ordinary patch at any parameter
point (u, v). We use the parametrization technique presented in [3] here. This method is more efficient for both
surface and tangent evaluation because it employs less eigen basis functions in its representation.

In this section we show how to discretize a smooth surface in order to get a dense mesh approximation.
Here we assume the smooth surface is a Catmull-Clark subdivision surface (CCSS). Therefore we can evaluate
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an ordinary or extra-ordinary CCSS patch and its tangent vectors at any given point of the smooth surface. These
techniques are needed in the construction of the approximating polyhedron for the surface unfolding process.
Several approaches [2, 3] have been presented for exact evaluation of an extra-ordinary patch at any parameter
point (u, v). We use the parametrization technique presented in [3] here. This method is more efficient for both
surface and tangent evaluation because it employs less eigen basis functions in its representation.
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where αn, βn and γn are positive numbers and αn+βn +γn = 1, and it is based on an Ω-partition of the parameter
space [2, 3]. Ei and Fi are the two rings of surrounding vertices of vertex V. The value of an extra-ordinary patch
is evaluated as follows:
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where n is the valance of the extra-ordinary patch, W is a vector containing the 16 B-spline power basis functions:
WT (u; v) = [1; u; v; u2; uv; v2; u3; u2v; uv2; v3; u3v; u2v2; uv3; u3v2; u2v3; u3v3] ;

K is a diagonal matrix:
K = Diag(1; 2; 2; 4; 4; 4; 8; 8; 8; 8; 16; 16; 16; 32; 32; 64);

and m and b are defined as follows:
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λj , 0 ≤j≤n+5, are eigenvalues of the Catmull-Clark subdivision matrix and Mb,j , 1≤b≤3, 0≤j≤n+5, are matrices

of dimension 16×(2n + 8). ¸λj and Mb,j are independent of (u, v) and their exact expressions are given in [3]. G is

the vector of control points (See [3] for their labeling).
One can compute the derivatives of S(u, v) to any degree simply by differentiating W(u, v) in Eq. (1)

accordingly. For example,
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The value and tangent vectors at an extra-ordinary vertex are simply the limit points of the corresponding
equations in (2) when (u, v) (0, 0):
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where Du(0, 0) and Dv(0,0) are the directional vectors of and respectively. As a result, the
normal vector at (0; 0) is

N(0; 0) = Du(0, 0) × Dv(0, 0):
With the availability of direct evaluation of Catmull-Clark subdivision surfaces, one can discretize a CCSS

patch by patch to any accuracy with a dense mesh approximation. Note that after the discretization, the resulting

mesh S consists of only quadrilaterals, which is convenient for us to unfold the mesh.
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6 UNFOLDING S IN A GIVEN DIRECTION

Once we have an approximate representation of the smooth surface, we can unfold the mesh to get a flattened
surface so that the geodesic path can be obtained easily. As we know, meshes with arbitrary topology may not be
able to be flattened without distortion. So we cannot find the geodesic paths if the surface is distorted.

Fortunately, we do not need to unfold the whole surface. Only the patches of a slice of S are needed to be
unfolded in the process of computing the geodesic paths. This is done as follows.

Fig. 1: Unfold the patches along the given direction W.

Given a starting point P and a starting direction W (see Figure 1), we need to find the geodesic path from P
along the direction W. First we rotate the surface patch that P and W are on (i.e., ∆BPA in Figure 1) so that it is
on the same plane as its neighboring patch, which is patch ∆ABD in Figure 1. After the rotation around line AB,
point P goes to point Q. Because now ∆QBA and ∆ABD are on the same plane, we can find the intersection
points I and E. Points I and E are saved to a list because they are part of the geodesic path. Again starting from
point E and along the direction of vector (I E), we repeat the above process to find intersection point F, which
is again part of the geodesic path and should be saved into the list. Note that here ∆ABD and ∆BCD may not lie
on the same plane. By repeating the same process, a slice of surface patches is unfolded and a straight line can be
determined from the unfolded surface patches of the slice.

The above process would not work when a geodesic path passes through a vertex of the underlying

approximate mesh S of S. See Figure 2. This is because we need an axis when we rotate a patch to flatten the
patch. When a geodesic path passes through a vertex, we cannot use the above method to find the next segment
of the geodesic path because we do not know which patch we should use to proceed next. We need a new
approach and it is done as follows.

From the properties of geodesic paths, we know that a geodesic path is continuous if the 3D surface is
continuous everywhere. Hence if a smooth geodesic path passes through vertex V (see Figure 2), then the
geodesic path has the same tangent vector to the left and to the right of the vertex V. As a result, if the
discretization of S is dense enough, then the entering segment to V and the departing segment from V of the
geodesic path are on the same plane as the normal vector of the smooth surface at the point V. In other words, if
N is the normal vector of S at V, then ∆PNV and ∆NQV are on the same plane assuming VQ is the departing
segment of the geodesic path from V. With this observation, we can determine the next segment of the geodesic
path and proceed and repeat the process using one of the above two approaches, depending on if the geodesic

path passes through a vertex of S .



Computer-Aided Design & Applications, 8(4), 2011, 499-506
© 2011 CAD Solutions, LLC, http://www.cadanda.com

504

Fig. 2: Unfold the patches when the geodesic passing vertex V .

7 COMPUTING GEODESIC PATHS ON S

Once we know how to unfold patches of ¹ S, the process of computing the geodesic paths is straightforward.
Again we will use Figure 1 and Figure 2 to illustrate how to do the computation efficiently.

To get Q from rotating P about the line segment AB in Figure 1, one can use the following formula.
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x, y and z are the normalized coordinate components of the vector B - A. n1 and n2 are the normal vectors of
∆BPA and ∆ADB, respectively, i.e., n1 = PA × PB and n2 = AD × AB.

When the geodesic path passes through a vertex V of S , to find Q from P (See Figure 2), we first need to
calculate the normal vector N of S at V, which can be precisely obtained using the formula given in the previous
section. Once N is known, according to the properties of geodesics, we have that the four points P, N + V, Q and
V are coplanar. Hence to find Q, we just need to find the intersection point of the line segment AB and the 2D
plane determined by the three points P, N + V and V. The line segment AB is the diagonal line of a neighboring
patch. Because we do not know which patch the line segment AB belongs to, we need to loop through all the
neighboring patches of vertex V. Because there is one and only one such neighboring patch (other than the one
that P belongs to) whose diagonal line segment intersects the plane defined by the three points P, N + V and V,
the loop will stop once the intersection point Q is found. The intersection point of the line segment AB and the
plane (P,N+V, V ) can be computed by first computing the following parameter value:

un

wn
s




 ,

where n = (P - V ) × N, w = A - V and u = B - A. If 0 ≤ s ≤ 1, the line segment AB and the plane have an
intersection point Q = A + s(B ¡ A). Otherwise, there is no intersection point between them.
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Fig. 3: Examples of geodesic paths starting from a given point in different directions.
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8 TEST RESULTS

The proposed approach has been implemented in C++ using OpenGL as the supporting graphics system on the
Windows platform. Quite a few examples have been tested with the method described here. All the examples
have extraordinary vertices. Some of the tested results are shown in Figure 3. For all the test cases shown in this
paper, the original mesh, and a bundle of geodesic paths on the smooth 3D models are given. All geodesic paths
are shown within a certain length only in the examples.

The new geodesic computation method can handle meshes with large number of vertices in a matter of
almost real time on an ordinary PC (3.2GHz CPU, 2GB of RAM). For example, each of the smooth models
shown in figure 3 has more than one million vertices after discretization. It takes less than a second to find all the
geodesic paths for each given model. Hence the new geodesic computation method is suitable for interactive
applications, such as shape design, terrain navigation and so on.

8. Summary and Future Work

A new approach for computing large number of approximate geodesic paths from a given point to all directions
on a 3D model (mesh or surface) of arbitrary topology is presented. The basic idea is to unfold the 3D model into
a flat surface so that the geodesic from a given point in an initial given direction can be obtained simply by
drawing a straight line from the given point along the given direction on the unfolded surface. The new method
is fast and does not require any costly matrix computation, or linear system solving in the process of geodesic
computation, hence it is very easy to implement. The new approach also is very fast with a linear time
complexity and hence can be used for meshes with large number of vertices. Test examples show the
effectiveness of our approach.

One of our future research objectives is to apply this new approach to find the geodesic path between two
points of a smooth surface. Another subject of our future research is to compare the performance of the new
approach with other geodesic computation methods in the literature to study its effectiveness and possible
improvements.
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