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ABSTRACT

Surface development is used in many manufacturing planning operations, e.g. for
garments, ships and automobiles. However, most freeform surfaces used in design are
not developable, and therefore the developed patterns are not isometric to the
designed surface. In some domains, the CAD model is created by skinning operations
that interpolate smooth strips between a specified set of skeleton curves. In this
paper, we propose a method to approximate a strip with a developable surface
between the two space curves bounding it. We allow one of the bounding curves to be
perturbed within a controllable tolerance and meet some other special engineering
requirements. We formulate the problem as a combination of a discrete combinatorial
optimization problem and a constrained nonlinear optimization problem, and propose
an efficient iterative approach to solve the problem.
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1 INTRODUCTION

We address a problem that arises in the CAD/CAM of garments and footwear. The designer often
creates the required shape by interpolating, e.g. by skinning, between a pair (or sometimes a sequence)
of skeleton curves. Such generator curves may even contain features such as aesthetic wrinkling,
adding complexity to the designed surface [17]. For easy manufacture, it is desirable that such strips
can be flattened into planar patterns with little or no distortion. Similar requirements also exist in
sheet-metal applications [18, 22] and windshield design [13]. However, modeling developable surfaces
is nontrivial and few current CAD modelers support it.

In this paper, we propose an algorithm for designing developable interpolating strips (see Fig.1).
Informally, we isolate the problem as follows: given two curves, C; and C that define a (possibly wavy)
surface S interpolating them, we wish to approximate S by a developable surface S' by possibly
allowing small variations of one of the generator curves, say Co.

A simple approach would be to find an appropriate parametrization of C; and C, and then create a
ruled surface interpolating them. However, in general such a ruled surface may be far from
developable. At the same time, it is desirable that the interpolating surface is smooth in its interior -
thus, the surface in Fig. 2 (a) is more desirable than the one in Fig. 2 (b).
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Fig. 1: (a) CAD model of a shoe upper with designed wrinkles (b) Example of a designed strip.

(@) (b)

Fig. 2: (a) A smooth surface interpolating the generator curves, (b) An undesirable interpolation.

The rest of the paper is organized as follows. Section 2 reviews the related works; section 3 presents
our approach, followed by the problem formulation and an outline of our proposed algorithm.
Sections 4 and 5 give details of our methodology, and section 6 briefly describes how we can smooth
the resulting surface. Section 7 gives some experimental results, and section 8 concludes the paper
with some discussions.

2  RELATED WORK

There have been a few studies of developable surfaces, especially in the context of NURBS or B-Spline
surfaces [1-3, 9, 12, 19, 20]. [3] proposed the condition under which a developable Bezier surface can
be constructed with two boundary curves. The boundary curves in his approach are of at most degree
3 and are restricted to lie in parallel planes. Their work was extended by Frey and Bindschadler [12] by
generalizing the degree of the directrices. Maekawa and Chalfant [20] extended Aumann’s algorithm to
B-Spline curves by segmenting the original B-Spline curves into multi-segment planar Bezier curves.
Chu and Sequin [9] proposed a new method to design a developable Bezier patch. In their method, after
one boundary curve is freely specified, five more degrees of freedom are available for a second
boundary curve of the same degree. Aumann [1, 2] utilized De Casteljau algorithm to design
developable Bezier surfaces through a Bezier curve of arbitrary degree and shape. However, the
approach often results in unexpected or undesirable surfaces. Projective geometry methods exploiting
point-plane duality were investigated by the groups of Ravani and Pottmann [4, 5, 15, 23, 24].

Some researchers have used spatial kinematics and line geometry to approximate a given surface by a
developable one [7, 14, 16]. The idea is to generate a developable surface sweeping a line along a
helical motion. This method is widely used in reverse engineering. Given a set of scattered data points
{P} it is required to find a developable surface of which the generators g are as close as possible to the
glven points. In Hoscheck and Schneider [14, 16], the distance from a pomt to a line was used, leading
to a nonlinear optimization problem. Pottmann and Wallner [24] and Hoscheck and Schwanecke [14,
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16] independently introduced the error measurement between planes, leading to linear algorithms.
Special attention was paid to controlling the regression curve and how to combine the pieces of
patches with imposed continuity conditions.

Recently, methods based on discrete data representation have been proposed for design of developable
surfaces, owing to the rapid increase of computing power and popularity of 3D meshes. In this
manner, triangle or quad meshes are sought to achieve maximum developability, with the given
interpolating constraints satisfied. In his pioneering work, Frey [11] showed how to approximate
buckled binder wrap surfaces by calculating out the d-vertices based on the fact that Gaussian
curvature at every point on a developable surface is zero, and this condition can be expressed by
requiring the included angle at every internal vertex to be 2x. In [21], triangle strips are designed by
grouping original triangles on the mesh which share similar topological distances, and the resulting
pattern gives out a near-developable unfolding of the mesh. Wang and Tang [27] minimized the total
discrete Gaussian curvature for polygonal surface by relocating each mesh vertex. Tang and Chen [25]
satisfied some interpolation requirements and minimized the developability change by a mesh
deformation method and the method was further applied into cloth simulation [8]. In [26, 28, 29]
efficient algorithms are given for finding the best parameterization of an interpolating ruled surface
for a range of optimization objectives, developability included. The algorithm given in [28] is based on
the well-known Dijkstra’s shortest path algorithm, is deterministic, and is able to find the global
optimum. It will be a key component in our optimization algorithm.

3  PROBLEM FORMULATION

This section gives the necessary preliminaries, followed by our formulation of the problem as a
constrained optimization.

3.1 Optimal Ruled Surface

A ruled surface, S(u,v)=C,(u)+(C,(u)-C,(u))v, uve[0,1], is developable if dC,/du,dC,/du and Ca(u)-

Ci(u) are co-planar for all u in the parameter domain of S (where Ci(u), C2(u) are called directrices and
Co(u)-Ci(u) is a direction vector of a ruling) [doCarmo76]. Thus, given a pair of directrices, different
ruled surfaces can be defined depending on their parameterization, see Figure 3. If we define a

monotone parameterization function, 5 (u): [0,1] = [0, 1], an interpolating ruled surface of C; and C;
then is defined as S(U,V) = (1-V)Ci(u) +VC2(E(U))., (u,ve[0,1]).

Fig. 3: Different parameterizations on the same two rails lead to different ruled surfaces.

Given two directrices, we seek the optimum mapping & (U) that will maximize the developability of the

resulting ruled surface. Finding such a mapping in analytical form is difficult, but when the two
directrices are given in discrete form (i.e., polygons), an optimal mapping can be found efficiently
[WangO05al.
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3.2  BBT Mesh Representation of a Strip

We assume that the given strip has no interior cut-lines such as the ones shown in Fig. 4(a), i.e. it
should have a form as shown in Fig. 4(b); note that situations like Fig. 4(a) can be subdivided into a set
of strips that have the regular structure as desired.

Fig. 4: Interpolating strips in BBT form (a) with internal cut-seams (b) no internal cuts.

We represent an interpolating strip using BBT (Bridge Boundary Triangulation) as in [Wang05a], see Fig.
4(b). A BBT approximates a ruled surface by a collection of triangles whose vertices lie only on the

rails. More specifically, let P={p,, p,,... P} and Q={0,,0,,...,q,} be an ordered dense points
sampling of the boundary curves C; and C,, respectively. A collection of triangles T ={T,,T,,... Ty}
defined on P and Q is a BBT if all the following criteria are met:
1) T, is defined by line segment < P, > and one of p, and g, and T is defined by <p,,(}, > and
one of pm, and gn1;
2) each triangle T, 1 < k <N, is defined by a line segment <[;,{;>, called a bridge edge, for

some i and j, and either vertex P, or vertex ( j+15

3) everyp,and j belongs to at least one triangle; and finally

4) both P and Q are partial orderings of T: for any two vertices [3 and p,— with i < j, all the
triangles having [0 as a vertex are earlier constructed than all the triangles having [ as a

vertex in T; the same property applies to Q.

The above BBT, T, can be interpreted as a discrete approximation of desired mappingé(u). Note that it
cannot represent all £(u) due to the introduction of criteria 4; however, this criteria is necessary to
disallow undesirable self-intersections. This discrete approximation approaches a continuum &(U) as n
and m increase, defining a ruled surface in the limit. Finding the best desired mapping &(u) is thus

translated into the equivalent problem of finding a BBT with maximum developability. To quantify this
notion, we discuss below a metric for developability.

3.3  Evaluation of Developability in BBT
The normal twist T, of a bridge edge <D,,C|]-> (bold line segment in Fig.5) is defined as

Te(< p;,q; >)=1-n,.n,, where n and n_are the unit polygon normal vectors at the point [ and CII-
respectively.
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Fig.5: A bridge edge < [3,,0;> in a BBT.

(p,—qj)xtp _ (p|_qj)xtq
., pand Ng=r——————,
(R —a;) =L, |l 1P =)=t |l

tangents on the boundary curves at points p, and a, respectively. During the movement of poly-line PL,

n and n_ can be calculated as:N, = where t and t;are the unit

(curve C), the original parametric formula of the curve C will not apply to calculate the tangent at P,

thus tp cannot be evaluated directly from its original parametric formula, nor by standard numerical
method such as backward-forward or central difference method. Considering that most curves in

practice are polynomial curves, we locally fit the points P_;, P and P, by a quadratic curve

C(t)=a0+a1t+a2t2 . So, tp can be calculated as & +2y@a,, where ¥ = ” 0 F|)|p.”_+lﬁ;” o ” We only
i M i M+
need the direction of t, which is given by:
t,=(p-P)A-7)’+7*(P..—P) (0]

The BBT normal twist T,(T), for a given BBT, T, is defined as the sum of the normal twists of all the
bridge edges in T. T,(T) is always non-negative, and is zero if and only if the integral normal twist of
every bridge edge <P, d; > in T is zero, in which case the strip is developable.

3.4 Optimal BBT for a Fixed PL,
When PL is fixed, we can find a BBT T of P and Q that minimizes the total twistT,(T). We will use

T.in(P,Q) to represent this optimal BBT. Using the BBT normal twist as the minimization objective, and

given P and Q with m and n vertices respectively, T;,(P,Q) can be found in O((mn)ln(mn)) time and
space [Wang05a]. Note that even for the modest m and n, the total number of distinct BBTs of P and Q

) . ) m-1 n-1 (m+n-2)
is combinatorial -- there are a total of = =———~ distinct BBTs to search
m+n-2) (m+n-2) (m-1)(n-1)

through for the optimumT,,(P,Q). The algorithm in [Wang05a] establishes an equivalence between this
search problem and a multi-layer graph search problem that allows an efficient solution.
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3.5 The Problem and the Outline of Algorithm

In Fig. 6, S, is a ruled surface and C: is a curve embedded on S;. In garment applications, S, is usually
developed with its own corresponding flattened panel. Curve C», referred to as the pattern curve, bears
design intent of wrinkles and is fixed. Curve C; however can move within a band on S; between two
embedded curves B; and B.. We call curve C; the objective or design curve. From manufacturing
consideration, the interpolating surface S, should be developable and, in order to ensure that S, can be
sewed together with S;, we should design C; under the condition that C; is on surface Si.

€Y (b)

Fig.6: Schematic descriptions of curves and surfaces involved.

Assuming that curves C; and C; are in discrete form as polygons P and Q, respectively, any S, is a BBT
as shown in Fig. 6(b). The variational optimization problem to be solved can be formulated as:

PisonS
argminT,, (T) subject to Pisinside theband between B, and B,
P.T
' others

where T represents any BBT of a fixed P and Q and the “others” in the constraint field indicate some
other constraints during the modification of P (i.,e., C1) such as the avoidance of undesirable distortion,
to be discussed in the following section. The algorithm we use to solve this is outlined below:

Algorithm Developable_Strip_Design ()
Input: curve Ca, initial curve Cj, surface S;, bounding curves B; and Ba.
Output: a BBT S,
Step 0: P, Q € discretizations of C; and C;
While (termination conditions are not met) Do: {
Step 1: ¢ € the mapping of the BBT Tmin(P, Q)
Step 2: Move P in the band of B; and B; on S; to minimize the total twist of the BBT with the
same &;
Go to Step 1.
}
Sn < Tmin(Py Q)

In the algorithm, Step 1 is achieved by the method in [Wang05a]. The rest of the paper then will focus
on Step 2. The algorithm terminates when any of the three following requirements is met:

) T,(T)is less than a given threshold.

ii) The improvement of T,(T) between consecutive iterations is less than a given threshold (<0.005).
iii) The number of iterations exceeds a given number. (In our example, this is set as 10).
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4 LOCAL OPTIMIZATION

Considering the computation efficiency and easy control of the final shape of curve C; when
perturbing curve Cji, the strategy that we first adopt is a one-point-movement scheme, i.e., at Step 2,
the vertices of P are moved one by one, and each and every vertex is moved once and only once. In

order to improve the efficiency, we only update the vertex [J when its incident edge integral normal
twist Te(< P, Q; >)is larger than a specified threshold. When moving vertex |, one alters the integral
normal twist Tz(€) of any bridge edge e in the current BBT, as long as e is incident to one of p_;, P,

or e.g., the colored edges in Fig. 7. To better describe this relationship, let ®(p) be the set of the

1+1

incident bridge edges of [3, e.g., {q,— , Cljﬂ,..., C|j+4}in Fig. 7.

So, for each vertex [ ‘we denote Z eeq,(mTE (e) by E(pi), and choose Sum(pi) = E(pi_1)+E(p )+ E(pi ) as the

i +1

final objective function for the movement of [3 in algorithm Developable_Strip_Design.

qj+5
9= 0.,

Fig. 7: Bridge edges whose integral normal twists are affected by vertex .

4.1 v-Direction Optimization

As already stated, the movement of [3 should be restricted to the original ruled surface S, so that the
interpolating surface S, can be sewed together with S;. We propose a particular movement scheme
called v-directional-only optimization in which [3 moves along the ruling direction of S. As P is

moved along a ruling of i, it must stay on Si. Another benefit of this method is that the final curve C;
will not be badly distorted or twisted as compared to its initial form.

S1, B1 and B; (see Fig. 6) are known in advance; we assume that S; has no self-intersection, and is given
as: S(u,v) =VR (u)+ (1-Vv)R,(u), u,ve[0,]], where R and R, are the corresponding directrix curves. By

and B; are embedded curves on Si, which are defined by mappings from the uv parameter space to the
object space of Si1, and the parametric forms of the two curves can be expressed as:

B.(t) = S(u(t) ) =vt)R U M)+ I-wt)R W) t [0
Bz(tz) = S(uz (tz)vvz (tz)) = Vz(tz)Rl(uz(tz)) + (1_V2 (tz))Rz(uz(tz)) tz € [011]

— Rz(uo) — Ri(uo)
IR (Ug) = R(up) II”

moves along the direction 7 within an interval. The ruling passing through P, will intersect B and B,

For point p, =S,(Uy,V,), the unit ruling vector is calculated as: 7 and the point

at two points, say M, and M,: M, =S,(u,, Vi (t,)), M, =S (Uy,V,(t,)), where t, = U (), and t, = Uy (uy).

Thus, [vl, vz] is the interval for the movement of 3, with voe[vl, VZ] being the initial v-value.
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4.2 The Objective Function

Since the interval [Vy vz] is often narrow, the change 0 €[V, —V,,V, —V,] over the initial value v, is small.

This suggests that we can directly expand our objective function Sum(p) at v = v into its Taylor series
of an acceptable degree. Here, we can expand it into a polynomial of variable v. We set:

Sum(p, (V)) =Sum(p, (Vo)) + Bid + B,6” ++,6° + B,6* +0(5°) )

In practice, the coefficients g are obtained by sampling uniformly distributed samples of §. Thus the
original problem is formulated into a constrained univariate optimization. Eq. (2) is locally monotonic
in each interval separated by the bound and its stationary points, thus once all stationary points

between the interval [V, —V,,V, —V,] are found, the interval is further divided into k+1 sub-intervals,
where k is the number of the stationary points in [V; —V,,V, —V,]. Because of the monotonic properties

of each sub-interval, local optimum 6 for each subinterval can be easily found, and the best value for §
can be selected from these k+1 local optima. The stationary points of Eq. (2) are computed by using a

standard polynomial root-finding technique. After the optimal & is selected, vertex [ is
correspondingly updated. The algorithm we use to locally update p; is outlined below:

Algorithm Local_Opt_Strip ()
Input: Initial directrix curve R; and Rz, S;(u,v), objective curve C1, bounding curves B; and B..

Output: Optimal PL; ={ 3}
While (i <m) Do: {
Step 1: P € Select P from curve C; as the objective point.
Step 2:  Calculate the ruling direction 7 of point [ ; the ruling line passing p; intersects B; and B,

at point M; and My for B, M; and M,, evaluate Vo, Vi, and V,, respectively, from uv
parameter space of S;

Step 3: Sample § uniformly in the interval d €[V, —V,,V, —V,] to obtain Eq.(2).

Step 4: Search the optimal § for the Eq.(2) in the interval [V, —V,,V, —V,] based on standard
polynomial root-finding technique. }

Step 5: Update P as Si(Ug,Vot o)

5 GLOBAL OPTIMIZATION

While the local optimization strategy is efficient, we also wish to relax the constraint on the points,
allowing them to move in both u- and v-directions of S; to explore for better solutions. Below, we
consider how to do so, while allowing all vertices of PL; to move in each iteration step.
As point [3 is now allowed to move in both u and v directions, if no constraints are imposed, the final
C1 may be distorted severely and undesirably. To avoid this, we add some restrictions.

Constraint 1: Shape preservation constraint. The final curve shape should remain close to the original
shape defined by poly-line PL;, thus we need to minimize the distances of the perturbed PL; vertices
from the original positions by minimizing:

m
« 2
Eclose =Z|| p—-B ” 3)
i=1
where m is the number of vertices on PL and p’, is the current updated point of the original [3.
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Constraint 2: Band constraint. This constraint pertains to the v-direction-only case; that is, the curve
C: should always lie inside the band delimited by the two boundary curves Bi(ui(t),vi(t)) and
Ba(ux(t),v2(t)). We denote the implicit functions of B; and B;in the uv domain as Fi(u,v) and Fx(u,v),
respectively. So pi(u,v) should meet the following band restrictions:

| Ruv)<0 A
Eband - _FZ(U,V)SO ( )

These constraints, along with developability, allow us to define the Lagrangian function as:
Efinal :\N_LTW (T)+W2Eclose +2‘T El;and (5)

In (3), constants wi and w, are used to control the relative weight of geometric fidelity and the
developability of the final shape, A are Lagrange multipliers, and Et;and are only subsets of constraints

E,.q in Eq. (5). In each iteration of the numerical solver, only the subset of these constraints for
which the equality holds in (3), called the active set, are used to update the incumbent solution. The
remaining constraints are ignored, and the working set is updated in the next iteration. A sequential
quadratic programming (SQP) approach [Boggs95] was adopted to solve Eq. (5). SQP formulates the
objective function to solve a sequence of quadratic programming (QP) sub-problems. Each QP sub-
problem minimizes a quadratic model of a certain modified Lagrangian function subject to linear
constraints. In each iteration, the Hessian matrix and gradients of Eq. (6) are computed to approximate
the objective function as a local quadratic problem at the current point. The Hessians and gradients of
Foand and Egose with respect to uv parameters of Si(u,v) are derived analytically; for T,(T), the Hessians
and gradients are evaluated numerically.

Let us rewrite Eq. (5) in the form F(x,A)=f(X)-A"E,(X), where x denotes the unknown uv

coordinates of vertex p; of PL;. Let J be the Jacobian matrix of the constraints Epand, and H denote the
Hessian matrix of F(x, 4). The update step x = x + Ax is solved from:

H -J7|Ax| [-Vf(X) ©
-J 0 A Eiaa (X)
The numerical method maintains feasibility by adaptively shortening the step size when required,
using X = x + aAx. If all the corresponding constraints belong to the working set, then o is set as 1,
otherwise the corresponding step size should satisfy E +VE (aAx) <0, where E €{E_ 4 —E.c} and
. . -E
VE is the gradient of the constraints. In summary, o is computed as:c =mln(lmln(VE Alx ]). Any
constraint that yields a < 1 is a blocking constraint and is added to the working set for the next
iteration. After solving Eq. (6), we check the components of Z: if 1; < 0, we can decrease Ena further by

dropping some certain active constraints E from the working set, then the iteration is repeated. The
coefficient matrix of Eq. (6) is highly sparse and has size (2m+N)(2m+N), where m is the vertex number
of PL; and N is the number of active constraints. The SQP algorithm terminates when at least one of
the following conditions is met:

(i) the current x and A meet the KKT condition, (ii) the maximum number of iterations is exceeded, (iii)
the step length for the current x becomes too small. In practice, we find that the initial value
significantly affects the algorithm performance and the results, but the iterations converge rapidly in
the neighborhood of the optimum. Thus a practical solution is to use the local method to quickly
derive a starting point, and then run the global method to locate the final positions of P.
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Algorithm Global_Opt_Strip ()

Input: Objective curve C=PL = { P;}, bounding condition E, , and shape preservation condition E,
and Set Egg =2, w=15, w,=1

Output: Optimal PL ={ 3}

While (Termination conditions are not met) Do: {
Step 1: Construct the Lagrangian function Eq.(5).

Step 2: Rewrite Eq.(5) as F(x,4)=f(X)-A"E,,(X), where x denotes the unknown uv coordinates of
vertex p; of PL;.

Step 3: Calculate Jacobian Matrix of the constraints E,,, and Hessian matrix of F(x, 1), and obtain
the linear equation Eq.(6), solve Eq.(6) and get the solution x and 4,

Step 4. Update working set E,,, and uv coordinates of vertex p;

41 1f E+VE(AX)>0,Dox > x+Ax, where E e{Eyq — Eaa}
42 FElse Do: {
421 AddE;to Eyy

. . E
422 X = X + aAX, where a = min(l, mm(VE A)g J) ,VE is the gradient of the constraints E;. }

Step5 If 4 <0,Remove E from E,,,,and Go to Step 2.}
Step 6: Update PL;

6 SMOOTHING PROCESS

It is desirable that the final curve C: is smooth. To achieve this, a smoothing operation based on the
Gaussian kernel g(z) oc exp(~2z°/(20?)) is applied to the final P to remove unwanted zigzag points.
Zigzag points can be identified either by user-interaction, or by comparing the length ratios

2 pig(l(pi))
ll R-P, I I Pa—P I . . . . . _ pje@
d they are modified by using an averaging formula: p=—————+—

” PP, ” an " Pi2— B ” ' pé}g(l ( p )) )

where Q is the set of neighboring points of the point p;i plus piitself. In our system, we use Q = {pi2, Pi1,
pi, Pi+1, Pi+2}, With the vertices near the ends treated appropriately if Ci1is open; |(pj)is the curve length

on C; between p; and p;. The parameter ¢ in the original Gaussian kernel provides a way to control how
the neighboring points impact the new p; and hence the level of smoothing: if ¢ = 0, none of the
neighboring points will have any impact on p;, while an infinitely large c would give a same weight to
all the neighboring points and the new piis set as their arithmetic mean. The smoothed points may lie
off the surface S;, so we finally project them back to S;by using a Newton iteration method. In some
applications, discrete points are not desired and users hope to use a smooth parametric curve to fit
the vertices of P. Our implementation also provides this option based on the least squares fitting
strategy. The details are omitted here.

7  EXPERIMENTAL RESULTS

The proposed algorithms were programmed in C++, and tested on a 3GHz, 2GB DDR2 PC. We
generated strips for two given curves using the method [Wang05a] as our benchmark. All final strips
were developed onto a plane and our algorithm was verified by comparing both, the integral edge
normal twist and the distortion rate, i.e., /A= (A-A)/A, where A denotes the total triangle area of the
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strip and A'is that of the corresponding 2D planar pattern. The constants G , wy and w» are initially set
as 15, 1 and 20, respectively; all computational statistics are given in Table 1.

Example I.

Fig. 8 shows a dress skirt to which a wrinkled strip is added at the bottom. The initial curves (B-spline
curves of degree 3) are given as shown in Fig. 8(a): a fixed wavy black curve, and a black design curve
that is allowed to move within a tolerance zone (depicted by two red curves). The design curve and
bounding curves belong to one surface S;, and the pattern curve is on the other surface S,. The initial
shape is shown in Fig. 8(b), and its planar development in Fig. 8(c). The local and global optimized
strips together with the corresponding planar patterns and final skirts are shown in Fig. 8(d) and Fig.
8(e), respectively. From the table and the figures, we can see that both local and global optimization
methods significantly reduce the total normal twist and area change rates while maintaining an
acceptable design curve.

Fig. 8: Design of a skirt frill. (a): the inputs including two bounding curves (red), which are on the same
surface S; and one fixed wavy pattern curve (lower black curve) and one design curve (upper black
curve) which will be perturbed between the bounding curves and at the same time kept on S;i; (b): the
initial strip using the method [Wang0O5a] and it is adopted as a benchmark; (c): the flattened planar
pattern after unrolling the strip in (b); (d): the results using the local method and (e): the results using
the global method.

Example II.

Fig. 9(d) shows a designed strip that provides a transition between the back and toe parts of a shoe
upper. The initial state is determined just as Example 1. As expected, total normal twist and distortion
rates can be greatly reduced making the final strip more developable and allowing the strip to be
developed with significantly reduced distortion than the original design.

Computer-Aided Design & Applications, 8(4), 2011, 557-570
© 2011 CAD Solutions, LLC, http://www.cadanda.com




568

(d) (e)
Fig. 9: Design of a transition narrow strip for a women's shoe. (a): the inputs including two bounding
curves (red), which are on the head surface S; and one fixed wavy pattern curve (left-back black curve)
and one design curve (right-front black curve) which will be perturbed between the bounding curves
and at the same time kept on S;; (b): the initial strip using the method [Wang05a] and it is adopted as a
benchmark; (c): the flattened planar pattern after unrolling the strip in Figure 9(b); (d): the results
using the local method; and (e): the results using the global method.

Example # of Points Figure Tu(T) AA (%) Time (sec) # of Iterations
Fig.8(b) 390.21 9.91% 0.76 N/A
Example I ":288’ Fig.8(d) 57.33 2.03% 5.71 3
Fig.8(e) 9.46 -0.21% 25.30 3
Fig.9(b) 75.50 4.82% 0.22 5
Example 11 mf388' Fig.9(d) 25.76 1.79% 2.12 5
n=> Fig.9(e) 3.25 0.18% 22.87 5

Tab 1: Computational statistics.

The examples also verify that while the local method is faster, the global method converges to a much
better solution, as expected.

8 CONCLUSION

In many industrial applications, designers are required to determine the shape of an interpolating
surface of maximum developability between two given space curves. In this paper, we propose a
method that interpolates the input curves by a ruled surface with maximum developability, allowing
one of the input curves to be perturbed within a band of specified tolerance. The algorithm first
utilizes a previous work efficiently finding the best parametric correspondence of two space curves for
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maximizing the developability of their ruled surface, and then introduces two constrained nonlinear
optimization schemes that help establish the geometry of the design curve for a fixed parametric
correspondence. These two approaches can be used in sequence to converge to a good solution
efficiently. Initial experiments have shown that the proposed algorithm is fast, numerically stable, and
yields a surface significantly more developable than alternate interpolating surfaces generated by CAD
systems.

Our work is restricted to strips. One possible extension is to allow the interpolating ruled surface to be
of relatively arbitrary shape. In such situations the developability is still desired but requiring the two
curves to be the directrices may be too restrictive. Another future work is to allow the use of cut-lines
and find a series of narrow strips to interpolate them. Finally, the proposed method is a discrete
method, and its efficacy depends somewhat on the sampling density of the input curves. The trade-
off, as the sampling density increases, is between higher developability and computation time. A
possible extension to our work is to apply an adaptive sampling method that allows high density as
well as better computation times.
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