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ABSTRACT

It is important to construct 3D virtual models of man-made fields in which people
work and live. Recent mid-range and long-range laser scanners can be used to acquire
3D shapes of cities, buildings, factories, heavy goods, transportation infrastructure,
and so on. However, they tend to produce outliers and very noisy points near
silhouettes and sharp edges of objects. This problem makes it difficult to reconstruct
bounded faces. In addition, since enormous volumes of point-clouds are captured
from a broad range of scenes, efficient processing methods are required. In this paper,
we propose a robust edge detection method and an efficient GPU-based smoothing
method for reconstructing primitive surfaces. We first calculate straight edge lines and
silhouette lines from raw scanned data, and then eliminate noises and outliers by our
GPU-based smoothing method for calculating surface equations. Then primitive
surfaces are extracted using sharp edges, silhouette lines and surface equations. Our
method is useful to robustly extract surface primitives from practical noisy point-
clouds.
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1 INTRODUCTION

The recent progress on mid/long-range laser scanners has made it possible to measure a broad range
of scenes in a short time. These laser scanners can be used for acquiring 3D shapes of cities, buildings,
factories, heavy goods, transportation infrastructure, etc. Two types of laser scanners are typically
used in surveying large-scale objects. One is the time-of-flight scanner, which measures the round-trip
travel time of the laser pulses. The other type is the phase-based laser scanner, which radiates
continuous modulated laser pulses and obtains distances using the phase difference between the
emitted and received signals. The both types of scanners can capture tens of millions points in a single
scan.

Our goal is to reconstruct 3D virtual models of man-made fields in which people work and live.
These 3D models are useful for supporting maintenance tasks, asset management, object detection,
and the record of current situations. We can observe that many components in man-made fields
consist of combinations of simple surfaces, such as planes, cylinders, cones, spheres, and tori, because
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standardized parts are typically used in the field of plant construction, civil engineering, architecture,
and transportation infrastructure. Therefore, we focus on extracting faces and edges for primitive
surfaces.

Although many methods have been proposed for calculating primitive surfaces [4-6][8], it is still
difficult to robustly detect edges and silhouette lines of surfaces. Fig. 1(a) shows an actual point-cloud,
in which many noisy points and outliers are included. One of the key reasons of noises is the existence
of mixels, which are caused by laser beams reflected from multiple surfaces. Fig. 1(b) shows mixels,
which are caused at a silhouette line of a cylindrical object. Since wrong distance values are measured
at mixels, they become outliers. Mixels are also caused at sharp edges. In addition, large noises and
outliers are measured when laser beams are reflected from inclined surfaces. Fig. 1(c) shows that a
laser spot is stretched on a surface when the angle  between the laser beam and the surface normal

is almost 90 degree. Inclined surfaces are often caused near silhouette lines of curved surfaces such as
cylinders. These problems make it difficult to robustly and precisely calculate edges and silhouettes of
objects, because points captured from sharp edges and silhouettes are not reliable.

In this paper, we first propose a robust edge detection method. Since laser scanners tend to
output wrong distances near sharp edges and silhouette lines, we generate a brightness image and a
distance image using a point-cloud, and extract feature segments as candidates of edges and
silhouettes. Feature segments are used to estimate candidate regions of primitive surfaces and to
generate bounded faces.

Then we apply a region-growing method to candidate regions for detecting primitive surfaces.
However, the region-growing method may fail to grow regions when adjacent points are very noisy.
Although it is necessary to eliminate outliers and large noises, faithful smoothing methods, such as
the moving least squares [1][3] and the moving robust estimate [5][6] are expensive for large-scale
point-clouds. Therefore, we introduce a GPU-based robust estimate for obtaining smoothed points.

In the following Section, we will show an overview of our method. Section 3 presents our edge
detection method. In Section 4, we will explain how to implement GPU-based smoothing based on
robust estimate. Section 5 discusses surface extraction and Section 6 states conclusions.

(a) Noisy point-cloud. (b) Mixels on a silhouette line. (c) Reflection from an inclined face.

Fig. 1: Causes of outliers.

2 OVERVIEW

Fig. 2 shows an overview of our surface reconstruction method. First, we extract sharp edges and
silhouette lines from raw scanned data. Time-of-flight and phase-based laser scanners output
reflectance values at each direction of laser beams as well as coordinates. Therefore, we can generate a
brightness image and a distance image using a point-cloud (Fig.2 (a)). While distance images are
suitable for extracting feature points on silhouette lines, brightness images can be used to extract ones
on sharp edges. We apply the Laplacian filter for distance images and Canny edge detection for
brightness images. We combine feature points of the two images to detect continuous line segments
(Fig.2 (b)). Line segments are candidates of sharp edges and silhouette lines. They are used to obtain
candidate regions of primitive surfaces.
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(a) Reflectance image and feature points. (b) Detection of feature segments.

(c) Noisy point-cloud. (d) Smoothing with GPU.

(e) Candidate regions of primitive surfaces. (f) Detection of primitive surfaces.
Fig. 2: A process overview.

Point-clouds captured by mid/long-range laser scanners are very noisy, as shown in Fig. 2(c). Although
the region-growing method is useful to efficiently extract regions of primitive surfaces, it may fails to
grow regions on very noisy data. In our previous work [5], we proposed a robust smoothing method
based on moving robust estimates. This method is robust to outliers, but it is very time-consuming. To
improve efficiency, we introduce a GPU-based robust estimate smoothing (Fig. 2(c, d)).

Primitive surfaces are detected using feature segments and a smoothed point-cloud. In our method,
the region-growing method is only applied to regions between two feature segments (Fig. 2(e)). If a
region successfully grows to a certain size, it is stored as a primitive surface. Primitive surfaces are
converted to bounded faces using feature segments and grown regions (Fig. 2(f)).
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3 ROBUST EDGE DETECTION METHOD

3.1 Generation of Reflectance Image and Distance Image

The direction of a laser beam is controlled by the azimuth angle  and the zenith angle  , as shown
in Fig. 3(a). In principle, the coordinate of a point is calculated by the distance r and the direction
( , )  . Coordinate ( , , )x y z can be mapped on 2 dimensional space ( , )  , as shown in Fig. 3(b). We call
this rectangular image as a Mercator image. A Mercator image consists of 30M~50M pixels according
to the number of points.

Fig. 3: Laser scanner and reflectance image: (a) Laser scanner, (b) 2D image by the azimuth and zenith
angles.

Fig. 4: Laser scanner and reflectance image: (a) Brightness image, (b) Distance image.

Fig. 5: Feature points: (a) Canny edge detection to brightness image, (b) Laplacian filtering to distance
image.

When we set a reflectance value on each pixel of a Mercator image, we can generate a brightness image,
as shown in Fig. 4(a). When we set a distance value instead, we can obtain a distance image. In Fig. 4(b),



Computer-Aided Design & Applications, 8(4), 2011, 603-616
© 2011 CAD Solutions, LLC, http://www.cadanda.com

607

nearer points in the distance image are displayed more brightly. When multiple scanned datasets are
obtained and registered, their brightness image and distance image are maintained as well as
transformation matrices.

3.2 Extraction of Feature Points

We extract feature points from distance and brightness images. Since distances change
discontinuously on silhouette lines, feature points on silhouette lines can be extracted by applying
differential filters, as shown in Fig. 6(b). Since brightness values discontinuously change on sharp
edges, we also apply differential filters to detect internal sharp edges, as shown in Fig. 6(c).

Various types of filters have been proposed in the field of image processing [2]. We require filters
that can robustly extract only feature points on sharp edges and silhouette lines. We investigated
several image filters for distance images and brightness images.

For distance images, we compared results of the depth check, the Sobel filters, and the Laplacian
filter. The depth check extracts feature points that have very different depth values at adjacent points.
The Laplacian filter is defined by the mask of Fig. 7(a). The Sobel filters are defined by the two masks
in Fig. 7(b), and the output is calculated as the root mean square of results of the two masks. In the
both types of filters, feature points are extracted when the output values are more than certain
thresholds. In our experiments, the Laplacian filter output the best feature points, because it tended to
extract fewer points on inclined surfaces. In this paper, we use the Laplacian filter to extract silhouette
lines.

For brightness images, we compared the Sobel filters, the Laplacian filter, and the Canny edge
detection [2]. In our experiments, the Canny edge detection output the best feature points. In the
implementation of this method, we used only 8 neighbors in hysteresis thresholding to efficiently
process large-scale data. Fig. 5 shows feature points extracted from distance and brightness images.

3.3 Detection of Sharp Edges and Silhouette Lines

Feature points in a distance image and a reflectance image are merged and adjacent feature points are
connected to form continuous lines. When the number of points of a continuous line exceeds a
threshold, the line is registered as a feature line.

Fig. 6: Types of feature points: (a) Brightness image, (b) Silhouette lines, (c) Internal edges.

Fig. 7: Filters for image: (a) Laplacian filter, (b) Sobel filters.
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Fig. 8 Conversion from a Mercator image to a perspective image: (a) Feature lines on a Mercator image,
(b) Feature segments on a perspective image.

However, straight lines are distorted on the Mercator image, as shown in Fig. 8(a), although the
Mercator image is useful for representing all points in a single image. Since it is important to detect
straight lines for extracting rectangular faces and ruled surfaces, we convert the Mercator image to
perspective images, in which straight lines in 3D space are always mapped to straight 2D lines, as
shown in Fig. 8(b). Fig. 9 shows the relationship between a Mercator image and a perspective image.
Although ( , )i j on the perspective image and ( , )  on the Mercator image can be mutually converted, a

perspective image can cover a limited range of the Mercator image. Therefore, we cluster nearby
feature lines and project them on the same perspective screen. The size of a screen is determined by
the range of each group. When a feature line is too large to draw in a single screen, it is subdivided
into appropriate sizes of lines.

For detecting straight lines on each perspective image, we first select seed points that fit to a
straight line, and then extend the line by adding adjacent feature points. We call a detected line as a
feature segment. Fig. 10 shows examples of feature segments.

Fig. 9: Projection on perspective screens. Fig. 10: Feature segments.

3.4 Detection of Pairs of Edges

Boundary edges of planar faces and silhouette lines of ruled surfaces appear as pairs of straight lines.
We detect such pairs in feature segments. Suppose two lines 1 2p p and 1 2q q . We project end points of

each line to the other line, as shown in Fig. 11. If at least one of the projected points rides on the lines,
the two lines are regarded as pair edges.

When pair edges are almost parallel, they can be a candidate of silhouette lines of a cylinder or
boundary edges of a rectangle face (Fig. 12). Then the region between the pair edges is checked
whether it fits to a plane or a cylinder. If pair edges are incorrectly selected, as shown in Fig. 12(b), the
pair is discarded because no surfaces are fitted to the region. Elliptical lines are required to obtain
candidate regions of other surface types, but the current implementation supports rectangle faces and
cylinders that can be estimated by straight lines.
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Fig. 11: Selection of a pair of lines. Fig. 12: Candidates of primitive surfaces:
(a) Correct candidate region, (b) False candidate region.

4 SMOOTHING OF POINT-CLOUDS WITH GPU

4.1 Smoothing by Robust Estimate

When a point-cloud is very noisy, it is difficult to robustly calculate surface equations. Therefore, we
smooth a point-cloud before calculating surface equations. In our previous work [5], we proposed a
method for generating smoothed mesh models from very noisy and large-scale point clouds. In this
work we introduced a robust smoothing operator based on the Lorentzian estimate. Since this
operator requires nonlinear optimizations, it takes a lot of computation time when the operator is
applied to large-scale point clouds.

In recent years, the performance of GPUs has significantly improved, and GPGPU (general-purpose
computing on graphics processing units) has become common. In this section, we introduce a GPU-
based smoothing method and accelerate the moving robust estimate for smoothing.

Our smoothing method is based on the robust estimate. In the first step of this method,

referenced plane H is fitted to the neighborhoods of point
i

p (Fig. 13(a)). Neighbor points are

projected on the referenced plane and represented as a height field {( , , )}i i iu v z . Then a quadratic

surface ( , )z S u v is fitted to the neighborhoods by calculating:
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where   1ka k M  a denotes parameters of a quadric surface; M is the number of parameters; iN

is an index set of neighbor points;  is the standard deviation; ic is the referenced point;  is a

monotonically decreasing function. Finally, ip is projected to the quadric surface and is moved

to   , , ,i i i i ip u v S u v , as shown in Fig. 13(b).

Fig. 13: Smoothing by fitting: (a) Referenced plane H , (b) Quadric surface S .

4.2 GPU and CUDA

We implement this smoothing method on a GPU. Before we describe our method, we will briefly
explain features of GPUs and CUDA.
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In this paper, we use NVIDIA’s GPU and CUDA [7]. A GPU has many processing units and can
switch threads very quickly. Three types of management units are used in a GPU to control threads in
parallelized calculations. Fig. 14 shows the three types of units. A thread is a minimum management
unit and each thread has a unique index. A block is a set of threads and can manage them in a three-
dimensional array. Threads in the same block can be synchronized. A grid has blocks in a two-
dimensional array. Each grid can be called by a CPU as a kernel function.

Fig. 15 shows a simplified image of GPU architecture. A streaming processor (SP) is a minimum
unit of processing and it controls calculations in a thread. A streaming multi processor (SM) has eight
SPs and a shared memory, which can be accessed as fast as register and shared by SPs in the same SM.
A block is controlled in each SM. Threads in the block can be synchronized and share data on the
shared memory. The device memory has a very large capacity compared to shared memory and it can
be accessed by all SPs in a GPU. However, the access to device memory is much slower than the access
to shared memory and register. For improving efficiency, it is very important to allocate frequently-
used data to shared memory or registers.

Fig. 14: Three types of units on GPU.

Fig 15: GPU architecture.

4.3 Allocation of GPU for Smoothing

Our GPU-based smoothing method is based on the robust estimate. Since points in a point-cloud are
regularly aligned on the Mercator image as shown in Fig. 3(b), we can obtain neighbor points using
adjacency relationships on the Mercator image.

This smoothing method can be independently applied to each point. Point ip is smoothed using

many neighbor points. In our experiments, 100~200 neighbor points were required to produce good
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smoothing results. Fig. 16 shows how to calculate a smoothed point. In this figure, pixels represent
points and gray pixels show neighbor points of ip .

In our implementation, a block is assigned to the calculation of a smoothed point, and a thread is
assigned to calculations related for each neighbor point. In each thread, the same calculation process
is repeated in parallel. For reducing latency in calculation, it is important to store frequently-accessed
data on shared memory. We allocate coordinate values of neighbor points to shared memory.

Fig.16: Smoothing of point ip on GPU.

4.4 Smoothing with GPU

Our smoothing method consists of the following processes:

 retrieving neighboring points of
i

p ;

 eliminating invalid points and outliers;

 calculating referenced plane H and quadratic surface S ;

 projecting ip onto the quadratic surface S .

We implement these processes on a GPU.

Fig. 17 shows a flow of our smoothing method on a GPU.

In the step1, the number of blocks and threads are determined. As shown in Fig. 16, a block
calculates a smoothed point, and a thread executes calculations for each neighbor point. We set the
number of blocks as the one of points to be smoothed in a kernel function, and the number of threads
as the one of neighbor points in each block.

In the step2, neighbor points are collected using adjacency relationships on a Mercator image, and
we store the coordinates of neighbor points on shared memory. Coordinates are frequently accessed
and shared by all threads in a block. Residual values for surface fitting are also allocated on shared
memory.

In the step3, invalid points and outliers are eliminated from neighbor points, because undefined
pixels and extremely far points are included in a Mercator image. When the number of neighbors is
less than a threshold, the point is discarded as an outlier.

In the step4, data on shared memory are reordered, as shown in Fig. 18. In this figure, blue cells
represent valid neighbors and red ones invalid. Since the combination of valid and invalid neighbor
points makes many branches of instructions in threads, valid neighbors are moved to the top of
shared memory for reducing braches of instructions.
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Fig. 17: Process flow of smoothing on a GPU.

Fig. 18: Reorder neighbor points in shared memory.

In the step5, a referenced plane and a quadric surface are calculated using neighbor points. They are
calculated by the non-linear optimization [5]. In this process, liner equations AX B are frequently
solved for obtaining initial values and updating solutions in the Gauss-Newton algorithm. Fig. 19
shows how to calculate elements in matrix A and B . Each thread calculates a value related to a
neighbor point, and then threads are used to calculate the sum of values. These calculations are
synchronized using shared memory. Finally, thread1 solves AX B , as shown in Fig. 20.

In the step6, ip is projected on the quadric surface and the smoothed point of ip is obtained. The

result is transferred to a CPU.

Fig. 19: Calculation of the sum of values on shared memory.
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Fig. 20: Calculation of AX B .

4.5 Experimental Results

Fig. 21 shows a noisy point-cloud. This data can be converted to 601×301 pixels on a Mercator image.

Mesh models can be easily generated using the adjacency relationships on the Mercator image. Fig. 22
shows three mesh models generated using raw and smoothed points. Tab. 1 shows the execution time
of smoothing on a CPU and a GPU. The result shows that our GPU-based method can significantly
reduce the executive time of smoothing.

Fig. 21: Noisy point-cloud: (a) Brightness image, (b) Zoom-up of noisy mesh.

CPU (Core2 2.66GHz) GPU (GTX285)

Data1 (601×301) 54 sec. 3.8 sec.

Data2 (579×285) 52 sec. 3.2 sec.

Data3 (538×261) 44 sec. 2.7 sec.

Tab. 1: Timing of smoothing operations.

5 CALCULATION OF SURFACE PRIMITIVES

The extraction of primitive surfaces has been intensively studied so far. Lukacs, et al. [4] proposed
non-linear fitting methods for primitive surfaces. For extremely large-scale point-clouds, we proposed
the grid mesh format to apply the region-growing method in an out-of-core manner [6]. Schnabel, et al.
[8] proposed a RANSAC-based approach for extracting primitive surfaces from noisy point-clouds.
While RANSAC-based methods are more robust than the region-growing, they require a large amount
of trials for calculating with a high degree of accuracy.

We use a grid mesh format [6] to manipulate a large-scale point-cloud. In this format, points in a
point-cloud are projected on a Mercator image and they are subdivided into rectangle grids (Fig. 23).
Each grid has coordinates and adjacency relationships of vertices. We maintain a point-cloud on a hard
disk, and load only a necessary region in the main memory while processing.
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(a) Data1 Original mesh. (b) Data1 Smoothed mesh.

(c) Data2 Original mesh. (d) Data2 Smoothed mesh.

(e) Data3 Original mesh. (f) Data3 Smoothed mesh.

Fig. 22: Result of smoothing.

We calculate surface equations by using the region growing method. In the region growing method, a
seed region is selected first, and then the surface region is detected by growing the initial seed region.
We select seed regions using pair edges, as shown in Fig. 24(a). The surface type and initial values of a
surface equation are estimated using the RANSAC method. Although the RANSAC method is
computationally expensive, it is applied only to small candidate regions in our method. In addition,
the number of trials can be significantly reduced in our method, because the result is only used as
seed points of the region-growing method and does not have to be calculated in high precision.

When surfaces with the same equation are calculated from different candidate regions, the surface
that has the largest number of points is selected. Fig. 24(c) shows an example of detected rectangles
and cylinders.
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Fig. 23: Grid mesh format.

(a) Detected edge-pairs. (b) Seed regions.

(c) Rectangles and cylinders.

Fig. 24: Primitive surfaces detected from edge-pairs.

6 CONCLUSION

In this paper, we proposed a method for extracting sharp edges and silhouette lines using a brightness
image and a distance image, which were generated from a point-cloud. In our method, sharp edges and
silhouette lines can be robustly detected even when their points are outliers. We showed how to
estimate candidate regions of primitive surfaces by using feature segments. We also proposed a GPU-
based smoothing method for efficiently detecting primitive surfaces. Experimental results of
smoothing showed our GPU-based method was much faster than CPU-based calculation. Finally, we
showed that primitive surfaces could be extracted using feature segments and smoothed points.

In the future works, we would like to extend our edge detection method, because our method is
limited to straight lines in the current implementation. Other curved lines are required for silhouette
lines of spheres and tori. We also would like to investigate image processing methods to detect feature
points more robustly.
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