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ABSTRACT 
 

The paper represents the first effort that extends the free-form geometric modeling 
technique to conjugation design between surfaces and tooth profile synthesis in 
gearing. Traditionally, conjugate profiles in gearing are limited to specific curves or 
surfaces such as involutes that are known satisfying the conjugation condition. The 
difficulty of a conjugation design lies on the coupling of two conjugate surfaces. This 
paper introduces spline conjugation and thus offers unlimited freedom and flexibility 
to the design of conjugate tooth profiles that allows one to pursue profile 
optimization for the best performance. A general model is introduced to describe the 
relationship between conjugate curves via contact path and sufficient conditions are 
obtained to justify non-undercutting. The use of splines in contact path offers the 
versatility of free-form surface modeling to conjugation design while maintains the 
traditional involutes as a special case. The paper also demonstrates how control points 
of B-splines can be used to simplify the design validation process. In gearing, the 
proposed method may effectively liberates tooth profiles from the traditional 
conjugate curves and open up conjugation design to pursue optimal conjugation, 
which is especially important for increasing power density in large gears.  

 
Keywords: conjugation, B-splines, gear, CAD. 
DOI: 10.3722/cadaps.2012.13-26 

1 INTRODUCTION 

Conjugation is a key consideration in contact mechanics for mechanical devices such as gears and 
pumps. These mechanisms involve a pair of contact surfaces attached to two coupled rigid bodies, 
which move against each other along contact traces (Fig. 1). Conjugation design mainly refers to the 
design of a pair of contact surfaces. A good conjugation may lead to smooth motion, high load 
endurance, high efficiency, and low transmission errors.  

In gearing, the conjugate surfaces are the tooth profiles. The planar conjugation can be modeled 
by curves in the rotation planes. Currently these conjugate curves are selected or modeled by a small 
pool of traditional curves and their combinations [6],[9],[14],[14]. Among them, involute profiles are 
the most popular and the industry standard [2],[5]. However, involute is chosen for manufacturability 
and exchangeability rather than performance—contact stress, bending stress, transmission error, 
efficiency, etc. When high performance is in demand, curves must be modified. Many researches are 
focused on creating new conjugate geometries. Splines could be a powerful tool for conjugation 
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design. But it is very difficult to design free-form spline curves for conjugation because the two 
coupled conjugate curves must satisfy the conjugate condition without any cusp (or undercutting in 
gearing). This paper originally presents a systematic study for conjugation design with splines. The 
idea of a single free-form curve design extends to a pair of coupling curves design. 

Splines are widely used in computer aided design (CAD) and computer aided manufacturing 
(CAM). Bezier, B-spline and NURBS are the most popular and standard in industry [11]. These splines 
have been applied in mechanisms including centrodes of non-circular gears and pumps as well as cam 
motion programs [7],[10],[12]. The design flexibility and freedoms can be enhanced dramatically with 
splines. Theoretically, splines can be used to interpolate and approximate any geometric shapes. 
Conjugation design is a kind of coupled surfaces design. The issue with conjugation design is how to 
generate two surfaces with desirable contact properties. If a proper model can be established for 
conjugation design, splines may offer the freedom and flexibility in conjugation design for 
performance. Because of the importance of gears in machinery, the application of this paper is focused 
on gear conjugation design. The results can be applied to any planar conjugation. Generally, 
conjugation and non-undercutting are the two conditions of a conjugation leading to a smooth 
transmission. 

For two rigid bodies moving relative to each other, a curve on a rigid body corresponds to a 
conjugate curve on the other body. With this concept, one may select a curve and find the matching 
curve. However, this is difficult in conjugation design because of the coupling between curves. In a 
typical situation, a transmission occurs between two moving bodies with a reference frame. The 
contact point of the conjugate curve traces a contact path on the frame and the contact path reflects 
the properties of the contact. Each given contact path corresponds to a pair of conjugate curves. In 
other words, one may design or search for the optimal spline-based contact path and then identify the 
corresponding conjugate curves.  

The paper will offer a brief review on the basic concepts of centrodes and conjugation in gearing 
and presents the conjugation and undercutting equations for conjugation design via contact path. 
Conditions are obtained for general parametric contact path. Splines are used for gear conjugation 
design. Examples showing the use of B-splines in contact path are presented.  

2 CONTACT CURVES, CUTTER PROFILE, AND CONTACT  

 
Fig. 1: Gearing contact: Gears 1 and 2 rotate in opposite directions and the rack-cutter translates to the 
left. 
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For any two rigid bodies moving relative to each other, there exists an instant center at any instant. On 
both bodies, the points at the instant center have zero relative velocity. The locus of the instant center 
on each body is called centrodes. The relative motion between the two bodies is equivalent to the pure 
rolling between their centrodes. At any instant, the centrodes share a common tangent at the instant 
center. In Fig. 1, if gear 1 is fixed, as gear 2 rotates around gear 1, the centrode on gear 2 rolls along 
the centrode on gear 1 without slipping.  

Transmission by rolling contact is made possible by friction and its application is limited to low 
speed and torque. For high speed or high torque transmission, the transmission may be accomplished 
by the contact between conjugate profiles, such as the tooth profiles in Fig. 1. The conjugate profiles 
roll and slide at the contact points. For two rigid bodies moving relative to each other, there are 
infinite number of conjugate profiles, which are capable of transmitting the same motion. The 
centrodes are a special conjugate pair with rolling contact. The paper will offer the theoretical 
foundation for finding a suitable pair of conjugate profiles for a satisfactory performance.  

As mentioned before, for a relative motion between two bodies, one curve may be assumed and its 
conjugate curve on the other body can then be meshed. However, a general relative motion usually 
makes constraints nonlinear and the treatment difficult. Furthermore, splines are not accurate for 
standard involute tooth geometry representation [1]. A different curve must be found for a general 
representation which can include at least the most popular gearing geometry—involute profiles. 

On the fixed frame, the trace of contact points between a pair of conjugate curves is the contact 
path. Each pair of conjugate curves corresponds to a contact path. For involute contact curves, the 
contact path is a straight line segment [8]. Splines are capable to represent straight lines accurately 
[11]. However, the relationship between the contact path and each of the corresponding conjugate 
curves is not a simple conjugation.  

In planar gearing, a rack cutter may be used to cut the conjugate spur gear tooth profiles. With the 
rack-cutter taken into consideration, a gearing system involves four rigid bodies: the two rotating 
bodies with the conjugate profiles, the rack-cutter, and the fixed frame. The rack-cutter is conjugate to 
each of the gear conjugate profiles and has a straight-line centrode against each gear. The 
transformation between a cutter and the contact path or fixed frame is a simple translation. Therefore, 
for a given contact path, the contact gear tooth profiles can be obtained through an intermediate 
(fictitious) rack-cutter profile and the conjugation between the desired contact profiles can be 
guaranteed. This would effectively eliminate the difficulty of deriving the constraint conditions for 
contact path and the conjugate curves can be easily obtained from a given contact path.  

3 CONJUGATION AND UNDERCUTTING 

To have a smooth transmission through a pair of contact curves, the contact curves must satisfy the 
conjugation condition and contain no undercutting.  

Consider the relative motion between a gear ( ) and the rack-cutter ( ) (Fig. 2). The coordinate 

systems  called the fixed system and  called the moving system are attached to  and 

respectively. For convenience, is assumed stationary. In the motion of with respect to , let  

in be the fixed centrode and  in  the moving centrode. The motion of with respect to is 

equivalent to the rolling motion of  against . Let  be the instant center, i.e. the contact point of 

 and at the instant. A coordinate system  called instant system (or Ferret frame) is defined 

such that the origin is at , the contact point of  and , and the -axis in the tangent direction of 

, where is the common rolling arc length of the centrodes. Assume and  are coincident 

initially, i.e. , at = 0. The transformation from a point 
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In the following discussion, let the subscript of a variable refer to the attached body while the 
superscript the reference system. When the attached system and the referenced system are the same, 

the superscript is ignored. For example, the position vector of a point is referred to a point attached 

to but referenced in system . 

 
Fig. 2: Fixed system , moving system and instant system (Frenet system) . The straight line is the 

moving centrode of the rack-cutter, while the long curve is the fixed centrode of a gear. The curves 

are schematically drawn at the instant. 

If a curve in is conjugate to in , then the contact points trace a contact path  in . 

There will be rolling and sliding between the contact curves and , and the relationship between 

them is governed by the conjugate condition, i.e. the conjugated contact curves have a common 

normal at the contact point [2]. The conjugate condition can be expressed as , where the 
superscript . The expression can be re-written as 
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This is the equation of conjugation (also called equation of meshing). The relative velocity at a 
contact point can be expressed by 
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where . In ,
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dψ , where is the relative angular displacement between

and (Fig. 2). Since centrode is on the tangent line of  at any instant, there is a curvature 

relationship of 

   

dψ
dsc

= κc , where 
  
κc  is the curvature of the fixed centrode .  

A cusp point is a singular point on a curve, where the curvature is infinity. At a cusp, the intended 
contact between surfaces may begin to occur inside the tooth profile. In other words, undercutting will 
occur and a portion of tooth surface may be cut off. Therefore, the intended contact becomes 

impossible. If a cusp occurs on curve , then with Eqn. (3.2), in system , , or , 

which yields the equation of cusp (or equation of undercutting), 
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To avoid undercutting, a curve must be truncated at a cusp point or connected to another curve. 
An undercutting-free tooth profile or curve must be free of cusp.  

Using the transformation between and , equation of conjugation and equation of cusp can be 

expressed in . From Eqn. (3.1), the equation of conjugation is 

  (3.4) 

Equation (3.3) yields  

 
    
−yIdψ+dxI +dsc = 0  (3.5) 

 
    
xIdψ+dyI = 0  (3.6) 

The common arc length of the centrodes  and can be used as a general motion parameter. 

The equations above give relationship between and the referenced contact path  . On the other 

hand, can be naturally parameterized by the (arc) length parameter  according to differential 

geometry. To use  as a parameter for  , there must exist , or in another word

   

dsc

dsI

≠ 0 .  

When , Eqn. (3.4) becomes  , which is a circular arc segment 

centered at the origin in system . The corresponding sections of tooth and cutter profiles are also 

circular arcs. There is no relative motion at the instant, and thus 
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= κc
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= 0 . Equations of cusp 

degenerate to and , and a cusp point exists on the contact path. In this situation, 

undercutting can be eliminated by avoiding cusps on the contact path. The case of  indicates a 

non-undercutting situation for regular contact path curves containing no cusp (further discussion in 
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section 4). When

   

dsc

dsI

≠ 0 , can be used to parameterize other variables in all expressions and 

calculations.  

Being parameterized by , the equation of conjugation can be expressed as  

  (3.7)  

and the equations of cusp become 
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The two equations of cusp, (3.8) and (3.9), are usually correlated. Hence only one of them is 

needed to express the undercutting-free condition. If Eqn. (3.8) holds, then multiplying Eqn. (3.8) by  

and subtracting Eqn. (3.7) from it yields 
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xI ≠ 0 . In other words, if

   
yI ≠ 0 and

   
xI ≠ 0 , either Eqn. (3.8) or Eqn. (3.9) is adequate to express the equation of cusp. . 

The two equations of cusp are the same at the origin of  too. Assume contact point is denoted 

by a polar form of 
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with respect to  where  θ  is the pressure angle s.t.   sin θ cos θ ≠ 0 . 

The Eqn. (3.7) can be rewritten as  

 

    

1+
dxI
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+ tan θ
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in terms of pressure angle . Checking equations of cusp Eqn. (3.8) and Eqn. (3.9) at the origin, there 

are  and , which are equivalent to each other under Eqn. (3.10). The above discussion 

is summarized below.  

In system , equations of cusp Eqn. (3.8) and Eqn. (3.9) are equivalent when and , or 

when and . The following theorem can thus be concluded. 

Theorem 1: For any contact path, if either Eqn. (3.8) or Eqn. (3.9) does not hold, the corresponding 
conjugate curves are undercutting-free.  

The theorem gives the sufficient condition for non-undercutting. The following sections discuss 
the use of parametric curves in conjugation design.  

4 PARAMETRIC CONTACT PATH 

Parametric curves and surfaces are widely used in CAD/CAM. Spline curves are special parametric 
curves. Spline curves can offer flexibility and freedom to the design of conjugate curves to enhance 
performance and contact quality.  
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A conjugate curve on a body may contain several sections. A very common and important 
application of conjugation design is in gearing. On a gear, the tooth profile usually has two sections 

(Fig. 3). In system , the two sections correspond to a region in quadrants 1 and 3, i.e. and the 

origin, and the other region in quadrants 2 and 4, i.e. and the origin (Fig. 3). The straight 

segment or is excluded from the conjugation design due to practicality concern. In 

another word, pressure angle satisfies   sin θ cos θ ≠ 0 . To avoid undercutting, a parametric contact path 

in  cannot have a cusp unless the cusp is at the end of the path. Cusp or undercutting will be 

detected in an open region where the definition of differentiation is regular. 

 The contact path (or curve) in can be expressed in parametric form by

    

 r
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xI u( )
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⎜⎜⎜⎜⎜⎜⎜
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, where

   
u ∈ [u0,u1 ] . Cusp detection is carried out in an open interval of

   
u ∈ (u0,u1) . 

 

 
 

Fig. 3: Two sides of an involute tooth profile and their corresponding contact paths.  

Let be a regular curve, i.e. there is no such that or 
   
u ∈ (u0,u1) . Under this 

assumption, the special situation of  (i.e. ) will not cause undercutting according to 

the discussion in the previous section. This case can be integrated into the general parametric curve 

design or considered as a trivial circular section. From the standpoint of conjugation, means 

that there are more than one contact point on the contact profile or contact path at the same time. To 

simplify design validation, one can check sections with 
   

dsc

du
≠ 0  , s.t. 

   
sc

' ≠ 0 , which are one-to-one 

correspondence contact sections. The pattern of more than one contact point can always be resolved 
by using multiple connected one-to-one contact sections.  

 and correspond to different directions of contact pattern. If contact position on curve 

 is continuous in the ascending direction, s.t. ( is the length parameter of ), then 

, and thus . On the other hand,  leads to .    
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In system , the equation of conjugation, Eqn. (3.7), becomes 

  (4.1) 

 Equations (3.8) and (3.9) are equivalent. If Eqn. (3.9) is used, the equation of cusp becomes 

 
    
xIκcsc

' = −yI
'  (4.2) 

The above two equations are the equation of conjugation and equation of cusp with a parametric 
contact path representation.  

5 B-SPLINE AND GEAR TOOTH PROFILES 

In planar gearing, a straight moving centrode can be viewed as a virtual rack-cutter and the fixed 
centrode represents one of the mated gears (Fig. 1). Thus, a gearing system includes two mated gears 
with two gear centrodes and one rack-cutter with a straight-line centrode. As the three centrodes roll 
against each other, the tooth profiles on the gears and rack-cutter roll and slide along a common 
contact path. In other words, these three profiles are conjugate to one another. Hence, the equation of 
conjugation between the conjugate curves on any two of the three moving bodies is the same.  

Let the gear transmission ratio be

    

i12 = −
dφ1
dφ2

, where 
  
φ1  and 

  
φ2  are the rotation angles of the mated 

gears (counterclockwise is assumed as the positive direction). In the relative motion with respect to the 
rack-cutter, each gear has its own equation of cusp. Hence, there are two equations for undercutting 
condition. The two rotation angles follow a predesigned function of time by the defined angular 

velocity. Assume

    

dt
dφ1

> 0
 

and without loss of generality, let 

    

dt
dφ1

= 1  or
    
t = φ1 hold constantly. For gear 1, 

 and 

    

R1 =
1
κc1

 is the instantaneous radius of curvature of the centrode in gear 1, which 

cannot be zero in practice. The rolling distance of the centrode is

   

sc =
t0

t

∫R1 x( )dx . Furthermore, can be 

parameterized by s.t.

    

t ' =
dt
du

=
dt
dsc

dsc

du
=

1

R1 t( )
sc

' = κc1sc
' .  

For most practices in gearing, contact gear teeth are chosen in a domain restricted between the 

equations of cusp. For example, should be between and for contact path curve. For gears in 

Fig. 1, assume for one-to-one correspondence contact, and then ,
   
yI

' ≤ xI t
' ≤−i12yI

' .  

The specific equation of conjugation in is  

 

   

xI t
' =

1

R1 t( )
−xI

' xI −yI
' yI( )  (5.1) 

There are two selected equations of cusp for contact path, 
   
xI t

' ≠ yI
' and

   
xI t

' ≠ −i12yI
' corresponding 

to gear 1 and gear 2 respectively. To avoid undercutting, must stay away from and
   
−i12yI

' .  

The general conditions for a valid contact curve are related to parameter . To test these 
conditions and hence the validity of the synthesized contact curves, one may search for the extreme 
values whenever undercutting occurs. Due to the complexity of the undercutting conditions, a 
nonlinear method, such as Newton-Raphson [13], is necessary for finding the extreme values. The 
existence of undercutting must be checked whenever the designed curve changes.  
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Generally, nonlinear optimization is difficult to implement in conjugation design. Even with a 
simple cusp condition, the convexity of optimization about is not guaranteed. Furthermore, 
nonlinear optimization is time consuming for interactive tooth profile design even for simple B-
splines. The discussion below offers a simple solution for validation of undercutting.  

Since the tangent of a B-spline is a lower order B-spline, the boundaries of the tangent of a 
designed B-spline contact path can be found. These conditions are possible due to the control polygon 
property of B-splines—a B-spine curve is inside the convex hull of its control points. Given knot vector

, a B-spline curve can be represented by

    

r


u( ) =
i=0

n

∑PiNi,p(u) , , where are control 

points and are basis functions of order [11]. The B-splines used in this paper interpolate end 

control points, with  and . The tangent function is

    

dr


u( )
du

=
i=0

n−1

∑QiNi+1,p−1(u) , where is a tangent control point. If the boundaries of

are found, then keeping inside the boundaries can guarantee that  is bounded properly.  

 
(a) Involute contact path 

 
(b) B-spline contact path	
  

Fig. 4: Involute contact path: (a) Contact path between the addendum circles of gears 1 and 2. (b) B-
spline contact path and the corresponding gear tooth profiles. Gear teeth are in initial contact position. 
The straight segments of contact path lead to involute profiles. 
 

The expressions of tangent control points are one order lower than that of the B-spline curve 

and lead to a linear function of control points. It is very efficient to test the difference functions of 
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control points. If there are control points, then there are tangent control points to check. The 
rest of this section is focused on how to find the boundaries of a tangent function.  

 For a one-to-one correspondence contact pattern, time parameter satisfies either or , 
depending on the rotation direction of gears and the parameterization directions of the tooth profiles. 

Without loss of generality, is assumed and only one side of a tooth is considered. The positions 

of gears are shown in Fig. 1. The section with 
   
yI

' ≤ xI t
' ≤−i12yI

'  is considered for a regular design. The 

considered curves here are the contact path and the tooth curves on gear 1 and gear 2. To use B-
splines in design, control points are added to the contact path (Fig. 4).  

Simple results can be obtained for a B-spline contact path in if manipulated properly. Let the 

boundaries of and be the same as those of involute gears s.t.
  
xinf ≤ xI ≤ xsup ,

  
yinf ≤ yI ≤ ysup . To 

make
   
yI

' ≤−i12yI
' reasonable, another constraint is added. The following discusses how to bound 

derivatives and . 

Let be uniform about parameter such that is a negative constant. This is possible with B-

splines if  direction is uniformly parameterized. When
   
0 ≤ xI ≤ xsup , then 

   
0 ≤ xI t

' ≤−i12yI
' , which 

yields, from Eqn. (5.1), 

   

−
yI

' ysup − i12R1( )
xsup

≤ xI
' ≤ 0 . Likewise, when

   
xinf ≤ xI ≤ 0 , then

   
yI

' ≤ xI t
' ≤ 0  , which 

yields, from Eqn. (5.1), 

   

−
yI

' yinf + R1( )
xinf

≤ xI
' ≤ 0 . Notice that  and because a gear tooth 

curve cannot reach gear rotation center. The above results can be summarized as  
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,−
yI

' yinf + R1( )
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⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞
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Similarly, let be a constant that could be positive or negative. In the first quadrant of , i.e.

   
0 ≤ xI ≤ xsup and 

   
0 ≤ y ≤ ysup , there is 
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' ≤−i12yI
' , which yields, from Eqn. (5.1),
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⎭
⎪⎪⎪

. Likewise, in the third quadrant of , i.e.
   
xinf ≤ xI ≤ 0 ,

   
yinf ≤ yI ≤ 0 , 

there is 
   
yI

' ≤ xI t
' ≤ 0 , which yields, from Eqn. (5.1), 

   

yI
' ≤ min −

xI
' xinf

yinf + R1( )
,−

xI
' xinf

yinf

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

. In summary,  

 

   

yI
' ≤ min −

xI
' xsup

ysup − i12R1

,−
xI

' xinf

yinf + R1

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
, xI

' ≤ 0

yI
' ≤ min −

xI
' xsup

ysup

,−
xI

' xinf

yinf

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
, xI

' > 0

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪

 (5.3) 

Once the boundaries of the derivatives and are derived, they can be used to restrict tangent 

control points of B-spline contact path to the discussion above.  
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6 EXAMPLES 

Gear tooth profile design and modification with B-spline contact path is illustrated in the following 
four examples. Initially involute profiles will be used and the gear parameters and contact path can be 
selected or determined in the conventional way [8]. B-splines are then used to represent and modify 
contact path. 

With involute profiles, the contact path is straight (Fig. 4). The following gear parameters are 

selected: diametral pitch , pressure angle , addendum , deddendum , 

gear ratio .  

  

(a)	
  

  

(b)	
  

  

(c)	
  

  
(d)	
  

Fig 5: Control points and contact paths of four feasible designs.  



 

Computer-Aided Design & Applications, 9(1), 2012, 13-26 
© 2012 CAD Solutions, LLC, http://www.cadanda.com 

 

24 

To obtain a uniform parameterization, one can interpolate a straight line segment with a one-
degree B-spline first. Then elevate the degree to what is needed (three is used here). Insert all the 
knots. The resulted B-spline should be uniformly parameterized. Once the contact path is given, Eqn. 
(5.1) is solved for time , and then tooth curves can be derived from kinematic relations between 

moving centrodes [8]. Since deddendum is greater than addendum, the gap between gear contact area 
and deddendum circle is kept the same as the initial involute curve. Only contact sections are 
modified.  

 

 
 

(a)  

  
(b) 

Fig. 6: Control points and contact path leading to undercutting. (a) Cusps are at the top of gear teeth. (b) 
Cusps are in the middle of the tooth curves of gear 1.  

Each contact path has three sections. One lies in quadrant 1; one small section passes through the 
origin; the third section lies in quadrant 3. These three sections form a general gear tooth contact 
path. The origin works as a bridge connecting sections in quadrants 1 and 3 to form a complete design 
domain. In the following control point changing process, section 2 of the contact path will remain a 
short straight segment so that the idea of a single quadrant contact path design can be seen clearly 
from these general examples. 

The left figures of Fig. 5 and Fig. 6 show contact path control polygon, contact path curve, and the 
corresponding tooth profiles on gears 1 and 2 (see Fig. 1 and Fig. 4 for detail). The right figures are the 
corresponding gears. Gear 1 is placed under gear 2 in each figure. Gear tooth profile design is changed 
by manipulating control points of the contact path.  

Four sets of feasible tooth profiles with the corresponding contact paths are shown in Fig. 5. 

Figures (5a) and (5b) satisfy the inequality Eqn. (5.2) with a constant
 
while figures (5c) and (5d) 

satisfy the inequality Eqn. (5.3) with and a constant . All gears contain non-involute tooth 

profiles. One may easily observe that control points of the contact path can be moved freely within the 
design constraints. Hence the proposed method offers a free-form approach that is ideal for 
synthesizing tooth profiles with the optimal contact properties. 

Fig 6 shows two instances with undercutting. These gears cause problems such as interference and 
tip contact. 
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7 CONCLUSION 

The paper extends the application of splines from single curve design to the design of conjugate 
curves. The equation of cusp for undercutting avoidance and general conditions relating a parametric 
contact path to a pair of conjugate curves are presented. Corresponding to a selected contact path, a 
pair of conjugate curves can be identified. It demonstrates how splines can be used to manipulate 
contact path leading to the desired conjugate curves. The method offers unlimited flexibility and 
freedom to the design of conjugate surfaces as splines to single surfaces. The use of B-splines for 
conjugation design is demonstrated in the examples, in which the initial contact path comes from 
involute conjugation. Other initial options directly associated to design parameters such as diametral 
pitch, contact ratios, etc. may also be used.  

In gearing, the proposed free-form conjugation could essentially change the practice of conjugate 
tooth profile design. The proposed method includes the traditional involutes. It effectively liberates 
the tooth profile design. Conjugate curves are no longer limited to few traditional curves with specific 
conjugate geometric characteristics. Desired conjugate curves can be synthesized and manipulated 
from an unlimited pool of splines for the best performance. This new design freedom is especially 
important for improving the power density in large gears with heavy machinery—size reduced for the 
same work load. 
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