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ABSTRACT 

Bone is a highly heterogeneous object. Its composition and structure both vary and 
depends upon skeletal site, physiological function and age. The goal of this study is to 
investigate the importance of including material anisotropy in B-Spline based 
heterogeneous graded (BSBHG) FE model of proximal femur. Five different BSBHG FE 
models are developed. Out of these five models, four are orthotropic models and one 
is isotropic model. Each model is simulated in simple stance load condition and their 
biomechanical response is evaluated and compared with each other as well as those of 
experimental results given in one of the reference paper for the same specimen in 
simple stance load condition. The Lagrangian graded element approach is used to 
assign inhomogeneous isotropic and orthotropic elastic constants in finite element 
model to improve the performance. Based on the analysis of the two parameters, 
maximum equivalent Von Mises stress and the displacement in ‘z’ direction, 
comparison is achieved. The displacement and Von Mises results have shown that 
there is small difference between one of the orthotropic model and the isotropic 
model while the displacement results of the other two orthotropic models show good 
agreement with the experimental findings. The global strain prediction accuracy for 
orthotropic model has improved over isotropic model: the regression coefficient 
increased from 0.63 to 0.9–0.96. 
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1  INTRODUCTION 

Bone is a complex biological tissue and highly heterogeneous object. Its composition and structure 
both vary and depend upon skeletal site, physiological function and age. Normally, it consists of 
compact, dense, and hard (cortical); and spongy (trabeculae with precise pattern) regions. Over the last 
few years, most of the research has been directed at developing three dimensional finite element (FE) 
models [2], [11-12], [16-17], [24], [28-29], [31] of bony structures like proximal femur. To generate the 
three dimensional FE model of any bio-object, CT scan data is one of the primary source of input data.  It 
incorporates information on geometrical topology and bone density distribution based on the relationship 
between CT numbers and Hounsfield Unit (HU). Furthermore, most of the CT based FE models of bony 
structures have been used to predict the biomechanical response under static and dynamic load conditions, 
to calculate the functional adaption of cortical and cancellous bone and to calculate the fracture risk. 

In general, behavior of subject specific FE model of bio-objects like proximal femur depends on 
accurate geometrical topology and method of assignment of material properties. In   many prior bone FE 
studies, [11], [17], [28] material heterogeneity of bone is represented by several sets of elastic moduli, where 
for each element, modulus is constant within the element, and is computed by power law relation with 
apparent density. Furthermore, in most of these studies bone mechanical properties are assumed to be 
isotropic linear elastic. This may be due to limitation in capturing structural anisotropy of trabecular 
architecture from input CT images [32] and insufficient comprehensive data bank of orthotropic material 
constants of bone [31]. It was widely recognized that the material constants of bone can be better modeled 
as orthotropic than isotropic [15], [23]. 

Also, the works done by Reilly and Burstein [22], Dong and Guo [5] and Iyo et al. [10] indicated that 
cortical bone is anisotropic or rather transversely isotropic with elastic modulus significantly higher in axial 
direction (E

33
) than radial (E

22
) and transverse direction (E

11
). Furthermore, the radial and transverse 

modulus are quiet similar. Doblarè and Garcia [4] and Gómez-Benito et al. [7] have proposed 
continuum damage and fabric tensor theory to incorporate anisotropy in bone remodeling studies. 
Similarly, Taylor et al. [31] has used FE modal analysis to determine global orthotropic material 
constants for whole bone. While Peng et al. [19] have attempted to investigate the effects of 
orthotropic material property assignment over isotropic model under two load conditions, no attempt 
has been seen to compare the effects of different orthotropic relations, proposed in literature, to 
study the biomechanical response of the bone. In our previous study Pise et al. [20], we have presented 
B-spline based heterogeneous graded (BSBHG) FE model of human proximal femur, where the analysis was 
carried out with linear isotropic graded element. The model was tested for biomechanical response in 
simple stance load condition. It was observed that the predicted strain results at different location of the 
model were in good agreement with the experimental findings of Yosibash et al. [37] except at the neck 
inferior, for the same specimen. Similarly some discrepancies were also reported for BSBHG FE 
displacement results with the experimental findings. Therefore, it becomes necessary to study the 
biomechanical behavior of BSBHG model with assigning of different orthotropic material constants to 
validate the model fully. 

The goal of this study is to investigate the effect of including material anisotropy in B-spline based 
heterogeneous graded (BSBHG) FE model of human proximal femur. Five BSBHG FE models are developed. 
Out of these five models one is isotropic and four are orthotropic with different material constant relations 
as available in literature [14], [19], [31]. Each model is simulated in simple stance load condition and their 
biomechanical response is evaluated. The evaluated biomechanical response with isotropic and orthotropic 
material assignments are compared with experimental results given in one of the reference for the same 
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specimen. The methodology for BSBHG FE model generation along with orthotropic material assignments 
are given as follows. 

2  B-SPLINE BASED HETEROGENOUS MODEL FORMULATION 

Heterogeneous modeling is the combination of two processes, namely geometric modeling and 
material modeling. In general, the accuracy of prediction of the mechanical behavior of a 
heterogeneous bio-object like the femur largely depends upon on accurate representation of its 
geometry and material.  Therefore, B-spline tensor product modeling approach [21] is used here to 
create a heterogeneous solid model of proximal femur along with graded element [13], [25] to improve 
the performance of this model. In this modeling strategy, a point p(u, v, w, m) in space is represented 
by four parameters u, v, w and m : u, v and w representing the parametric space and the vector m 
representing the material properties at the point p. The B-spline based hyperpatch model can be as 
follows: 

���, �, ��= � � � ��,�(�)��,�(�)��,�(�)��,�,�

�

���

�

���

�

���

 

where ��,�,� = ���,�,�, ��,�,�, , ��,�,�, , � �,�,�, �	are control points for the heterogeneous solid  volume, 
Vector m represents material distribution (elastic modulus in the present case) within geometric 
volume, p,  q,

,  
r are the order of the B-spline basis functions ��,�, ��,�, ��,� in the direction of u, v, w 

respectively. The description about the in-house development of this model is available in Bhatt et al. [1] 
and Warkhedkar et al. [33]. 

2.1 Finite Element (FE) Model formulation 

In most of the prior bone FE isotropic and FE orthotropic studies [11], [17], [19], [29], [31], [38], 
elastic modulus is constant within the element and computed by power law relation with averaged 
apparent density within the element. 

While considering bone as an orthotropic material, Shahar et al. [27] has also demonstrated that 
local variation (both axial and transverse) direction of elastic modulus and Poisson’s ratio in cortical 
bone is significant.  Therefore, in the current study, FE model with orthotropic material assignment 
has been used with the graded element approach to represent spatial distribution of material property 
in all directions instead of an average value of elastic modulus for an entire element. Also, due to use 
of graded element, the problem of assigning material property at the interface element like in cortical-
trabeculae interface is eliminated and material heterogeneity can be represented very naturally in all 
directions. In graded element approach, material property fields like elastic modulus ( E ) and 
Poisson’s ratio ( ν ) are spatially varying within the element.  

The finite element formulation of proximal femur can be governed by the following equation [6]. 

����

���
+ �� = 0																																																																																															(1) 

Here ijσ is second order stress tensor and bi  represent body forces (which have been neglected in the 

analysis). The loading conditions, namely traction forces due to muscles and joint reaction forces on 
femoral head is given by 
 

�� = �����																																																																																																			(2) 
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The stress σ  and strain ε  are related according to 

��� = �������� 

For heterogeneous materials constitutive matrix D  is a function of position which is given as follows  

����� =
�(�, �, �)

�1 + ��(1 − 2�) [�������+ �1 − 2��������]
 

Or 

�� = ���x, y, z�																																																																																													(3) 

This is further interpolated by element interpolation function to approximate the actual 
material properties which are written as follows for isotropic and orthotropic material models. 
 
For Isotropic Material: 

� = � ����																																								
���

���

	� = � ����	
���

���

 

For Orthotropic Materials: 

��� = � ��(���)�

���
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���

���
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��� = � ��(���)�

���

���

																																								��� = � ��(���)�

���

���

																																		(4) 

Where nne  is number of nodes in an element. 

2.2 Model Generation and Determination of Material Properties 

To generate a heterogamous model of a bio-object, CT scan data is used as the primary source of 
input data. In the present study, geometrical data of proximal femur, material properties of cortical 
and cancellous bones in the form of CT slices have been downloaded from the URL: 
www.bgu.ac.it/~zohari/CT_FF.html [37] and initially processing is done with the help of  MIMICS 
(Materialise' interactive medical imaging control system, a medical image processing software package, 
www.materrialise.com). The data belong to a 30 year-old male with following parameters: 140 kV p, 
250 mA s, 0.75 mm slice thickness, axial scan without overlap with pixel size of 0.78 mm. Total CT 
scan data contains 97 slices, out of these 3 slices have been neglected from distal end. Thereafter, CT 
images in pixel data form are cropped to limit the point cloud data in order to avoid noise. Noise due 
to strain gauge wire and bolts is removed from each slice. The cropped slices are organized and 
segmented between 100 and 2000 Hounsfield Unit (HU) to identify both trabecular and cortical bone.  
The processed gridded data points of the group of the slices are treated as control points. Further 
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processing of the data was done with in-house developed modeling software [1].  The B-spline 
triparametric hyperpatch [1], [33] approach is used to represent solid model of proximal femur. An in-
house generalized algorithm based on MATLAB and C platform is used to find out control polyhedron 
from the control points by applying B-spline hyperpatch approach.  

Thus, in the proposed methodology, mesh is generated  from the processed points by varying 
increments in parametric values in the three parametric directions namely u, v and w; and material 
properties are computed and assigned at each point (nodal point). The developed heterogeneous solid 
model of proximal femur with graded element is used for FE analysis after the convergence test.  To 
carry out convergence test the twelve BSBHG models have been generated using varying mesh density 
for single-legged stance loading and boundary conditions [20]. The convergence test result showed 
that FE results of BSBHG model get optimized between 60,000 to 86,250 degrees of freedom. In the 
present study, FE model with 66,240 degrees of freedom has been used to achieve reasonable accuracy 
with reduced computational cost.          

2.3 Material Properties for Cortical and Cancellous Bone 

This section presents a general description of anisotropic and four orthotropic material 
models used in this study. In general, bone material properties are obtained through apparent 
density. Two linear relationships between apparent density and HU are used to determine the 
magnitude of apparent density for cortical and cancellous region of proximal femur. For dense 
cortical bone, it is assumed that apparent density (�) is 1.9 g/cm3 [29], [37] associated with maximum 
HU value 1752 and apparent density of water to be 0 g / cm3 associated with 0 HU. 
 

																																																																																													� =
1.9 × ��

1752 																																																																																																					(5) 

 
For cancellous bone of proximal femur, a linear relationship between HU number and bone 

apparent density is assumed [23]. Here h represents HU value. 
 

� = 131 + 1.067ℎ																																																																																											(6) 
 

The next stage in the FE model definition process is to calculate the material constants from apparent 
density. In the present study, the following five relationships have been used to evaluate elastic 
constants.  
 
A: Isotropic material model 

In this material model definition, elastic constants are evaluated by using Wirt’s et al. [34] power 
model as follows. 

 

� = �1094��.��

2065��.�� 							���					� = � 0.3															100 ≤ �� ≤ 349
0.36															350 ≤ �� ≤ 2000																																												 (7) 

 
In above relations, the unit of E  (Young’s modulus) is MPa and that of � (apparent density) is 

g/cm3. ν  is the Poisson’s ratio.  
 

B: Orthotropic model 1: Taylor’s material model [31] 
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In this material model, a quadratic distribution of elastic constants from lowest to highest apparent 
density values are used for the entire bone (cortical and cancellous bone) 

 
 E

11
= E

11max
�2/ ρ2

max  
  G

12
= G

12max
� 2/ � 2

max 
v

12 
= 0.4 

 E
22
= E

22max
� 2/ � 2

max 
G

23
= G

12max
� 2/ � 2

max 
v

23 
= 0.23 

 
E

33
=E

33max
� 2/ � 2

max 
G

13
= G

12max
� 2/ � 2

max 
v

13 
= 0.25 (8)

 
 

 
where, E (Young’s modulus   is in MPa, G (shear modulus) in MPa and � (apparent density) in kg / m3 

 

E
11max

= 13.4 Gpa                                      G
12max

= 5710 Mpa 

E
22max

= 14.10 Gpa                                    G
23max

= 6580 Mpa 

E
33max

= 22.9 Gpa                                       G
13max

= 7110 Mpa                                  (9) 

 
E

11max 
,
,
 E

22max 
and E

33max
 are taken from predicated Taylor’s FE model while G

12max,
, G

23max 
and G

13max 
are taken 

from ultrasound experimental values of dense cortical region [28]. 

 

C: Orthotropic model 2: Peng material model [19] 
 
In this material model, both the cortical and cancellous bone is assumed to be transversely isotropic 
material. Normally it represents same properties in all direction of the transverse plane and 
significantly different properties in the longitudinal direction. A quadratic distribution of shear 
modulus from lowest to highest apparent density values are used for the whole bone. In turn, material 
model definition is as follows. 
 
Cancellous bone 
 
E

11
=1157 	� 1.78 Mpa G

12
= G

12max
	� 2/ 	� 2

max 
v

12
= 0.4 

E
22
=1157 	� 1.78 Mpa G

23
= G

12max
	� 2/ 	� 2

max 
v

23
= 0.25 

E
33
=1904� 1.64   Mpa G

13
= G

12max
	� 2/ 	� 2

max 
v

13
= 0.25

 
(10)  

Cortical bone  

 
E

11
=2314 �1.57  Mpa G

12
= G

12max
�2/ �2

max 
v

12 
= 0.45 

E
22
=2314 �1.57  Mpa G

23
= G

12max
�2/ �2

max 
v

23 
= 0.25 

E
33
=2065	�3.09   Mpa G

13
= G

12max
�2/ �2

max 
v

13 
= 0.25 

where      

G
12max

= 5710 Mpa          G
23max

=6580 Mpa          G
13max

= 7110 Mpa                                              (11) 
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D: Orthotropic model 3: ‘Peng- Krone’ material model 

In this material model, we have combined two models: elastic constant E (Young’s modulus ) is 
evaluated from the relationship reported in Peng et al. [19], while for  elastic constant G ( shear 
modulus) a constant magnitude ( independent on apparent density) [14] has been used  for both 
cancellous  and cortical bone. The material model definition is written as follows. 
 
Cancellous bone  
 
E

11
=1157 	� 1.78  MPa G

12
=370 MPa v

12
= 0.3 

E
22
=1157 	� 1.78  MPa G

23
=399 MPa v

23
= 0.3 

E
33
=1904	� 1.64   MPa G

13
=399 MPa v

13
= 0.3 (12) 

 
Cortical bone 
 
E

11
=2314 	� 1.57  MPa G

12
=3.60 GPa v

12 
= 0.45 

E
22
=2314 	� 1.57  MPa G

23
=3.30 GPa v

23 
= 0.3 

E
33
=2065		� 3.09     MPa G

13
=3.30 GPa v

13 
= 0.3 (13) 

 

E: Orthotropic model 4: ‘Rho – Peng’ material model 
 
This model is created by combining Rho et al. [23] and Peng et al. [19]. A linear relationship from Rho 
et al. [23] between E (Young’s modulus) and � (apparent density is used for both cortical and 
cancellous bone while for G (shear modulus) a quadratic distribution from lowest to highest apparent 
density values are used for whole bone [19]. The model definition is given as below. 
 
Cancellous bone 
 
E

11
= -657+3.91	�   G

12
= G

12max
	� 2/ 	� 2

max  
  v

12
= 0.3 

E
22
= -506+3.64	�   G

23
= G

12max
	� 2/ 	� 2

max
   v

23
= 0.3 

E
32
= -331+4.56	�   G

13
= G

12max
	� 2/ 	� 2

max
   v

13
= 0.3 (14) 

 
where		� is kg / m3  and E

11
, E

2 2 ,
 and E

33
 are in MPa. 

 
Cortical bone 
 
E

11
= -6.087+0.010	� G

12
= G

12max
� 2/ � 2

max
 v

12 
= 0.45 

E
22
= -4.007+0.009	� G

23
= G

12max
� 2/ � 2

max 
v

23 
= 0.3 

E
33
= -6.142+0.014	� G

13
= G

12max
� 2/ � 2

max 
v

13 
= 0.3 (15) 

where	� is kg / m3 and E
11
, E

22, 
E

33
are in GPa and G

12max
= 5710 MPaG

23max
=6580 MPaG

13max
= 7110 MPa. 
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In all above orthotropic models, all parameters are set in Cartesian co-ordinate system of Femur 
with direction anterior-posterior (11), medial-lateral (22), and superior-inferior (33) (see Fig. 1). 
Though the empirical equations given by Rho et al. were in cylindrical co-ordinates, this change in co-
ordinate system would not invalidate the findings as this study is used for comparing different 
numerical solutions. The BSBHG model with the three principal directions is shown in Fig.1. 
  

 

 

 

 

 

Fig.1: BSBHG model with orthotropic directions. 

All the chosen orthotropic E-ρ
(app)

 relations specifies two distinct  density region, one for  
trabecular bone and second for cortical bone. The map of the mechanical properties in all orthotropic 
relations is shown in Fig. 2-4. A close observation of Fig. 2 indicates that the magnitude of Young’s 
moduli (E

11
, E

22
, and E

33
) are significantly higher for Taylor’s and Rho-Peng orthotropic model for all 

density values varying from lowest to highest. Whereas other two orthotropic relations are same in 
terms of evaluation of Young’s moduli and one shows lower bound for the density values of interest 
(0.2 to 2.0 g/cm3) derived after the model description.  

 
 
 
 
 
 
 
 
 
 

 

Fig. 2: Relation between Young’s modulus (E
11
) and apparent density for the four selected orthotropic 

density-elasticity relationships for typical human bone. 
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Fig. 3: Relation between Young’s modulus (E
22
) and apparent density for the four selected orthotropic 

density-elasticity relationships for typical human bone. 

 

 

 

 

 

 

Fig. 4: Relation between Young’s modulus (E
33
) and apparent density for the four selected orthotropic 

density-elasticity relationships for typical human bone. 

More recently, ‘orthotropic ratio’ (anisotropic ratio) is used to quantify the degree of anisotropy. 
Orthotropic ratio is defined as longitudinal Young’s modulus to other transverse Young’s modulus (i.e. 
E

33 
/ E

11   
or E

33 
/ E

22
). For bony structure orthotropic ratios are location dependent. In literature, it is 

reported that orthotropic ratios for cortical bone of human femur lies in the range of 1.4 to 2.35 [5] 
[22], and for cancellous bone it lies between 1 and 4 [31]. In present study, Taylor’s orthotropic model 
shows same orthotropic ratio (E

33 
/ E

11
=1.72, E

33 
/ E

22 
=1.623) for both cancellous and cortical bone. This 

is due to the fact that a single relation has been used to define the properties of cortical and 
cancellous bone. Also this model doesn’t yield location dependent anisotropy ratio. While in other 
three orthotropic models (Wirtz/Peng model, Wirtz/Peng-Krone model, Rho-Peng model), orthotropic 
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ratio is location dependent and density dependent. The orthotropic ratio’s for these models are 
continuously varying with apparent density in a valid range (Fig. 5).  

 

Fig. 5: Relation between orthotropic ratios and apparent density for the four selected orthotropic 
density-elasticity relationships for typical human bone. 

3  LOADING CONDITIONS  

In this section, numerical experiments are implemented on all material models to testify the 
performance of BSBHG FE model. The graded FE model (with 66,240 degrees of freedom) is then 
simulated for simple stance position similar to one given by Yosibash et al. [37]. In which a force of 
1500 N was applied on specimen in four-inclination angle i.e. 00, 70, 150 and 200 respectively along 
femoral shaft axis. A typical loading and boundary condition with 00   is shown in Fig. 6. The 
displacement result obtained from the above reference is termed as experimental. Similar conditions 
are simulated theoretically in the present work for all five material models which is theoretical results 
based on B-spline based heterogeneous graded (BSBHG) modeling. 
 

 

 

 

 

 

 

 

 

Fig. 6: B-spline based graded FE model, with loading and boundary condition in simple stance 
configuration. 



 
 

Computer-Aided Design & Applications, 9(4), 2012, 549-569 
© 2012 CAD Solutions, LLC, http://www.cadanda.com 

 

559 

The displacement result and strain results obtained from four orthotropic material models are 
compared with isotropic model. All the evaluated results are also compared with experimental results 
which are given below. 

4  RESULTS 

Two parameters, head displacement in ‘z’ direction (U
z
) and strain at neck superior (

z
), neck inferior 

(∈
z
), shaft medial (∈

z
), and shaft lateral (∈

1
) are evaluated from the four BSBHG orthotropic models.  

4.1 Comparison between Predicted and Experimental Displacement (U
z
) 

The evaluated head displacement in ‘z’ direction (U
z
) for all orthotropic models and isotropic models 

along with experimental findings of Yosibash et al. [34], are tabulated for all load configurations in 
Tab. 1. Further, all the results are compared to establish relationship between all the studies which is 
shown in Fig. 7. 
 
 

 

Tab. 1: Overall displacement response for all material models and Yosibash’s experimental             
displacement in a simple stance load conditions. 

To compare evaluated orthotropic proximal femur head displacements results with evaluated 
isotropic head displacement results, four non dimensional parameters are defined which may make 
results more comprehensible. All parameters represent the relative differences between the maximum 
value of ‘z’ displacement in all load configurations for all orthotropic material models discussed 
earlier. 

Angle 

(degree) 

Isotropic 
material 
model 

 
(U

I
) 

mm 

Orthotropic material models Yosibash’s 
Exp. Results 

[37] 
 

(U
E
) 

mm 

Taylor 
[31] 
 
(U

OT
) 

mm 

Wirtz/Peng 
 
(U

OWP
) 

mm 

Wirtz/Peng- 
Krone 

(U
OWPK

) 
mm 

Row-Peng 
 
(U

OR
) 

mm 

0º 0.886 0.592 0.833 0.736 0.613 0.45 

7º 0.624 0.442 0.596 0.506 0.460 0.19 

15º 0.329 0.205 0.311 0.230 0.217 0.26 

20º 0.227 0.175 0.198 0.142 0.178 0.25 
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Fig. 7: FEA displacement results of BSBHG model using isotropic and orthotropic relations compared to 
Yosibash’s experimental observations for 1500 N axial load. 
 

These four non-dimension parameters are listed as follows. 
 
 

																																																
���

��
=

���� − 	 ���
��

× 100																														
��� �

��
=

���� � − 	���
��

× 100 

  
��� ��

��
=

(��� �� − 	��)
��

× 100																					
���

��
=

(��� − 	��)
��

× 100																																											(16) 

 
 
where, U

I 
 represent the magnitude of maximum femur head displacement in ‘z’ direction for isotropic 

material model while U
OT,  

,
 
U

OWP
 , U

OWPK
, U

OR 
 are displacement magnitude of femur head in ‘z’ direction 

for Taylor, Wirtz/Peng, Wirtz/Peng-Krone and Rho-Peng orthotropic models respectively. Tabulated 

results are shown in Tab. 2. 

 
Similarly, to compare evaluated orthotropic and Isotropic head displacements results with 

experimental results of head displacement, five parameters are defined which are written as follows. 
Results for these parameters are calculated for all load condition except 7º load configuration. This is 
because the experimental finding for this load configuration is not reliable.  
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Tab. 2: Effects of load configurations on parameters U
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where, U
E 
 represent the reported experimental  magnitude of maximum femur head displacement in ‘z’ 

direction. Calculated results are shown in Tab. 3. 

 

 

 

 

 

 

Tab. 3: Effects of load configurations on parameters U
I 
/U

E  
, U

OT 
/U

E
 , U

OWP 
/U

E  
, U

OWPK 
/U

E
 and  U

OR 
/U

E.
 

Loading 

angle 

U
OT

/U
I
(%) U

OWP
/U

I
(%) U

OWPK
/U

I
(%) U

OR
/U

I
 (%) 

0º -33.10 -5.80 -16.90 -30.60 

7º -29.10 -4.40 -18.90 -25.90 

15º -37.60 -5.00 -30.10 -34.06 

20º -22.90 -12.70 -37.44 -21.50 

Loading 

angle 

U
I
/U

E
 

(%) 

U
OT

/U
E
 

(%) 

U
OWP

/U
E 

(%) 

U
OWPK

/U
E 

(%) 

U
OR

/U
E 

(%) 

0º 96.80 31.70 85.33 63.60 35.50 

15º 26.50 21.15 20.00 -11.53 -16.15 

20º -9.20 30.00 -20.80 -43.20 -28.80 
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It is observed from Tab.2 that the relative difference between the displacement results of 
Wirtz/Peng orthotropic model and isotropic model is reasonably small for all load conditions while 
the difference between Taylor model and Row-Peng model with isotropic model is 21.5 to 37% for all 
load conditions. Furthermore, columns 2 and 5 of Tab. 3 indicates that the difference between the 
experimental results and those of Taylor material model and Row-Peng material model results are 
consistent for all load conditions. They are also near to Yosibash’s experimental measurements. The 
displacement results of Wirtz/Peng  model shows similar pattern as Taylor and Rho-Peng model for 
15º and 20º load configurations. The results are not similar for 0º load configuration. By comparison  
Wirtz/Peng-Krone and Isotropic models show distinct results for all load configurations in 
comparison with experimental results. 

4.2 Comparison of FE Models vs. Experimental Strain Findings 

A linear least square regression between the experimentally measured strains and predicted strains by 
each model is performed to quantify prediction accuracy.  The goodness of prediction is expressed by 
the coefficient of linear regression R2, slope and intercept of the curve. These metrics provide a global 
indication on the goodness of the prediction. And to know local errors from each single prediction one 
should calculate the local error metrics like or maximum error (peak error) and the average error. 
Therefore, for isotropic material model and each orthotropic material model simulation, the 
correlation, slope, intercept, maximum (peak) error and average error (root mean square error i.e. 
RMSE) and RMSE % are calculated. Usually, RMSE% is calculated by dividing the square root of the mean 
of the squared errors between numerical and experimental strains (RMSE) by the highest strain value 
obtained across the specimen. The regression results are indicated in Fig. 8-12. 

The strains obtained due to FE analysis (theoretical) for isotropic and all orthotropic models are 
compared with the Yosibash et al. experimental findings at neck superior (∈

z
), neck inferior (∈

z
), shaft 

medial (∈
z
), and shaft lateral (∈

1
) (see Fig. 8-12 and Tab. 4). The predicted (theoretical) strain results for 

all the four location of the proximal femur correlate very strongly with experimental values for all 
orthotropic models. The coefficient of linear regression R2for all orthotropic models are in the range of 
0.92 to 0.96. These R2 values are significantly higher than isotropic model regression coefficient R2 = 
0.63. For Wirtz/Peng and Wirtz/Peng-Krone model, the regression line slopes are very close to unity. 
But for Taylor’s model and Rho-Peng’s model, slope of regression line is slightly low than one, 
indicating that globally these two models underestimate the strains. This may be due to their upper 
bound density-modulus relation in both cancellous and cortical region (see Fig. 2-4). The y-intercepts 
are found between 54.02 and 115.59 for all orthotropic relations. The regression slope and intercept 
for the isotropic model are 0.600 and 130.28 respectively. 
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Fig. 8: Linear regression of predicted                      Fig. 9: Linear regression of predicted    vs.                                               
vs. experimental   strain (µ∈) in Taylor                    experimental strain (µ∈) in Wirtz [34] /Peng [19] 
orthotropic model [14].                                             orthotropic model.     

 

 
Fig. 10: linear regressions of predicted vs.         Fig. 11: Linear regression of predicted experimental 
strain (µ∈) in Wirtz [34] /Peng-Krone                       experimental strain (µ∈) in Rho-Peng Orthotropic 
orthotropic model.                                             model.  
 
 
 

 

 

 

 
Fig. 12: Linear regression of predicted vs. 

   experimental strain (µ∈) in isotropic model 
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Low values of RMSE and maximum error are found for Wirtz/Peng, Wirtz/Peng-Krone and Rho-
Peng Orthotropic models whereas isotropic model has recorded highest RMSE and analogously the 
maximum error.   

In general, the regression strain results for isotropic model indicates that the overall behavior of 
isotropic BSBHG model is poor and this is due to higher difference in measured strain and predicted 
strain results at neck inferior location. Thus, the isotropic model is unable to capture structural 
heterogeneity in neck region. 

Isotropic material model and Wirtz/Peng orthotropic material models have predicted reasonably 
same displacement results. But the same is not true for strain prediction results. The predicted strain 
results get improved with assignments of orthotropic results for Wirtz/Peng model. Hence the 
hypothesis presented by Peng et al.[19] and Baca et al. that ‘orthotropic material property assignment 
(global orthotropy) can be omitted, if the heterogeneous isotropic material model is used in FE 
analyses’  is  only true for displacement results but not for strain results. 

 

Tab. 4: Evaluated validation parameter for different material models. 

The results obtained in this investigation lead to conclusion that inclusion of material anisotropy 
improves the results over isotropic assumption.  

Orthotropic bone model results are sensitive to material assignment relations and insensitive to 
orthotropic ratios. Further, it can also be concluded that material constants along with appropriate 
distribution of orthotropic ratios should be essential pre-requisites for any meaningful prediction of 
orthotropic FE analysis.  

Validation 
on pooled 

data 

E-ρ
(app)  

relationship implemented 

Isotropic  
model 

Orthotropic material models 

 Wirtz Taylor Wirtz / Peng Wirtz/Peng -
Krone 

Rho-Peng 

R2 0.633 0.923 0.951 0.959 0.945 

slope 0.600 0.715 0.998 0.884 0.798 

Intercept(µ∈) 130.28 115.59 108.04 75.69 54.02 

RMSE( µ∈) 777.46 485.00 278.81 283.18 359.22 

RMSE % 41.22 27.56 12.36 14.15 18.42 

max error ( µ∈) 1617 974 650 515 606 

Max error  % 85.74 55.34 28.81 25.72 31.08 
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5  DISCUSSION  

This study analyses the behavior of proximal femur for simple stance load condition using BSBHG FE 
model with varying degree of anisotropy in both cortical and cancellous bone. Four orthotropic 
material relations reported in literature have been considered for this purpose. Orthotropic ratio (i.e. 
E

33 
/ E

11   
or E

33 
/ E

22
) is location dependent. In present study, orthotropic model 1 (Taylor’s model) shows 

same orthotropic ratio (E
33 

/ E
11
= 1.71, E

33 
/ E

22 
= 1.596) for both cancellous and cortical bone. This is 

due to the fact that a single relation has been used to define the properties of cortical and cancellous 
bone. In the other three orthotropic models (Peng model, Writz/Peng-Krone model, Rho-Peng model), 
orthotropic ratio is location dependent and density dependent. In these orthotropic models, two 
separate relations have been used to define cortical and cancellous bone. 

It is interesting to note from the displacement results of orthotropic models that the results of 
Taylor’s orthotropic model are in close agreement with experimental findings though orthotropic ratio 
is constant throughout bone for this model while displacement results of Peng’s orthotropic model 
show good agreement with the isotropic model. The reason for this lies in the careful study of all 
orthotropic material models. From the study, it is revealed that Taylor’s orthotropic model and Rho-
Krone orthotropic model are able to predict meaningful elastic constants to model realistic stiffness of 
the real bone (see Fig. 2-4). It is also observed from the displacement results that Peng-Krone model is 
better than Peng’s model though their Young’s moduli are same for all values of apparent density. 
This may be due to the constant value of shear moduli (G

12
, G

23
, and G

13
) assigned to regions of 

cancellous and cortical bone separately.  As stated earlier, there is a small difference in isotropic-
material-model and Peng orthotropic material model. Similar observation had been noted by Peng et 
al. [19], for two specific load conditions with similar material property assignment relation. They also 
concluded that either bone is weak orthotropic material or the load conditions used in his study were 
insensitive to orthotropic bone material character. But by observing other displacement results of our 
study one can conclude that bone orthotropy is sensitive to material assignment relation. 

The regression results indicate that orthotropic material model predicts the strains with better 
accuracy than the isotropic model. A regression coefficient higher than 0.9 is obtained for all 
orthotropic models which is significantly higher than isotropic model regression coefficient R2 = 0.63. 
The slope of regression line was not different from unity for Peng, Peng-Krone and isotropic model. 
But for Taylor’s model and Rho-Peng model, slope of regression line is slightly higher than one, 
indicating that globally these two models underestimate the strains. As stated earlier, this may be due 
to the density-Young’s modulus relationship we adopted.  

Furthermore, the accuracy on the strains obtained with orthotropic models are considered to be in 
good agreement than the similar reported results (see Tab. 5) as in Keyak et al. [12], Ota et al. [18], 
Taddei et al. [27], Schielo et al. [26]  and Helgason  et al. [8]. 

 

Strain validation Model R2 Slope 

Keyak et al.[11] voxel 0.590 0.630 
Ota et al. [18] Geometry 

based 
0.660 Not Reported 

Taddei et al. [27] Geometry 0.660-0.790 1.700-1.950 
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Tab.5: Comparison of predicted strain results with published results. 

Despite the advantages of our study, certain limitations also exist. First, in the present study, 
anisotropic evaluation analysis is carried out with BSBHG modeling methodology on a single specimen. 
Undoubtedly there is a need to carry out extensive study with meaningful model definition on a 
number of specimens. As stated in our previous study (Pise et al. [20]) some FE results are inconsistent 
at high degrees of freedom. This is due to low aspect ratio in some distorted elements in top slices of 
the proximal femur. It also shows low Jacobean value for these elements. This is unavoidable due to 
complex geometry of the specimen. However, despite this limitation, the importance and generality of 
the results obtained from this study is not reduced. 

In summary, the global accuracy obtained with all orthotropic models is better than isotropic 
model presented in this paper. Further, it can also be concluded that material constants along with 
appropriate distribution of orthotropic ratios are essential pre-requisites for any meaningful 
prediction of orthotropic FE analysis. 

6 CONCLUSION 

A B-spline based heterogeneous modeling methodology is used to represent geometry and material 
estimation of both trabecular and cortical bone. In the current study FE model has been used with 
graded element approach to represent spatial distribution of material property in all direction which 
improves the performance of FE analysis. The results obtained in this investigation lead to conclusion 
that inclusions of material anisotropy improve the results over isotropic assumption. Also orthotropic 
bone model results are sensitive to material assignment relation rather than orthotropic ratios. 
Despite some limitation of the present model the orthotropic results are consistent and in better 
agreement for displacement with the reported experimental studies.  
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