

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

679

Computing Rotation Minimizing Frames using Quaternions

David Yoon1, Mark Narduzzi2 and Jie Shen3

1University of Michigan - Dearborn, dhyoon@umich.edu

2University of Michigan - Dearborn, mnarduzzi@gmail.com
3University of Michigan - Dearborn, shen@umich.edu

ABSTRACT

Frenet Frames have been employed as local frames along a trajectory. However, they
behave poorly around inflection points of the path. To remedy this, we propose to
compute rotation minimizing frames (RMF) using quaternions.

Keywords: 3D curves, Frenet frames, rotation minimizing frames.
DOI: 10.3722/cadaps.2012.679-690

1 INTRODUCTION

Three dimensional motion enjoys a wide spectrum of applications including robotics, NC machining,
and 3D animation, just to name a few. It typically depicts an object moving along a path. The position
and orientation of the object are represented in terms of a moving frame at a particular point on the
trajectory. It is very important to select the appropriate moving frame at a particular point on the
trajectory. Traditionally, the Frenet Frame has been employed as moving frames. However, over the
years the drawbacks of the frame have been identified and a number of different approaches to
remedy these problems have emerged. Since the trajectory and the Frenet frame form the basis for 3D
motions, they are briefly introduced in the next section.

2 TRAJECTORY AND FRENET FRAME

Let P(u) є R3 be a C2 curve, where u є U. Then the position and orientation of an object is specified in
terms of a particular point on the trajectory and the moving frames as follow:

PO(u) = [P(u), F(u)]

mailto:dhyoon@umich.edu
https://mail.engin.umd.umich.edu/squirrelmail/src/compose.php?send_to=%22Mark%20%20Narduzzi%22%20%3Cmnarduzzi%40gmail.com%3E
mailto:shen@umich.edu

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

680

where P() is the trajectory and the moving frame F(u) = [r(u), s(u), t(u)] and r(), u(), and t() represent 3D
orthonomal vectors [6]. Oftentimes the Frenet Frame has been employed as the moving frame as
follows:

t(u) =
'()

| '() |
P u
P u

, s(u) =
'() "()

| '() ''() |
P u xP u
P u xP u

, and r(u) = r(u) x s(u).

The Frenet Frame serves as the moving frame very well as long as there is no inflection point along the
trajectory, i.e. P”(u) = 0. However, when there is an inflection point, the sign of s() changes and this
induces undesirable consequences. To remedy this, there are a number of solutions published. In this
section, some of the well-known approaches are reviewed and we will present our approach in the
next section. The papers summarized below may be characterized as an effort to produce a frame in
which the binormal vector does not change the sign around the inflection point. This type of a frame
is known as a Rotation Minimizing Frame (RMF).

Siltanen/Woodward [10] summarize the behavior of the principle normal vector around an
inflection point and propose the projection normal method. In this approach, they compute the
tangent vector (in our notation t()), the normal vector (in our notation r()) and the binormal vector (in
our notation s()) at each knot point. The normal vector r

i
 at knot point u

i
 is computed as follows:

r

i
 = r

i-1
 – (r

i-1
· t

i
) t

i-1

where · represents dot product and r
i,
s

i,
and t

i
 are normalized. This approach is intuitive and easy to

implement.
Klok [3] considers moving frames in the context of sweeping. When there is no inflection point

along the trajectory, the Frenet frames function as the moving frames. However, when there is an
inflection point, a Rotation Minimizing Frame (RMF) has to be computed. A moving frame that does
not exhibit discontinuous rotation about the tangent is called a rotation minimizing frame. Due to the
RMF's smooth rotation as the moving frame crosses an inflection point, the RMF is preferred over the
Frenet frame in many applications of computer graphics including sweep surface modeling [9],
generalized cylinders [12], motion design and control [6]. He formulates the problem as differential
equations on normal vector and binormal vector. The interested reader is referred to his paper.

Guggenheimer [1] formulates the rotation minizing problem as an integration problem rather than
a differential equation problem and claims that his approach is computationally faster. Shani/Ballard’s
[8] approach is in a way similar to Guggenheimer’s in that they view rotation minimizing problem as
an integration problem.

Wang/Juttler [11] introduce the double reflection method to come up with rotation minimizing
frames. As one can easily see, the authors deviate from previously mentioned researchers and
formulate the problem in terms of the basic transformation reflection.

Rossignac/Kim [7] split a motion into the translational and rotational components and consider
the rotational component in terms of a screw motion. They compute the parameters of a motion from
two motion frames. It appears that the rotation between the two motion frames is minimized by
explicitly computing the angle between them rather than relying on the two principle normal vectors.

In both refs [7,11], the authors both implicitly and explicitly compute the axis of rotation and the
angle of rotation and obtain the rotation minimization frame. Generalizing these approaches, we will
compute RMFs using quaternions.

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

681

2. 1 Quaternions

An intuitive view of a quaternion is that it represents an axis of rotation in R3 along with the rotation
angle. Following Hanson [2], one can consider the axis of rotation n = [

n

1
, n

2,
n

3
]

as

a unit vector with

an angle of rotation θ in the polar coordinate system. Then the quaternion q may be represented as a

4-dimensional vector ()q w ix jy kz= + + + = (w,v
v

) and its component may be expressed as follows:

Fig. 1: The Axis of Rotation on S2 [2].

w

= cos (θ /2)

x

= n

1
sin(θ /2)

y = n
2
sin(θ /2)

z = n
3
sin(θ /2)

Quaternions, represented by q, are a part of a subset of the hypercomplex numbers, with the form:

w + xi + yj + zk

where
 i2 = j2 = k2 = ijk = -1

ij = k, ji = -k
jk = i, kj = -i
ki = j ik = -j

Any vector of v
r

 ∈ R3 can be mapped into a quaternion space:

0

v
 
 
 
r

This type of a quaternion is known as a pure quaternion.

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

682

2.2. Quaternion Reflections

Quaternions can be used to compute reflections with respect to a plane. Let v = x, y,z[]T
 be a unit

vector normal to the plane of reflection and ()0,rq v= . To compute the reflection of p, compute [9]:

q2 = qr × p × qr

To understand reflection, consider reflection with respect to the x-y plane. The basis vector k is
normal to the plane of reflection. From the relationship between i, j, and k, we have:

kik = i
kjk = j
kkk = −k

Thus only the z component of a vector is inverted, the x and y components are unchanged.
Reflection differs from rotation in two ways. First, the reflection quaternion must be a pure
quaternion. Second, multiplication on the right is by the same quaternion as on the left. For rotations,
multiplication on the right is by the conjugate.

In general, it's not possible to compose an arbitrary number of reflections like rotations. It is,
however, possible to combine two reflections into one rotation. Consider two pure, unit quaternions,
q

r1
 and q

r2
. Each represents a vector normal to a plane of reflection. To reflect a point p through each

plane, compute:

q1 = qr1 × p × qr1

This represents the reflection of p with respect to plane 1.

p2 = qr2 × q1 × qr2

p

2
 represents the reflection with respect to plane 2. Combining these two equations:

p2 = qr2 × qr1 × p × qr1()× qr 2 = qr2 × qr1()× p × qr1 × qr2()

Both q

r1
 and q

r2
 are pure quaternions and therefore −qr1 = conj qr1() and −qr 2 = conj qr 2().

qr1 × qr 2 = −qr1()× −qr2()= qr1
* × qr 2

* = qr 2 × qr1()*

Finally, for two reflections:

qr = qr2 × qr1

p2 = qr × p × qr
*

Therefore, two reflections are equivalent to one rotation. However, the product qr2 × qr1 is not
necessarily a pure quaternion so we cannot compose a third reflection into a single rotation. However,

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

683

it can be shown that the composition of an even number of reflections can be written as a single
rotation.

2. 3 Transforming the Double Reflection Method to a Single Quaternion Rotation

We now have the tools to transform the double reflection method into a set of quaternion equations.
The name "double reflection" suggests the approach we take. Each reflection is represented by a
quaternion and the two reflection quaternions are composed to produce one rotation quaternion. Thus
R

i
 undergoes a single rotation to produce R

i+1
.

The first plane of reflection in the double reflection method is the bisecting plane between P
i
 and

P
i+1

. Expressed as a pure quaternion, 1 1i iq p p+= − . However, to produce a reflection without scaling,

q
1
 must also be a unit quaternion. Define a function unit(q) that maps a non-zero quaternion to the

unit hyper-sphere, S3:

unit q() =
q
q

=
q

N q()

Thus the proper equation for the first reflection quaternion is:

()1 1i iq unit P P+= −

To compute the quaternion representing the second plane of reflection, we need the unit
quaternion for T

i+1
 – “reflection of T

i
 in plane 1”:

q2 = unit Ti+1 − q1 × Ti × q1()

The first reflection of R
i
 is computed the same as for T

i
:

Ri
L = q1 × Ri × qi

The second reflection of R
i
 is computed by reflecting Ri

L using q
2
:

Ri+1 = q2 × Ri
L × q2

By substituting Ri
L = q1 × Ri × qi into Ri+1 = q2 × Ri

L × q2 , we can compute R
i+1

 directly from R
i
 with a

single rotation:

Ri+1 = q2 × Ri
L × q2 = q2 × q1 × Ri × q1()× q2 = q2 × q1()× Ri × q1 × q2()= q2 × q1()× Ri × q2 × q1()*

Or more simply:

qr = q2 × q1

Ri+1 = qr × Ri × qr
*

Here we arrive at our goal: the double reflection method can be expressed by the following set of
quaternion equations:

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

684

()
()

() ()

1 1

2 1 1 1

1 2 1 2 1

1 1 1

*

i i

i i

i i

i i i

q unit P P

q unit T q T q

R q q R q q
S T R

+

+

+

+ + +

= −

= − × ×

= × × × ×

= ×

2.4 RMF by Quaternion Rotation Implementation [5]

A pseudo code implementation of double reflection by quaternion rotation is shown in the algorithm
below. All points and vectors are used as pure quaternions.

Algorithm - RMF by quaternion rotation

Input:

Points P
i
, and unit tangent vectors, T

i
, for i = 0 … n, and an initial reference vector R

0
.

Output:
U

i
 = (R

i
, S

i
, T

i
), for i = 1 … n, as an approximate RMF

for i = 0 to n-1
q1 = unit(P[i+1] - P[i]) ; first reflection quaternion
q2 = unit(T[i+1] - q1*T[i]*q1) ; second reflection quaternion
q = q2 * q1 ; rotation quaternion
R[i+1] = q*R[i]*conj(q) ; rotate reference vector
S[i+1] = T[i+1] x R[i+1] ; 3D vector cross product
U[i+1] = (R[i+1], S[i+1], T[i+1])

End

3 AN ILLUSTRATION

The system developed as part of our approach allows a user to specify a parametric curve, display the
curve, the Frenet frames, and rotation minimizing frames computed using both the double reflection
method and quaternion rotation. Further, this system demonstrates double reflection step-by-step,
and performs a timing comparison between quaternion rotation and double reflection.

3.1 Command line options

The application, rmf, has several command line options as shown below:

~/misc/masters$rmf -?
usage: rmf -c (-q | -d | -f) -r -s -t -p filename –h -F -?

 -c draw parametric curve

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

685

 -q draw quaternion RMF
 -d draw double-reflection RMF
 -f draw frenet frame
 -p filename load parametric equations from filename
 -r draw normal/reference vector
 -s draw s vector
 -t draw tangent vector
 -h home view (no rotation)
 -F draw each component of the parametric curve
 -? this help text

These options start the application and immediately draw the specified items.
The default curve is:

() () () ()

() ()

() () ()

1 1
34 4

2
3

3 2

0.25 0.015625
4
1

() 2 0.25 0.25 2
4

3 2
() 3 0.5 0.5 3 3

2

t t t
x t t t

t t
y t t t

t t t
z t t t t

− +
= = −

−
= − = − + −

− +
= − = − + + −

This set of polynomials was chosen to clearly demonstrate the difference between Frenet frames and
RMFs.

3.2 Screen captures

Fig. 2: Initial view with parametric curve.

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

686

Fig. 3: Frenet frames with reference vector displayed.

Fig. 4: Rotation minimizing frames using double reflection.

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

687

Fig. 5: Rotation minimizing frames using quaternion rotation.

Fig. 6: Frenet frames (different perspective).

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

688

Fig. 7: Rotation minimizing frames using quaternions (different perspective).

4 CONCLUSION

One advantage the quaternion rotation method has over double reflection [11] is that intermediate
reference vectors need not be computed. Indeed, it is possible to compute R

N
 directly from the initial

reference vector R
0
 by composing all the rotations computed at each step. Instead of producing a

series of RMFs along a curve, it is possible to generate a series of rotation quaternions and compute
the RMF at a point only if required (i.e. not hidden). If the initial reference vector requires further
rotation, simply compose the same rotation with the series of rotation quaternions as needed.

REFERENCES

[1] Guggenheimer, H.: Computing Frames Along a Trajectory, Computer-Aided Geometric Design 6,
1989, 77-78.

[2] Hanson,A. J.: Visualizing Quaternions, Morgan Kaufman, 2006
[3] Klok, F., Two Moving Coordinate Frames for Sweeping Along a 3D Trajectory, Computer-Aided

Geometric Design, 3, 1986, 217-229.
[4] Maths Transformations using Quaternions:
 http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/

index.htm
[5] Narduzzi, M, “Rotation Minimizing Frames by Quarternion Rotations,” MS Project report, CIS

Department, University of Michigan – Dearborn, 2011
[6] Pobegailo, A.P.: Design of motion along parameterized curves using B-slpines, Computer-Aided

Design, 35, 2003, 1041-1046.

http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/ index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/ index.htm

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

689

[7] Rossignac, J.R.; Kim, J.J.: Computing and Visualizing Pose-Interpolating 3D Motions, Computer-
Aided Design 33, 2001, 279-291.

[8] Shani,U, Ballard, D.H.: Splines as Embeddings for Generalized Cylinders, Computer Vision,
graphics, and Image Processing, 27, 1984, 129-156.

[9] Shoemake, K.:Quaternions, http://www.cs.caltech.edu/courses/cs171/quatut.pdf
[10] Siltanen, P.; Woodward, C.: Normal Orientation Methods for 3D Offset Curves, Sweep Surfaces

and Skinning. EUROGRAPHICS ’92
[11] Wang, W.; Juttler, B.; Zheng, D.; Liu, Y.: Computation of Rotation Minimizing Frames, ACM

Transactions on Graphics, 27(1), Article 2, Publication date: March 2008
[12] Yoon, D, Shen, J, Ohou, E. “Generalized Cylinders in Reverse Engineering,” Proc of the 2010 Int.

Conf. on Computer Graphics & Virtual Reality, 83-87, July 12-15, 2010, Las Vegas, Nevada

APPENDIX: QUATERNION ALGEBRA [4]

Let q and q’ be quaternions. Then the following holds:

ADDITION

 q + q’ = q’ + q =

' '
' '
' '
' '

w w w w
x x x x
y y y y
z z z z

+     
     +     + =
     +
     +     

MULTIPLICATION

 qq' =
' '

' '

ww v v

v v wv w v

 − •
 

× + +  

r ur

r r r r

MULTIPLICATION FACTS

 (pq)p’ = p(qp’)

 1q = q1 =

1
0
0
0

w
x
y
z

   
   
   
   
   
   

 w’q = qw’ = w’

w
x
y
z

 
 
 
 
 
 

=

'
'
'
'

w w
w x
w y
w z

 
 
 
 
 
 

http://www.cs.caltech.edu/courses/cs171/quatut.pdf

Computer-Aided Design & Applications, 9(5), 2012, 679-690
© 2012 CAD Solutions, LLC, http://www.cadanda.com

690

CONJUNCTIVE

 q* =

*w
x
y
z

 
 
 
 
 
 

=

w
x
y
z

 
 − 
 −
 − 

CONJUNCTIVE FACTS

 (q*)* = q
 (pq)* = q*p*
 (p+q)* = p*+q*

NORM : N(Q) = X2 + Y2 + Z2 + W2

NORM FACTS

 N(qq’) = N(q)N(q’)

INVERSE

 q-1 = q* / N(q)

UNIT QUATERNION

 q = q / N(q)
 N(qq’) = 1

q-1 = q*

PURE QUATERNION

 q =

0
x
y
z



















 −q = q*

QUATERNION ROTATIONAL FACTS

Quaternion rotation is well documented, and does not need to be repeated here. The equation to
rotate a point v around a quaternion q is below:

w = qvq*

