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ABSTRACT 
 
Frenet Frames have been employed as local frames along a trajectory. However, they 
behave poorly around inflection points of the path. To remedy this, we propose to 
compute rotation minimizing frames (RMF) using quaternions. 
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1 INTRODUCTION 

Three dimensional motion enjoys a wide spectrum of applications including robotics, NC machining, 
and 3D animation, just to name a few. It typically depicts an object moving along a path. The position 
and orientation of the object are represented in terms of a moving frame at a particular point on the 
trajectory. It is very important to select the appropriate moving frame at a particular point on the 
trajectory. Traditionally, the Frenet Frame has been employed as moving frames. However, over the 
years the drawbacks of the frame have been identified and a number of different approaches to 
remedy these problems have emerged. Since the trajectory and the Frenet frame form the basis for 3D 
motions, they are briefly introduced in the next section. 

2 TRAJECTORY AND FRENET FRAME 

Let P(u) є R3 be a C2  curve, where u є U. Then the position and orientation of an object is specified in 
terms of a particular point on the trajectory and the moving frames as follow: 
 

PO(u) = [P(u), F(u)] 
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where P( ) is the trajectory and the moving frame F(u) = [r(u), s(u), t(u)] and r(), u(), and t() represent 3D 
orthonomal vectors [6]. Oftentimes the Frenet Frame has been employed as the moving frame as 
follows: 
 

t(u) = 
'( )

| '( ) |
P u
P u

,  s(u) = 
'( ) "( )

| '( ) ''( ) |
P u xP u
P u xP u

,  and r(u) =  r(u) x s(u). 

 
The Frenet Frame serves as the moving frame very well as long as there is no inflection point along the 
trajectory, i.e. P”(u) = 0. However, when there is an inflection point, the sign of s() changes and this 
induces undesirable consequences. To remedy this, there are a number of solutions published. In this 
section, some of the well-known approaches are reviewed and we will present our approach in the 
next section.  The papers summarized below may be characterized as an effort to produce a frame in 
which the binormal vector does not change the sign around the inflection point. This type of a frame 
is known as a Rotation Minimizing Frame (RMF). 

Siltanen/Woodward [10] summarize the behavior of the principle normal vector around an 
inflection point and propose the projection normal method.  In this approach, they compute the 
tangent vector (in our notation t()), the normal vector (in our notation r()) and the binormal vector (in 
our notation s()) at each knot point. The normal vector r

i
 at knot point u

i
 is computed as follows: 

 
r

i
 = r

i-1
 – (r

i-1
· t

i
 ) t

i-1 
 

where · represents dot product and r
i, 
s

i, 
and t

i
 are normalized. This approach is intuitive and easy to 

implement. 
Klok [3] considers moving frames in the context of sweeping. When there is no inflection point 

along the trajectory, the Frenet frames function as the moving frames. However, when there is an 
inflection point, a Rotation Minimizing Frame (RMF) has to be computed. A moving frame that does 
not exhibit discontinuous rotation about the tangent is called a rotation minimizing frame. Due to the 
RMF's smooth rotation as the moving frame crosses an inflection point, the RMF is preferred over the 
Frenet frame in many applications of computer graphics including sweep surface modeling [9], 
generalized cylinders [12], motion design and control [6]. He formulates the problem as differential 
equations on normal vector and binormal vector. The interested reader is referred to his paper. 

Guggenheimer [1] formulates the rotation minizing problem as an integration problem rather than 
a differential equation problem and claims that his approach is computationally faster. Shani/Ballard’s 
[8] approach is in a way similar to Guggenheimer’s in that they view rotation minimizing problem as 
an integration problem.  

Wang/Juttler [11] introduce the double reflection method to come up with rotation minimizing 
frames. As one can easily see, the authors deviate from previously mentioned researchers and 
formulate the problem in terms of the basic transformation reflection. 

Rossignac/Kim [7] split a motion into the translational and rotational components and consider 
the rotational component in terms of a screw motion.  They compute the parameters of a motion from 
two motion frames.  It appears that the rotation between the two motion frames is minimized by 
explicitly computing the angle between them rather than relying on the two principle normal vectors. 

In both refs [7,11], the authors both implicitly and explicitly compute the axis of rotation and the 
angle of rotation and obtain the rotation minimization frame. Generalizing these approaches, we will 
compute RMFs using quaternions. 
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2. 1 Quaternions  

 
An intuitive view of a quaternion is that it represents an axis of rotation in R3 along with the rotation 
angle. Following Hanson [2], one can consider the axis of rotation  n = [

 
n

1
, n

2, 
n

3
]

  
as

   
a unit vector with 

an angle of rotation θ  in the polar coordinate system. Then the quaternion q may be represented as a 

4-dimensional vector ( )q w ix jy kz= + + + = (w,v
v

) and its component may be expressed as follows:  

 
 

 
 

Fig. 1: The Axis of Rotation on S2 [2]. 
 
 

w
 
= cos (θ /2) 

x 
 
= n

1
sin(θ /2) 

y = n
2
sin(θ /2) 

z = n
3
sin(θ /2) 

 
Quaternions, represented by q, are a part of a subset of the hypercomplex numbers, with the form: 

 
w + xi + yj + zk 

where  
 i2 = j2 = k2 = ijk = -1  

ij = k, ji = -k 
jk = i, kj = -i 
ki = j ik = -j 

Any vector of v
r

 ∈ R3 can be mapped into a quaternion space: 

0

v
 
 
 
r  

This type of a quaternion is known as a pure quaternion. 
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2.2.  Quaternion Reflections 

 

Quaternions can be used to compute reflections with respect to a plane.  Let v = x, y,z[ ]T
 be a unit 

vector normal to the plane of reflection and ( )0,rq v= . To compute the reflection of p, compute [9]: 

 
q2 = qr × p × qr 

 
To understand reflection, consider reflection with respect to the x-y plane. The basis vector k is 
normal to the plane of reflection. From the relationship between i, j, and k, we have: 
 

kik = i
kjk = j
kkk = −k

 

 
Thus only the z component of a vector is inverted, the x and y components are unchanged.  
Reflection differs from rotation in two ways. First, the reflection quaternion must be a pure 
quaternion. Second, multiplication on the right is by the same quaternion as on the left. For rotations, 
multiplication on the right is by the conjugate. 

In general, it's not possible to compose an arbitrary number of reflections like rotations. It is, 
however, possible to combine two reflections into one rotation. Consider two pure, unit quaternions, 
q

r1
 and q

r2
. Each represents a vector normal to a plane of reflection. To reflect a point p through each 

plane, compute: 
 

q1 = qr1 × p × qr1 
 
This represents the reflection of p with respect to plane 1. 
 

p2 = qr2 × q1 × qr2 
 
p

2
 represents the reflection with respect to plane 2. Combining these two equations: 

 
p2 = qr2 × qr1 × p × qr1( )× qr 2 = qr2 × qr1( )× p × qr1 × qr2( ) 

 
Both q

r1
 and q

r2
 are pure quaternions and therefore −qr1 = conj qr1( ) and −qr 2 = conj qr 2( ).  

qr1 × qr 2 = −qr1( )× −qr2( )= qr1
* × qr 2

* = qr 2 × qr1( )* 

 
Finally, for two reflections: 

qr = qr2 × qr1

p2 = qr × p × qr
* 

 
Therefore, two reflections are equivalent to one rotation. However, the product qr2 × qr1 is not 
necessarily a pure quaternion so we cannot compose a third reflection into a single rotation. However, 
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it can be shown that the composition of an even number of reflections can be written as a single 
rotation. 
 

2. 3 Transforming the Double Reflection Method to a Single Quaternion Rotation 

 
We now have the tools to transform the double reflection method into a set of quaternion equations. 
The name "double reflection" suggests the approach we take. Each reflection is represented by a 
quaternion and the two reflection quaternions are composed to produce one rotation quaternion. Thus 
R

i
 undergoes a single rotation to produce R

i+1
. 

The first plane of reflection in the double reflection method is the bisecting plane between P
i
 and 

P
i+1

. Expressed as a pure quaternion, 1 1i iq p p+= − . However, to produce a reflection without scaling, 

q
1
 must also be a unit quaternion. Define a function unit(q) that maps a non-zero quaternion to the 

unit hyper-sphere, S3: 

unit q( ) =
q
q

=
q

N q( )
 

Thus the proper equation for the first reflection quaternion is: 

( )1 1i iq unit P P+= −  

To compute the quaternion representing the second plane of reflection, we need the unit 
quaternion for T

i+1
 – “reflection of T

i
 in plane 1”: 

q2 = unit Ti+1 − q1 × Ti × q1( ) 

The first reflection of R
i
 is computed the same as for T

i
:  

Ri
L = q1 × Ri × qi 

The second reflection of R
i
 is computed by reflecting Ri

L  using q
2
: 

Ri+1 = q2 × Ri
L × q2  

By substituting Ri
L = q1 × Ri × qi into Ri+1 = q2 × Ri

L × q2 , we can compute R
i+1

 directly from R
i
 with a 

single rotation: 
 

Ri+1 = q2 × Ri
L × q2 = q2 × q1 × Ri × q1( )× q2 = q2 × q1( )× Ri × q1 × q2( )= q2 × q1( )× Ri × q2 × q1( )*

 
Or more simply: 

qr = q2 × q1

Ri+1 = qr × Ri × qr
* 

 
Here we arrive at our goal: the double reflection method can be expressed by the following set of 
quaternion equations: 
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( )
( )

( ) ( )

1 1

2 1 1 1

1 2 1 2 1

1 1 1

*

i i

i i

i i

i i i

q unit P P

q unit T q T q

R q q R q q
S T R

+

+

+

+ + +

= −

= − × ×

= × × × ×

= ×

 

 

2.4 RMF by Quaternion Rotation Implementation [5] 

 
A pseudo code implementation of double reflection by quaternion rotation is shown in the algorithm 
below. All points and vectors are used as pure quaternions. 
 
 

Algorithm - RMF by quaternion rotation 
 
Input: 

Points P
i
, and unit tangent vectors, T

i
, for i = 0 … n, and an initial reference vector R

0
. 

Output: 
U

i
 = ( R

i
, S

i
, T

i 
), for i = 1 … n, as an approximate RMF  

for i = 0 to n-1 
q1 = unit(P[i+1] - P[i])  ; first reflection quaternion 
q2 = unit(T[i+1] - q1*T[i]*q1) ; second reflection quaternion 
q = q2 * q1     ; rotation quaternion 
R[i+1] = q*R[i]*conj(q)   ; rotate reference vector 
S[i+1] = T[i+1] x R[i+1]  ; 3D vector cross product 
U[i+1] = ( R[i+1], S[i+1], T[i+1] ) 

End 

3 AN ILLUSTRATION  

 
The system developed as part of our approach allows a user to specify a parametric curve, display the 
curve, the Frenet frames, and rotation minimizing frames computed using both the double reflection 
method and quaternion rotation. Further, this system demonstrates double reflection step-by-step, 
and performs a timing comparison between quaternion rotation and double reflection. 
 

3.1 Command line options 

The application, rmf, has several command line options as shown below: 
 
~/misc/masters$rmf -? 
usage: rmf -c (-q | -d | -f) -r -s -t -p filename –h -F -? 
  
  -c            draw parametric curve 
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  -q            draw quaternion RMF 
  -d            draw double-reflection RMF 
  -f            draw frenet frame 
  -p filename   load parametric equations from filename 
  -r            draw normal/reference vector 
  -s            draw s vector 
  -t            draw tangent vector 
  -h            home view (no rotation) 
  -F            draw each component of the parametric curve 
  -?            this help text 

 
 
These options start the application and immediately draw the specified items. 
The default curve is: 
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1
34 4

2
3

3 2

0.25 0.015625
4
1

( ) 2 0.25 0.25 2
4

3 2
( ) 3 0.5 0.5 3 3

2

t t t
x t t t

t t
y t t t

t t t
z t t t t

− +
= = −

−
= − = − + −

− +
= − = − + + −

 

 
This set of polynomials was chosen to clearly demonstrate the difference between Frenet frames and 
RMFs. 
 

3.2 Screen captures 

 

 
 

Fig. 2: Initial view with parametric curve. 
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Fig. 3: Frenet frames with reference vector displayed. 

 
Fig. 4: Rotation minimizing frames using double reflection. 
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Fig. 5: Rotation minimizing frames using quaternion rotation. 

 

 
Fig. 6: Frenet frames (different perspective). 
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Fig. 7: Rotation minimizing frames using quaternions (different perspective). 

 

4 CONCLUSION 

One advantage the quaternion rotation method has over double reflection [11] is that intermediate 
reference vectors need not be computed. Indeed, it is possible to compute R

N
 directly from the initial 

reference vector R
0
 by composing all the rotations computed at each step. Instead of producing a 

series of RMFs along a curve, it is possible to generate a series of rotation quaternions and compute 
the RMF at a point only if required (i.e. not hidden). If the initial reference vector requires further 
rotation, simply compose the same rotation with the series of rotation quaternions as needed. 
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APPENDIX:  QUATERNION ALGEBRA [4] 

Let q and q’ be quaternions.  Then the following holds: 

ADDITION 

 q + q’ = q’ + q = 

' '
' '
' '
' '

w w w w
x x x x
y y y y
z z z z

+     
     +     + =
     +
     +     

 

MULTIPLICATION 

 qq' = 
' '

' '

ww v v

v v wv w v

 − •
 

× + +  

r ur

r r r r  

MULTIPLICATION FACTS 

 
 (pq)p’ = p(qp’) 
 

 1q = q1 = 

1
0
0
0

w
x
y
z

   
   
   
   
   
   

 

 

 w’q = qw’ = w’

w
x
y
z

 
 
 
 
 
 

= 

'
'
'
'

w w
w x
w y
w z

 
 
 
 
 
 

 

http://www.cs.caltech.edu/courses/cs171/quatut.pdf
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CONJUNCTIVE 

 q* = 

*w
x
y
z

 
 
 
 
 
 

=  

w
x
y
z

 
 − 
 −
 − 

 

CONJUNCTIVE FACTS 

 (q*)* = q 
 (pq)* = q*p* 
 (p+q)* = p*+q* 

NORM : N(Q) = X2 + Y2 + Z2 + W2 

NORM FACTS 

 N(qq’) = N(q)N(q’) 

INVERSE 

 q-1 = q* / N(q) 

UNIT QUATERNION 

 q = q / N(q) 
 N(qq’) = 1 

q-1 = q* 

PURE QUATERNION     

 q =

0
x
y
z

 

 

 
 
 
 

 

 

 
 
 
 

  −q = q*  

QUATERNION ROTATIONAL FACTS 

Quaternion rotation is well documented, and does not need to be repeated here.  The equation to 
rotate a point v around a quaternion q is below: 
 

w = qvq* 


