

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

707

GPU Based Evaluation and LOD Rendering of NURBS Surfaces

Tan Dunming1, 2, Zhao Gang1 and Lu Hu3

1State Key Laboratory of Virtual Reality Technology and Systems, Beihang University,
zhaog@buaa.edu.cn

2The First Aeronautical Institute of PLA Air Force, tan_dunming@foxmail.com
3Shanghai Aircraft Manufacturing CO., Ltd, luhu@comac.cc

ABSTRACT

This paper proposes a new GPU method for the evaluation and LOD (Level of Detail)
rendering of NURBS surfaces. Compared with the existing evaluation method of basis
function, the approach simplifies the process by just one-pass and saves the graphics
memory with only one texture array. The wavelet based LOD rendering method also
saves the time to re-evaluate and re-transfer the data for rendering.

Keywords: GPU, NURBS, De Boor's algorithm, LOD, wavelet.
DOI: 10.3722/cadaps.2012.707-719

1 INTRODUCTION

1.1 Background and Problem

Non-Uniform Rational B-Spline (NURBS), a mathematical model commonly used in Computer Aided
Geometry Design (CAGD), is the foundation of Computer Aided Design (CAD) and Computer Aided
Manufacturing (CAM) for representing curves and surfaces. NURBS is also incorporated into
international standards of Initial Exchange Specification (IGES), as well as Standard for the Exchange of
Product model data (STEP) [1].

The evaluation and rendering of NURBS surfaces are very time consuming and there is an urgent
need for fast evaluation and rendering methods. For example, Boeing 737, the first aircraft designed
by CAD and represented by NURBS surfaces, was evaluated and tessellated into 350M triangles [2],
which is a greate challenge for both the evaluation and rendering.

Recently, there are some researches that use GPU to accelerate the evaluation and rendering of
NURBS surfaces. But those methods use the basis functions to evaluate, which make the computing in
multi-pass and consume extra graphics memory. Besides, those methods still use traditional methods
for Level of Detail (LOD) rendering, which spend extra time to re-generate and re-transfer the data.

mailto:zhaog@buaa.edu.cn
mailto:tan_dunming@foxmail.com
mailto:luhu@comac.cc

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

708

1.2 Our Work

In this paper, the authors present a new method to evaluate and render the NURBS surfaces by
adopting GPU shader model 4.0 [3]. The evaluation is implemented with de Boor's algorithm by GPU
fragment shader. To avoid the bottle-neck of data transfer from GPU to CPU, the evaluated data are
kept in the graphics memory. The rendering is accomplished with the assistance of GPU vertex texture
fetch, which uses the graphics texture array for vertex position and no re-transfer of the evaluated
data from GPU to CPU. Wavelet multi-resolution analysis is used to accelerate the LOD rendering,
which can avoid the time to re-evaluate NURBS surfaces with different resolutions.

1.3 Paper Overview

The remainder of the paper is organized as follows: Section 2 starts with a brief overview of some
existing GPU based methods for evaluating and LOD rendering of NURBS surfaces. Section 3 provides
some insights into basics of NURBS, the de Boor's algorithm, GPU texture representation of NURBS
surfaces, the computation mode of GPU fragment shader, the GPU evaluation and rendering system
developed. Section 4 describes the GPU and LOD rendering of NURBS surfaces. Section 5 gives the
results and analysis. Section 6 discusses the conclusions.

2 RELATED WORK

Nowdays, GPU has evolved into an extremely flexible and powerful processor with high performance
in parallel computing. GPU develops rapidly and is now used in many fields of science and technology
including the evaluation and rendering of NURBS surfaces in CAGD.

2.1 GPU Based Evaluation of NURBS Surfaces

GPU for per-pixel evaluation of parametric surfaces was first used by Kanai and Yasui [4] in order to
achieve high quality surface rendering. In their algorithm basis function coefficients were provided by
a fragment shader and multiplied by control points to evaluate Bezier and B-spline surfaces. However
the algorithm is difficult to use if the orders of surfaces are not fixed. Furthermore, it simplifies non-
linear parametric NURBS surfaces as linear ones and the algorithm would be too slow for real-time
rendering if the number of surfaces exceeds ten.

Bezier patch was used by GPU vertex shader to approximate NURBS [5], However, it needs to
convert a NURBS surface into multiple bi-cubic Bezier patches by CPU first. Meanwhile, the method is
not suitable to approximate high order NURBS surfaces with accuracy.

Basis function was used by GPU fragment shader to evaluate NURBS surfaces by multiplying the
basis functions with the control points [6]. However, different GPU fragment shader must be used for
NURBS surfaces of different orders and therefore not suitable for general purposes.

Then GPU was used to evaluate NURBS surfaces of arbitrary order [7,8]. Packing of the knots and
basis function data was optimized to reduce the data to be transferred. But CPU was still used to find
the u and v knot spans, though the basis function was computed on the GPU. Both of the two methods
require computing basis function in multi-pass and spend extra graphics memory to store basis
function of different orders.

2.2 GPU Based LOD Rendering of NURBS Surfaces

LOD is important for rendering especially when applied to massive models. LOD can be divided
into discrete LOD and continuous LOD [9]. Discrete LOD may cause geometry popping when changing

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

709

the LOD level and spend extra memory. Continuous LOD is based on the theory of Hoppe's Progressive
Meshes [10] to solve geometry popping. However, extra time is needed when changing the LOD level.

There are some methods of GPU based LOD rendering of NURBS surfaces.
Rockwood gives a method by first converting all surfaces to Bezier patches and then tessellating

into grids of rectangles with different resolutions [11]. Guthe uses CPU to select sufficiently accurate
rational bi-cubic Bezier patches for GPU to render [5], only the NURBS connectivity index data are
generated and transferred to evaluate and render NURBS surfaces.

Krishnamurthy used different parametric resolution for discrete LOD, Vertex Buffer Object (VBO)
is used to avoid transferring the evaluated data back from GPU to CPU for rendering [7,8]. However,
the method requires re-evaluating NURBS surface with different parametric resolutions and re-
generating the connectivity index data by CPU. Then the evaluated NURBS surfaces are transferred to
GPU. Therefore, this approach is not efficient enough for rendering compared with hardware
accelerated display list.

Han used GPU geometry shader to avoid suffering from limited bandwidth of transferring data to
GPU [12], the connectivity index data of different LOD are generated by GPU geometry shader, so there
is no CPU overload. However, due to the limitation of current GPU geometry shader, the number of
emits primitives is limited. So the parametric resolution of the NURBS surface cannot achieve high
accuracy.

3 GPU BASED EVALUATION OF NURBS SURFACES

3.1 Basic NURBS Theory

NURBS curves and surfaces are defined by control points, weight, knot vector and order. NURBS curve
is a special case of NURBS surface, which only has them in one direction. For simplicity, we first
introduce NURBS curve and then NURBS surface.

The mathematical definition of NURBS curve is shown in Eqn. (1). C
(u)
 is the NURBS curve and u

stands for the interpolation parameter, the curve is influenced by n control points P
i
, each control

point corresponds to a weight w
i
, the curve has an order of k and knot vector U

i
 shown in Eqn. (2). Eqn.

(3) and Eqn. (4) are the recursive basis functions definition.

Fig. 1: NURBS curve with control points.

(),

0()
(),

0

n
w P N ui i i k

iC u n
w N ui i k

i

∑
==

∑
=

 (1)

 [, , ...,]0 1 1U u u ui n k= + + (2)

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

710

 1() () (), , 1 1, 11 1

u u u ui i kN u N u N ui k i k i ku u u ui k i i k i

− −+ += −− + −− −+ + + +
 (3)

 0 1() {,0 1
u u ui iN ui otherwise

 ≤ < +=

 (4)

As shown in the formulas above, NURBS curve is evaluated by basis function in recursion. As far as
we know, all GPU NURBS algorithms have been implemented in this way. However, it is time and
memory consuming and thus we can conclude that this is not the best way.

3.2 De Boor's Algorithm

The De Boor's algorithm is fast and stable for evaluating NURBS curves and surfaces [13]. It is a
generalization of De Casteljau's algorithm and is shown in Eqn. (5) to Eqn. (7).

1* * *() () (), , 1j 0 j

n i klC u w P N u w P N u Pi kj j i k j j j ki k

−
∑ ∑= = = −−= = −

 (5)

0

{ 1 1(1) 1

P ljlPj l l l lP Pj j j jα α

 =
= − −− + +

 (6)

 1

1 1

u u jl
j u uj k j

α
− +

= −+ + +
 (7)

Compared with basis function method which needs all control points multiplied by basis function
and evaluated in multi-pass, De Boor's algorithm only needs k+1 control points of P

j
 (j=i-k,i-k+1,…, i)

and evaluated without recursion. Meanwhile, it avoids computing the basis function, which saves time
and memory.

However, up to now this algorithm has not carried out by GPU parallel computing.

3.3 GPU NURBS Evaluation by De Boor's Algorithm

We choose OpenGL Shading Language (GLSL) to implement our GPU NURBS De Boor’s algorithm for its
cross-platforms compatibility. Besides, this is easy to port to other GPU language such as High Level
Shading Language (HLSL) of Direct3D or CG.

3.3.1 Prepare GPU NURBS texture array data

The first step is to prepare the NURBS data for GPU to evaluate. For GPU computing, the native data
layout is a two dimensional array [14] and is called texture in graphics. So, in order to evaluate NURBS
by GPU, we need to prepare the NURBS data and then transfer it to GPU.

In our algorithm only control points P
i
 with weight w

i
 and the parametric result C(u) are stored in

texture array. GL_TEXTURE_RECTANGLE_ARB is used to avoid the restriction of texture size to be
power of 2 and we choose GL_RGBA32F_ARB texture format because each control point has x,y,z
coordinates and weight w, corresponding to the RGBA texture mode. So each control point
corresponds to a texture pixel. One or more NURBS curves with the same oder, control points number
and knot vector can be evaluated at the same time, which is useful for NURBS surfaces.

So the data layouts of the NURBS control points with weights are somewhat like Fig. 2. The RGBA
components respond to x, y, z, w. Control points of each NURBS curve may be stored in one direction
while multiple NURBS curves, which have the same oder, control points number and knot vector, may
be stored in the other direction.

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

711

Fig. 2: Control points texture data.

After preparing the NURBS texture array data, it is transferred from memory to GPU by
glTexImage2D in order to evaluate NURBS with GPU shader.

Order k and knot vector U
i
 are not stored in texture because they use less memory and are

transferred to GPU directly as uniform variables for cache-coherent in order to reduce data access
time, see 3.3.2 for detail.

3.3.2 Evaluate NURBS curves

In GPU evaluation, there exist several input texture array data, a computation kernel and several output
texture array data. The computation kernel is a fragment shader of GLSL which is executed by parallel
computing of GPU. It takes input from input texture array data and writes results to FBO (Frame Buffer
Object) rendering target of output texture array data. GPU evaluation is executed by drawing, because
fragment shader is executed when a pixel is drawn and the coordinate of the pixel can be used as
NURBS parameters of u.

First, uniform variable n representing the number of controls points, the order k, the parametric
resolution and direction of the control points are transferred to GPU.

We draw serials of quads corresponding to the effective knot vector span region from u
k
 to u

n
, with

the width equals to parametric resolution and height equals to number of curves. The span region
index i (described in 3.2), the related knot vector u

i-k
, u

i+k+1
 (see Fig. 3), which are the same in one quad,

were transferred to GPU as uniform variables directly to achieve cache-coherent. Compared with other
GPU NURBS algorithms, we avoid the time to find the knot span region index i in which u lies by
drawing knot vector span region quads and tell GPU directly.

Fig. 3: Draw knot span region with related knots vector for NURBS GPU evaluation

Our GPU kernel of De Boor's algorithm is quite simple and executes all evaluation on GPU. The steps
will now be described consecutively.

• Compute the u value corresponding to the drawn pixel. In our NURBS evaluation, we scale the
range of effect u form 0 to 1, and we use GL_TEXTURE_RECTANGLE_ARB texture format with
texture coordinates range from 0 to texture size, so the u value equals to the texture
coordinate of that pixel divided by parametric resolution, described in Fig. 3.

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

712

• Get the control points of Pj (j=i-k,i-k+1,…, i) by GPU texture sampler from the control points
texture prepared in 3.3.1 and shown in Fig. 2.

• Execute De Boor's algorithm described in 3.2 on GPU with shader model 4.0, which is available
in almost every current GPU.

The evaluation result is writing to FBO rendering target texture, namely the NURBS curve texture
array data for further rendering.

Fig. 4: C(u) texture data of evaluated NURBS curves.

3.3.3 Evaluate NURBS surfaces

NURBS surface’s definition is shown in Eqn. (8).

() (), , , ,

0 0
(,)

() (), , ,
0 0

n m
w P N u N vi j i j i k j l

i j
S u v n m

w N u N vi j i k j l
i j

∑ ∑
= =

=
∑ ∑
= =

 (8)

Evaluation of NURBS surfaces is similar to NURBS curves. There is one more evaluation in v direction.
First, NURBS surface control points are evaluated as NURBS curves in one direction described in 3.3.2.
Then the evaluated points between C(u) curves are treated as control points again and evaluated in the
other direction and finally get the evaluated NURBS surface mesh. See Fig. 5 for how NURBS surface is
evaluated by first evaluating NURBS curve in u direction.

Fig. 5: NURBS surface evaluation.

When evaluating from C(u) to S(u,v), the GPU evaluation kernel is the same, however the drawing of
knot span region quads is changed to the other direction, see Fig. 6. The uniform variable of NURBS
evaluation shader representing the direction of control points is also changed.

Fig. 6: Knot span region in the other direction.

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

713

We do not need to prepare the NURBS surface control points texture data and transfer them into
graphics memory, because the curve evaluation texture array data C(u) are used as NURBS surface
control points texture array data directly. The NURBS surface evaluation result is written to surface
evaluation texture array data.

Fig. 7: S(u,v) texture array data of NURBS surface.

4 GPU BASED RENDERING OF NURBS SURFACES

We will first introduce NURBS rendering methods, especially the GPU rendering method, the the
wavelet multi-resolution analyze based GPU LOD algorithm is then introduced.

4.1 Traditional Rendering

Traditional rendering is implemented as follows: First, read the GPU evaluation results of texture array
data from FBO and write them in the memory. Second, use OpenGL to render triangles or quads of the
evaluated meshes and send the rendering data to the graphics memory again for rendering. Because
exchange data between memory and GPU is very slow [5], there will be little advantage compared with
CPU NURBS evaluation algorithm. We do not suggest although it is quite simple.

Fig. 8: Rendering of control points, curves and surface of a sphere.

4.2 GPU NURBS Rendering

NURBS rendering can also be accelerated by GPU. With the fast development of the GPU’s program
abilities, float texture array data can be accessed by either vertex shader or geometry shader ever since
GPU shader model 4.0 [3]. So we can avoid the transferring of evaluated curve or surface texture array
data back to memory and then re-transferring rendering data to GPU again. This is achieved by first
rendering the geometry topology connectivity index of the NURBS curves or surfaces, while in GPU
vertex shader the topology connectivity index is converted into real evaluated curve or surface
coordinates by looking up the evaluated texture array data. In this way, GPU rendering speed is much
faster than traditional method.

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

714

Fig. 9: GPU NURBS rendering work flow.

Fig. 9 shows the rendering work flow. While rendering, the mesh connectivity index data are
transferred to GPU only once and compiled to display list for fast rendering, Vertex texture fetch is
used to convert display list of connectivity index data to evaluated NURBS curves or surfaces
coordinate data. GPU fragment shader is used for lighting and outputs the final NURBS surface. So the
GPU NURBS evaluation and rendering are separated at different stages and do not affect each other.

The pseudo code below describes the GPU NURBS rendering, the connectivity index data are
transferred to GPU by OpenGL rendering calls and stored in gl_PositionIn. With texture2Drect, the
connectivity index data are converted to the real location of the evaluated S(u,v) , then three
transformed vertexes are emitted to generate a triangle.

…
uniform sampler2DRect SuvTexArray;

…
vec2 TexCoord = gl_PositionIn[0].xy;
vec4 Suv = texture2DRect(SuvTexArray, TexCoord.xy);
gl_Position = gl_ModelViewProjectionMatrix* Suv;
EmitVertex();
…

EndPrimitive();//
…

4.3 GPU NURBS LOD Rendering

LOD is an important technology in real-time rendering. We implement LOD of NURBS by wavelet.
Wavelet has special advantage in multi-resolution analyze and GPU accelerated wavelets analysis is
used for LOD rendering.

4.3.1 Wavelet basis

Wavelet is a new concept in multi-resolution due to its major advantages, namely it can keep the main
characteristic of the targeting object as well as its detail characteristic. This is done by wavelet
transform and reverse transform.

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

715

Haar wavelet, which is the most simple and fast wavelet, is select to perform progressive LOD coarse
and refinement. The scaling function is defined by Eqn. (9) and the wavelet function is defined by Eqn.
(10).

,

1 0 1
() { ,

() (2) 0, 1, ...2 1
j j

j k

t
t

otherwise

t t k k

φ

φ φ

 ≤ <
=

 0

= − = −

 (9)

,

1 0 0.5
() {

0.5 1

() (2) 0, 1, ...2 1
j j

j k

t
t

t

t t k k

ϕ

ϕ ϕ

 ≤ <
=

 −1 ≤ <

= − = −

 (10)

Suppose there is a discrete sequence of A
n
composed by {a

n,0
, …, a

n,2
n

-1
}, which can be represented by

Eqn. (11). So A
n
 is transferred by Haar wavelet into the main part of A

n-1
composed by {a

n-1,0
, …, a

n-1,2
n-1

-1
}

and the detailed part of D
n-1

composed by {d
n-1,0

, …, d
n-1,2

n-1
-1
}.

 1 1 1 1,0 ,0 1,0 1,0 1,0 1,0,2 1 ,2 1 1,2 1 1,2 1 1,2 1 1,2 1

() ... () () ... () () ... ()n n n n n nn n n n n nn n n n n n
a t a t a t a t d t d tφ φ φ φ ϕ ϕ− − − −− − − −− − − − − − − − − −

+ = + + + (11)

Two dimensional Haar wavelets have corresponding scaling function, wavelet function and transform

functions shown in Eqn. (12) and Eqn. (13).

1

2

3

(,) () ()

(,) () ()

(,) () ()

(,) () ()

x y x y

x y x y

x y x y

x y x y

ψ φ φ

ψ φ ψ

ψ ψ φ

ψ ψ ψ

=

=

=

=

 (12)

 1 2 31 ,1 ,2 ,3
, , , , ,1, , , , , , , , , ,

... ...j j j j j
k m k m k m k m k mj k m j k m j k m j k m j k m

a a d a dϕ ϕ ψ ψ ψ+
+

= + + +∑ ∑ ∑ ∑ ∑ (13)

4.3.2 Wavelet of LOD for NURBS

When applying wavelet transform to multi-resolution analysis of NURBS, for NURBS curves, it is one
dimensional wavelet transform executed in the row direction shown in Fig. 10 (a). For NURBS surfaces,
it is a two dimensional transform that first executed in the row and then in the column direction
shown in Fig. 10 (b).

Fig. 10: Wavelet transform and reverse transform: (a) one dimensional transform, and (b) two
dimensional transform.

An An-1

…
A1 A0

Dn-1 D1 D0

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

716

The GPU accelerated wavelet multi-resolution analysis is shown in Fig. 11. It takes the evaluated
texture array data as A

n
, which are the inputs of GPU wavelet transform shader. The Wavelet transform

is executed by GPU shader. It writes the transformed A
n-1

 and D
n-1

 to the FBO rendering targets of next
LOD level of texture array data. The evaluated texture array data of A

n
 can be transformed multi-times

until A
0
. Meanwhile, this process can be reversed with similar reverse transform.

Fig. 11: GPU wavelet transform from A
n
 to A

n-1.

The pseudo code below describes the wavelet transform process, the AnTexArray represents the

NURBS texture array data A
n
. With texture2Drect, a

n,0
and a

n,1
 can be fetched from the NURBS texture

array data. Then wavelet transform is applied, and the results are written to gl_FragData[0] and
gl_FragData[1], which represent the the main part of A

n-1
 and the detailed part of D

 n-1
. Similarly, the

reverse transform generates A
n
 from A

n-1
 and D

n-1
.

…
uniform sampler2DRect AnTexArray;
vec2 coords = gl_TexCoord[0].xy;

vec4 a_n0 = texture2DRect(AnTexArray, vec2(coords.x*2.0-0.5,coords.y));
vec4 a_n1 = texture2DRect(AnTexArray, vec2(coords.x*2.0+0.5,coords.y));
gl_FragData[0] = 0.5*(a_n0 +a_n1);
gl_FragData[1] = 0.5*(a_n0 –a_n1);
…

The wavelet transform is simple and consume little time compared with NURBS re-evaluation

method that needs to re-evaluate the NURBS curves and surfaces, because it can generate A
n-1

 form A
n

and retrieve A
n
 from A

n-1
 and D

n-1
 by reverse. So this multi-resolution LOD method is somewhat like the

progressive meshes proposed by Hoppe [10]. Different texture arrays corresponding to the LOD levels
are the result of wavelet transform, namely A

n
 and A

n-1
shown in Fig. 12 (a).

Compared with progressive

meshes, the wavelet transform progress can also be accelerated by GPU shader in parallel. The wavelet
multi-resolution analysis based LOD rendering effects is shown in Fig. 12 (b).

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

717

Fig. 12: Wavelet multi-resolution analysis based LOD: (a) wavelet transform result of S(u,v) texture
array data, and (b) rendering effects of wavelet based LOD.

5 RESULTS AND ANALYSIS

We carried out test of GPU de Boor's NURBS evaluation method and GPU LOD rendering method on
different hardware platforms with Intel CPU and NVIDIA GPU shown in Tab. 1.

CPU/GHz RAM/GB GPU VRAM/MB
P4 3.0 2 GeForce

9500GT
512

Core2 2.13*2 2 GeForce
GT 130M

512

Xeon 2.67*8 16 Quadro
FX 3800

1024

Tab. 1: Hardware platforms and configuration.

NURBS curve and surface evaluation speed is affected by order, number of evaluation points and

control points. In practice, the order is usually no more than 3, so we do not need to test our method
with order, we directly choose order 3. The evaluated NURBS surfaces are shown in Fig. 13.

Fig. 13: NURBS surfaces evaluated and rendered on GPU.

Fig. 14 is the comparison of GPU De Boor's evaluation method and basis function method of
evaluation time compared with [7]. We test evaluation with control points of 16*16, 64*64 and
256*256. The figure shows that our method promotes the evaluation speed orders of magnitude. The
main difference is because our De Boor's algorithm carries out everything by GPU parallel computing
with one pass while GPU basis function method needs to compute different order of basis function
with multi pass. Meanwhile, our De Boor's algorithm uses NURBS local characteristic and only uses
control points and knots vector that effects the evaluation point described in 3.2, while their method
compute the whole control points with knots vector.

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

718

Fig. 14: Comparison of evaluation speed of De Boor's method with basis function method on different
GPU.

Fig. 15 is the comparison of LOD rendering method of GPU wavelet transform based multi-resolution
analyze with traditional rendering method. We test evaluation points of 128*128, 512*512 and
1024*1024 with control points of 21*23. The figure shows that rendering with wavelet transform is 3-
5 times faster than re-evaluation because it generates A

n
 from A

n-1
 and D

n-1
 by gradually refine, not

totally discard previous evaluated data. So it has little overload to both CPU and GPU when changing
the LOD detail and NURBS rending resolution.

Fig. 15: Comparison of LOD rendering by wavelet transform of multi-resolution analysis and
traditional LOD rendering.

6 SUMMARY AND CONCLUSIONS

We have implemented NURBS De Boor's algorithm on the GPU, which promote NURBS evaluation speed
orders of magnitude compared with previous GPU basis function method. With vertex texture fetch
technology of recent GPU, we demonstrate the wavelet transform of multi-resolution based LOD

Basis-
9500GT,

16, 8

Basis-
9500GT,
64, 10.5

Basis-
9500GT,
256, 70

Basis-
GT130M,

16, 7

Basis-
GT130M,

64, 8

Basis-
GT130M,
256, 52

Basis-
FX3800,
16, 6.5

Basis-
FX3800,

64, 7

Basis-
FX3800,
256, 30

De Boor-
9500GT,
16, 0.5

De Boor-
9500GT,
64, 0.8

De Boor-
9500GT,
256, 5

De Boor-
GT130M,
16, 0.55

De Boor-
GT130M,

64, 0.7

De Boor-
GT130M,
256, 1.8

De Boor-
FX3800,
16, 0.3

De Boor-
FX3800,
64, 0.4

De Boor-
FX3800,
256, 0.8

Basis-9500GT

Basis-GT130M

Basis-FX3800

De Boor-9500GT

De Boor-
GT130M
De Boor-FX3800

0

10

20

30

40

50

60

70

80

128 512 1024

Traditional

Wavelet

Computer-Aided Design & Applications, 9(5), 2012, 707-719
© 2012 CAD Solutions, LLC, http://www.cadanda.com

719

rendering with the evaluated texture remain in GPU and the connectivity index data complied to
display list, so GPU accelerated rendering have almost no overload to CPU and GPU.

ACKNOWLEDGEMENTS
This research is supported by Program for New Century Excellent Talents in University (The project
NO. is NCET-10-0036), State Key Laboratory of Virtual Reality Technology and Systems (The project
NO. is SKVR-09-08) and Fund of National Engineering and Research Center for Commercial Aircraft
Manufacturing，(The project No. is SAMC-11-JS-07-203）.

REFERENCES

[1] Piegl, L.A.; Tiller, W.: The NURBS book, Springer Verlag, 1997.
[2] Dietrich, A.; Wald, I.; Slusallek, P: Large-scale CAD model visualization on a scalable shared-

memory architecture, Proceedings of 10th International Fall Workshop-Vision, 2005, 303–310.
[3] Patidar, S.; Bhattacharjee, S.; Singh, J.M.; Narayanan, PJ: Exploiting the shader model 4.0

architecture, Center for Visual Information Technology, 2007.
[4] Kanai, T.; Yasui, Y.: Per-pixel evaluation of parametric surfaces on gpu, ACM Workshop on

General Purpose Computing Using Graphics Processors, 2004.
[5] Guthe, M.; Balazs, A.; Klein, R.: GPU-based trimming and tessellation of NURBS and T-Spline

surfaces, ACM Transactions on Graphics (TOG), 24(3), 2005, 1016–1023.
DOI:10.1145/1073204.1073305

[6] Kanai, T.: Fragment-based evaluation of Non-Uniform B-spline surfaces on GPUs, Computer-
Aided Design and Applications, 4(3) , 2007, 287–294.

[7] Krishnamurthy, A.; Khardekar, R.; McMains, S.: Direct evaluation of NURBS curves and surfaces
on the GPU, Proceedings of the 2007 ACM symposium on Solid and physical modeling, 2007,
329–334. DOI:10.1145/1236246.1236293

[8] Krishnamurthy, A.; Khardekar, R.; McMains, S.: Optimized GPU evaluation of arbitrary degree
NURBS curves and surfaces, Computer-Aided Design, 41(12), 2009, 971–980.
DOI:10.1016/j.cad.2009.06.015

[9] Luebke, D.P.: Level of detail for 3D graphics, Morgan Kaufmann Pub, 2003.
[10] Hoppe, H.: Progressive meshes, Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, 1996, 99–108.
[11] Rockwood, A.; Heaton, K.; Davis, T.: Real-time rendering of trimmed surfaces, Proceedings of the

16th annual conference on Computer graphics and interactive techniques, 1989, 107–116.
[12] Han, D.: Tessellating and Rendering Bezier/B-Spline/NURBS Curves and Surfaces using Geometry

Shader in GPU. Citeseer, 2008, http://www.gpucomputing.net/?q=node/2934.
[13] Carl De Boor, A.: A practical guide to splines, Springer-Verlag, 1978.
[14] Goddeke, D.: Gpgpu-basic math tutorial, Univ. Dortmund, Fachbereich Mathematik, 2005,

http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html.
[15] Lindstrom, P.; Koller, D.; Ribarsky, W.; Hodges, L.F.; Faust, N.; Turner, G.A.: Real-time, continuous

level of detail rendering of height fields, Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, 1996, 109–118.

http://www.gpucomputing.net/?q=node/2934
http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html

