
11

Shape Information of Curves
and its Visualization using Two-tone Pseudo Coloring

Norimasa Yoshida1 , Takafumi Saito2

1Nihon University, yoshida.norimasa@nihon-u.ac.jp
2Tokyo University of Agriculture and Technology, txsaito@cc.tuat.ac.jp

Corresponding author: Norimasa Yoshida, yoshida.norimasa@nihon-u.ac.jp

Abstract. This paper presents a method for computing and visualizing the shape infor-
mation of di�erentiable parametric curves. The shape information is the slope α of the
logarithmic curvature graph and the slope β of the logarithmic torsion graph. We derive the
equations for computing α and β in terms of curvature and torsion, respectively. The value
of α is related to the speci�c curvature function, such as the linear function when α = −1.
For space curves, the value of β is also related to the speci�c torsion function. Using the
two-tone pseudo coloring for the visualization of the shape information, users can read out
the approximate value of α and β for each point of the curve. For some planar curves, we
clarify the similarities with log-aesthetic curves by taking the limit of α as the parameter
approaches the limit value.
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1 INTRODUCTION

To design aesthetic objects in industrial or conceptual design, inspecting the geometric quality of curves and
surfaces is inevitable. Since the geometric quality is not easy to grasp from their rendered image, CAD
systems are usually equipped with special tools. Such inspection tools for surfaces include re�ections lines [8],
isophotoes [10], or color map of Gaussian or mean curvature [1].

Curvature plots and curvature combs [4] are widely used in CAD systems for obtaining information about
curvature. Using these tools, designers can recognize regions of monotone curvature and check if curvature
extrema occur at points intended by the designers [2]. These tools are especially important for designing
aesthetic objects in industrial or conceptual design since such objects are usually based on an initial set of fair
curves.

To examine the shape information of a curve that cannot be easily obtained by curvature plots or curvature
combs, logarithmic curvature graphs (LCGs) have been proposed [13]. For space curves, logarithmic torsion
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graphs (LTGs) have been also proposed. The slope of the LCG or LTG is called α or β, respectively. For a
planar curve, if its LCG is close to be linear with its slope α, it means the curve is close to the log-aesthetic
curve [14, 16] with the shape parameter α. Similarly, for space curves, if its LCG and LTG are close to be
linear with their slopes α and β, respectively, the curve is close to the log-aesthetic space curve [12] with the
shape parameter α and β. LCGs and LTGs are good for checking the linearity, but they both have a problem
that it is not easy to know which point of a curve corresponds to which point in the LCG or LTG.

The contributions of this work are the following.

� Equations for computing α (and β for space curves) for each point of a parametric curve segment

The equation for α in terms of the radius of curvature is presented in [5]. We derive the equation in
terms of curvature and describe the details, such as the case when κ or dκ

ds is negative.

� Visualization of the shape information (α and β) using two-tone pseudo coloring

By using the two-tone pseudo coloring[11], users can read out the approximate value of α (and β). For
example, if the color of a curve segment is almost red, it means the curve is close to the log-aesthetic
curve with α = 1, which is a logarithmic spiral. Using the two-tone pseudo coloring, users can read out
the approximate value of α (and β) for each point of a curve segment if the value is within a speci�ed
range. If the color changes from red to orange, it means the curve is changing from a logarithmic spiral
(α = 1) to the circle involute (α = 2). Since α is visualized with respect to the arc length, users can
also recognize the speed of change.

� Clarifying the shape similarities of some planar curves in di�erential geometry with log-aesthetic curves

For some planar curves, we clarify the shape similarities with log-aesthetic curves regarding the LCG
slope α. For example, the hyperbola gets closer to the log-aesthetic curve with α = 1

3 as the parameter
approaches ±∞.

The paper is organized as follows. Section 2 reviews LCGs, LTGs, and their properties. Section 3 derives
the equations for α and β and describes the detailed situations where the slopes are de�ned. Section 4
proposes a method for visualizing the shape information using two-tone pseudo coloring and shows examples
of visualizing polynomial and rational Bézier curves. Section 5 analyzes some planar parametric curves through
the LCG slopes and clari�es similarities with log-aesthetic curves. Finally, conclusions are presented in Section
6.

2 LOGARITHMIC CURVATURE AND TORSION GRAPHS

This section reviews the logarithmic curvature graph (LCGs) and logarithmic torsion graphs (LTGs) [13] and
their properties. Originally, logarithmic curvature graphs are formulated by the radius of curvature [7, 9, 14].
In this paper, we use the formulation by curvature [13]. Curves with linear LCGs are called log-aesthetic curves

[14, 16]. If both the LCG and LTG are linear, the curve is called log-aesthetic space curves [12]. Quadratic

log-aesthetic curves whose LCGs are quadratic are investigated in [15]. In this section, we assume that the
curvature is monotonically increasing as the arc length increases. In previous work [14, 13], the radius of
curvature is assumed to be monotonically increasing. Therefore, the equations in this section are slightly
di�erent from equations in [13].

Let κ and s be the curvature and the arc length, respectively. The linearity of LCG is

log

(
κ
ds

dκ

)
= −α log κ+ c, (1)

where α is the slope and c is a constant. �−� before �α log κ� is necessary for the value of α to have the same
meaning as the formulation by the radius of curvature. If κ or ds

dκ takes a negative value, its absolute value
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Figure 1: Curvature plot of log-aesthetic curves (Λ = 1).
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Figure 2: Cubic Bézier curve with monotonically varying curvature.

is taken. The linearity of the LCG is especially important because the curve becomes the Clothoid, Nielsen's
spiral, a logarithmic spiral or the circle involute when α = −1, 0, 1 or 2, respectively. Modifying Eq. (1) and
setting Λ = e−c, we get the following curvature function in the standard form (κ = 1 at s = 0):

κ =

{
eΛs if α = 0

(−Λαs+ 1)−
1
α otherwise.

(2)

We call Eq. (2) the intrinsic curvature function because every point of a curve can be related to Eq. (2) in
terms of α computed in Section 3. Eq. (2) is slightly di�erent from the equation in [13] since the curvature
is assumed to be monotonically increasing. As demonstrated in [14], log-aesthetic curves do not change their
shape depending on the value of Λ except when α = 1. In other words, the value of Λ changes the shape
of the curve only when α = 1, which is the case of logarithmic spirals. Fig. 1 shows the curvature plot of
log-aesthetic curves in the standard form with Λ = 1 and α = −2, −1, 0, 1, and 2.

Fig. 2 shows the curvature plot, the curvature comb, and the LCG of a cubic Bézier curve with monoton-
ically varying curvature. The curve is shown in Fig. 2 (b). The endpoints a, b of the curve correspond to a,
b in Fig. 2 (a) and (c), but which point of a curve corresponds to which point in the LCG is not clear. Fig.
3 shows the same plots of a cubic Bézier curve with the curvature maximum and minimum. At the curvature
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Figure 3: Cubic Bézier curve with curvature extrema.

extrema, log
(
κ dsdκ

)
becomes in�nite since dκ

ds = 0. The LCG slope α becomes −∞ at curvature minima and
∞ at curvature maxima. Again, understanding which point of the curve corresponds to which point in the
LCG is not easy.

For space curves, let τ be the torsion. The linearity of LTG is

log

(
τ
ds

dτ

)
= −β log τ + d. (3)

The torsion function in the standard form (τ = 1 at s = 0) is, by setting Ω = e−d,

τ =

{
eΩs if β = 0

(−Ωβs+ 1)−
1
β otherwise.

(4)

We call Eq. (4) the intrinsic torsion function. The properties of LTGs are similar to LCGs by replacing κ and
α with τ and β, respectively.

3 SHAPE INFORMATION REGARDING THE SLOPES OF LCGS AND LTGS

In this section, we derive an equation for the slope α of the LCG in terms of curvature. The slope β of the
LTGs in terms of torsion is similarly derived. Gobithaasan et al. derived the equation for the slopes of LCGs in
terms of the radius of curvature [5]. We derive the slopes of LCG by curvature and describe detail properties
such as the case dκ

ds is zero or negative. We also derive the equation for the slopes of LTGs.
The slope of LCG α is

α = −
d log

(
κ ds

dκ

)
d log κ

(5)

= −
d log

(
κ ds

dκ

)
dκ

dκ

d log κ
= −

ds
dκ + κ d

2s
dκ2

κ dsdκ
κ = −1− κd

2s

dκ2

dκ

ds

= −1 + κ
d2κ

ds2
/

(
dκ

ds

)2

. (6)
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The value of α does not depend on the position, rotation, and scaling of a curve. Of course, the curvature
and the arc length are independent of the position and rotation. Scaling the curvature function by s means

scaling the curve by 1
s . Scaling the curvature function by s also scales dκ

ds and d2κ
ds2 by s. Therefore, the value

of α does not change by scaling.
Eq. (6) works well when κ < 0 and/or dκds < 0. If κ < 0, κ in Eq. (5) is replaced by −κ. If dκds < 0, dκds in

Eq. (5) is replaced by −dκds . In all these cases, the same Eq. (6) can be derived. If the value of α is αp at a
point of the curve, it means that the curve can be best approximated with the log-aesthetic curve of α = αp
at the point. In other words, the curvature can be best approximated with the intrinsic curvature function of
α = αp at the point.

α is not de�ned if dκds = 0 or κ =∞. Therefore, α is not de�ned at any point of a circular arc, curvature

extrema, or cusps. α may not be de�ned at an in�ection point when dκ
ds = 0 or dκ

ds is indeterminate. In such
situations, we can still compute α at an in�ection point by taking the limit of α as the parameter t approaches
the value of the in�ection point.

In the implementation, if dκ
ds = 0 at a certain point of a curve, the nearby value of α can be used by

su�ciently sampling the points on the curve. For a circular arc, very large value of α may be used since taking
the limit of Eq. (2) as α approaches ±∞, we get a circle (κ = 1).

The derivation of the LTG slope is similar. By replacing α and κ in Eq. (5) with β and τ , respectively, we
can derive the following equation.

β = −1 + τ
d2τ

ds2
/

(
dτ

ds

)2

. (7)

Similarly as in α, β does not depend on the position, rotation and scaling of the curve. Eq. (7) works well
when dτ

ds < 0. β is not de�ned when dτ
ds = 0. Therefore, β is not de�ned for curves with a constant torsion,

such as planar curves and a helix. β is not also de�ned at torsion extrema.
By computing α (and β for space curves), we can obtain the shape information of curves related to log-

aesthetic (space) curves. The shape information is independent of the position, rotation, and scaling of the
curves. The value of α or β tells us that the curvature or torsion function is best approximated by the intrinsic
curvature or torsion function. In Appendix A, we show the Mathematica code for computing the LCG slope
of the hyperbolic spiral.

4 VISUALIZING THE SHAPE INFORMATION USING TWO-TONE PSEUDO COLORING

In this section, we visualize the shape information using the two-tone pseudo coloring [11] proposed by Saito
et al. In the two-tone pseudo coloring, a user can read out approximate values from the colors of the paint.

Fig. 4 shows the comparison of continuous coloring and two-tone pseudo coloring. In both the coloring
methods, the color is gray at α = 0 and red at α = 1. In continuous coloring, the color changes continuously
by linearly interpolating the color from gray to red. In two-tone pseudo coloring, as the value α changes from
0 to 1, the height of the color changes. For example, if the height of the red color is approximately 1

3 of the
total height and the other color is gray, we can read out the approximate value as α = 1

3 . See Fig. 4 (b). In
contrast, in continuous coloring shown in Fig. 4 (a), it is not easy to read out the approximate value from
interpolated colors because the human eye's color perception is a�ected by nearby colors, making it di�cult
to correctly distinguish subtle di�erences. Note that, in two-tone pseudo coloring, if the upper one-third of
the total height of the coloring is red and the lower two-thirds is gray, we can still read out the approximate
value as 1

3 . Therefore, we can read out the approximate value when color inversion between top and bottom
occurs. For parametrization independent two-tone pseudo coloring of curves, the color inversion occurs at an
in�ection point. More details on two-tone pseudo coloring are described in [11].

In this work, we set the colors of two-tone coloring blue, gray, red, and orange when α = −1, 0, 1 and 2,
respectively. These values of α are particularly meaningful because the curve becomes the Clothoid, Nielsen's
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α=0 α=1 α=0 α=1

α=1/3 α=2/3 α=1/3 α=2/3
(a) continous coloring (b) two-tone pseudo coloring

Figure 4: Comparison of continuous coloring and two-tone pseudo coloring.

α, β:  −2  −1   0    1    2    3    

Figure 5: Two-tone pseudo coloring and the values of α and β.

spiral, a logarithmic spiral, or the circle involute corresponding to these values of α. Warm colors are used for
positive α, whereas cold colors are used for negative α. For α = 0, gray, the achromatic color, is used. The
color is dark cyan when α is less than −2 or green when α is greater than 3. The same coloring is used for β.
See Fig. 5.

Fig. 6 compares continuous coloring and two-tone pseudo coloring applied to the same curve. In two-tone
pseudo coloring, the approximate value for each point of the curve, as well as the speed of the change of the
value, is more easily readable.

Fig. 7 shows the various visualizations of the shape information (α) of planar curves. The shape information
is shown on the curve, on the curvature comb or on the curvature plot in Fig. 7 (a), (b) or (c), respectively. For
planar curves, we show the shape information on the curve in this paper. In case the shape information should
not be shown on the curve, it may be shown on the curvature comb or the curvature plot. For space curves,
the LCG slope α and the LTG slope β are shown on the curvature comb and the torsion comb, respectively.
See Fig. 14 for example. Note that for thicker line width, approximate values can be easier to read out, but
the curve shape becomes more ambiguous. In our application, the line width can be changeable. Therefore,
a user can change the line width when necessary, such as the case thicker line is preferable.

Fig. 8 shows the parametrization dependent and independent visualization of the shape information on
the curve. In Fig. 8 (a),(b) and (c), the arrows show the upward direction of two-tone pseudo coloring. In
Fig. 8 (a) and (b), for the upward direction of two-tone pseudo coloring, the tangent of the curve rotated
counter-clockwise by π

2 is used. Since the order of control points is �ipped, the parametrization of these curves
is di�erent. Looking at the coloring, the colors are inversely painted between up and bottom. Therefore, if we
use the rotated tangent of the curve, the visualization is parametrization dependent. In Fig. 8 (c) and (d), the

（a) continous coloring （b) two-tone pseudo coloring

Figure 6: Coloring comparison of the same curve.
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(a) on the curve

(b) on the curvature comb
(c) on the curvature plot

t

κ

Figure 7: Various visualization of shape information.

normal of the curve is used for the height of the two-tone pseudo coloring. The colorization is parametrization
independent; thus changing the order of control points does not change the colorization. However, color
inversion occurs at an in�ection point. In most polynomial curves, it is known that α gets closer to −1
near the in�ection point [13]. At the in�ection point in Fig. 8 (c), we do not recognize the color inversion
since only the blue color is used. Looking at the coloring at the in�ection point in Fig. 8 (d), gray and
blue colors are used near the in�ection point and color inversion occurs at the in�ection point. Note that
the in�ection point occurs at t = 1

2 and α is not de�ned at the point. However, if we take the limit of α
as t approaches 1

2 , α becomes 1
3 . Color inversion does not occur if we use the rotated tangents, though the

coloring is parametrization dependent. In this paper, we use colorization using normals when we show on the
shape information on the curve so that the coloring becomes parametrization independent.

Fig. 9 shows the visualization of α of a polynomial quadratic Bézier curve which is a parabola. The slope
of the LCG of a parabola approaches 2

3 when it is farther away from the vertex of the parabola [9]. This fact
can be con�rmed in Fig. 9 since the slope gets closer to 2

3 as the curve point gets farther away from the vertex
of the parabola.

Fig. 10 (a) shows a polynomial cubic Bézier curves with a curvature maximum. The color becomes dark
cyan near curvature maxima. Fig. 10 (b) shows a polynomial cubic Bézier curves with a curvature minimum.
The color becomes green near curvature minima.

Fig. 11 is an example of a cubic Bézier curve that is close to a logarithmic spiral. The control points are
manually placed so that the curve gets closer to a logarithmic spiral (α = 1). Initially, the control points are
placed so that they roughly satisfy the condition of typical Bézier curves[3], which are known to get closer

to logarithmic spirals as the degree gets higher. In typical Bézier curves, |Pi+2−Pi+1|
|Pi+1−Pi| is a constant and the

angle between Pi+1 −Pi and Pi+2 −Pi+1 is also a constant. Then the control points are �ne-tuned so that
the coloring approaches single red color. Manually �nding the placement of control points is relatively easy
for α = 1. For other α, �nding the placement of control points is not easy since the geometric property like
typical Bézier curves are not known.

Fig. 12 shows examples of rational cubic Bézier curves optimized for α = −1, −0.5, 0, 0.5, 1, 1.5 and 2
with the same G1 Hermite interpolation condition. Note that, for example, when α = 2, the coloring is not
single yellow because rational cubic Bézier curves cannot exactly represent log-aesthetic curves.

Fig. 13 (a) shows a rational cubic Bézier curve close to a circular arc. Its curvature plot is shown in Fig.
13 (b). The curvature seems to be constant, but it actually is not. Visualization of the shape information of
curves whose curvature (and torsion for space curves) is nearly a constant may be meaningless since a very
small change of curvature changes the value of α.

Fig. 14 (a) is an example of space curves, where α and β are shown on the curvature comb and torsion
comb, respectively. Similarly, as in the case of curvature, if the coloring of a portion of the torsion comb is
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(a) Parametrization dependent visualization
(b) Parametrization dependent visualization
          (control points reversed)

(c) Parametrization independent visualization
  (d) Parametrization independent visualization
           (color inversion at the inflection point)
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P3

P0

P1
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P4

P5

color inversion

Figure 8: Parametrization dependent/independent visualization using two-tone pseudo coloring.

Figure 9: Polynomial quadratic Bézier curve.

(a) cubic Bézier curve with a curvature maximum (b) cubic Bézier curve with a curvature minimum

Figure 10: Polynomial cubic Bézier curves with curvature extrema.
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(a) cuibic Bézier curve (b) LCG of (a)

logκ |
d
dκ|

− log κ

Figure 11: Cubic Bézier curve close to a logarithmic spiral and its LCG.

(a)  α= -1  (b)  α= -0.5  

(c)  α= 0  (d) α= 0.5  

(e)  α= 1  (f)  α= 1.5  

(g)  α= 2  

Figure 12: Rational cubic Bézier curves optimized for speci�c α.
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(a) Cubic rational Bézier curve close to a circular arc                                                           (b) Curvature plot of (a)
t

κ

Figure 13: Rational cubic Bézier curve close to a circular arc.

curvature comb

torsion comb

curvature comb

torsion comb

(a) cubic 3D Bézier curve (b) typical 3D class A Bézier curve of degree 10

Figure 14: 3D polynomial cubic Bézier curves.

almost red, we can obtain the information that the torsion function is close to the case of β = 1, which means
the torsion is close to be inversely proportional to the arc length. Fig. 14 (b) is a typical 3D class A Bézier
curve [3] of degree 10. Under the same G1 Hermite condition, it is known that typical 3D class A Bézier
curves get closer to the 3D extension of logarithmic spirals (α = 1 and β = 1) as the degree gets higher [13].
Therefore, the coloring of α and β is both close to be single red. The space curve with α = 1 and β = 1 is a
3D logarithmic spiral, and the curve α = −1 and β = −1 is the 3D Clothoid curve. By visualizing the shape
information of space curves, we can see the similarity to these curves.

5 SHAPE ANALYSIS OF PLANAR CURVES USING THE LCG SLOPE

In this section, we investigate the shape similarities of some planar curves with log-aesthetic curves by com-
puting the LCG slopes. We picked up planar curves in di�erential geometry [6] that have similarities with
log-aesthetic curves. Although the planar curves in this section are well-known, the similarities to log-aesthetic
curves are not known.

We denote the LCG slope at parameter t as α(t). By taking the limit of α(t) as t approaches the limit
value, such as ±∞, we clarify the similarities to log-aesthetic curves. For each planar curve, we indicate the
approximate parameter values of t where the value of α gets within ±0.01 of the limit α.

[Lituus]
The equation of a lituus is

lituus(t) =

[
a cos(t)√

t

a sin(t)√
t

]T

(t > 0). (8)
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(a) Lituus (b) α of Lituus

(c) α  of Lituus in terms of arc length s starting from t=0.001
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Figure 15: Lituus and its LCG slope.

The LCG slope of the lituus is, without depending on a,

αlituus(t) =
3− 32t2

(
8t6 + 96t4 − 19t2 + 7

)
(16t4 + 40t2 − 3)

2 . (9)

Without depending on a, the lituus has a local curvature maximum at t =

√√
7

2 −
5
4 (≈ 0.269955) and an

in�ection point at t = 1
2 . Therefore, αlituus(t) becomes −∞ at the point of curvature maximum. αlituus(t) is

not de�ned at the in�ection point, but the limit of αlituus(t) is −1 as t approaches 1
2 .

The limit of αlituus(t) as t approaches ∞ is −1. Thus, the circular-like part of the lituus gets similar to
the Clothoid (α = −1) as t gets larger. The limit of αlituus(t) as t approaches 0 is 1

3 . The region of α close
to 1

3 in terms of parameter t is very small as shown in Fig. 15 (b). But as t approaches 0, x coordinates
can be arbitrarily large. Fig. 15 (c) shows the LCG slope with respect to the arc length measured from
t = 0.0001 with a = 1. The region of the lituus with α ≈ 1

3 is in�nitely large. At t = 0.028 or 27, αlituus(t)
is approximately 0.32053 or −1.00952, respectively.

[Hyperbolic spiral]
The equation of a hyperbolic spiral is

hyperbolic(t) =

[
a

cos t

t
a

sin t

t

]T

(t > 0). (10)

The LCG slope of the hyperbolic spiral is, without depending on a,

αhyperbolic(t) =
4− 5t2

(t2 + 4)
2 . (11)

As t approaches ∞, the limit of αhyperbolic(t) is 0. Thus, the circular-like part of the hyperbolic spiral gets
closer to the log-aesthetic curve of α = 0 as t gets larger. The limit of αhyperbolic(t) as t approaches 0 is 1

4 .
Thus, the hyperbolic spiral gets closer to the log-aesthetic curve of α = 1

4 as t approaches to 0. The region of
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(a) hyperbolic spiral (b) α of the hyperbolic spiral

(c) α  of the hyperbolic spiral in terms of arc length s starting from t=0.01

α

 t

α

s

1 1 2 3 4 5

1.0

0.5

0.5

1.0

10 20 30 40

1.0

0.5

0.0

0.5

1.0

2 4 6 8 10 12 14

1.0

0.5

0.0

0.5

1.0

Figure 16: Hyperbolic spiral and its LCG slope.

(a) tractrix (b) α of tractrix

α

 t
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Figure 17: Tractrix and its LCG slope.

parameter t where the hyperbolic parabola is closer to α = 1
4 is very small, but its actual region with respect

to the arc length can be arbitrarily large. See Fig. 16.

[Tractrix]
The equation of a tractrix is

tractrix(t) = [t− tanh(t), a sech(t)]
T
. (12)

The LCG slope of the tractrix is

αtractrix(t) =
(
−2

(
16a4 − 103a2 + 57

)
cosh(2t) + 4

(
4a4 + 5a2 − 3

)
cosh(4t) + 2

(
9− 7a2

)
cosh(6t) + 4

(
36a4 − 53a2 + 27

))
/
(((

12− 8a2
)
cosh(2t) + 16a2 + cosh(4t)− 13

)2)
. (13)

Computing the limit of αtractrix(t) as t → 0 or t → ∞, we get α = 2 or α = 0 without depending on a.
See Fig. 17. The region of the curve close to α = 2 is very small. At t = 3.4, αtractrix(t) is approximately
0.00889039.
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(a) hyperbola (b) α of the hyperbola

α

 t

5 10 15 20 25

30

20

10

10

20

30

10 5 5 10

10

8

6

4

2

Figure 18: Hyperbola and its LCG slope.

[Hyperbola]
The equation of a hyperbola is

hyperbola(t) = [a cosh(t) a sinh(t)]
T
. (14)

The LCG slope of the hyperbola is, without depending on a,

αhyperbola(t) =
1

24
(cosh(4t)− 5)csch2(t)sech2(t). (15)

Taking the limit of αhyperbola(t) as t approaches ±∞, we get α = 1
3 . See Fig. 18. At t = ±1.67178,

αhyperbola(t) is approximately 0.33.

[Cissoid of Diocles]
The equation of Cissoid of Diocles is

Cissoid(t) =

[
2at2

t2 + 1

2at3

t2 + 1

]T

. (16)

The LCG slope of Cissoid of Diocles is

αCissoid(t) =
t4 − 3t2 + 8

4 (t2 + 1)
2 . (17)

Computing the limit of Eq. (17) as t→ 0 or t→∞, we get α = 2 or α = 1
4 . See Fig. 19. The region of the

curve close to α = 2 is very small. At t = 11.1, αCissoid(t) is approximately 0.240131.

[Spiral of Archimedes]
The equation of the spiral of Archimedes is

Archimedes(t) = [at cos t at sin t]
T

(t ≥ 0). (18)

The LCG slope of the spiral of Archimedes is, without depending on a,

αArchimedes(t) =
2t6 + 15t4 + 14t2 − 8

t2 (t2 + 4)
2 . (19)
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(a) Cissoid of Diocles (b) α  of Cissoid of Diocles
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Figure 19: Cissoid of Diocles and its LCG slope.

(a) spiral of Archimedes (b) α of the spiral of Archimedes
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Figure 20: The spiral of Archimedes and its LCG slope.

Taking the limit of Eq. (19) as t approaches∞, we get α = 2. Thus as t gets larger, the spiral of Archimedes
gets closer to the circle involte, which is the log-aesthetic curve of α = 2. See Fig. 20. At t = 10.5,
αArchimedes(t) is approximately 1.99017.

[Fermat's spiral]
The equation of Fermat's spiral is

Fermat(t) =
[
a
√
t cos t a

√
t sin t

]T
. (20)

The LCG slope of Fermat's spiral is, without depending on a,

αFermat(t) =
32t2

(
24t6 + 128t4 + 23t2 − 21

)
− 9

(16t4 + 40t2 − 3)
2 . (21)

Fermat's spiral has a curvature maximum at t =

√√
7

2 −
5
4 ≈ 0.269955 without depending on a, and the LCG
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(a) Fermat’s spiral (b) α of Fermat’s spiral
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Figure 21: Fermat's spiral and its LCG slope.

slope become −∞ at the curvature maximum. By taking the limit of αFermat(t) as t approaches ∞, we get
α = 3. Therefore, Fermat's spiral gets closer to the log-aesthetic curve of α = 3 as t gets larger. See Fig. 21.
At t = 3.6, αFermat(t) is approximately 2.99255.

Fig. 22 shows the visualization of the shape information of the curves in this section and the similarities
with log-aesthetic curves. For example, both the lituus and the hyperbolic spiral get closer to circular arcs
near the origin, but their LCG slopes are di�erent. Since α of the lituus gets closer to −1, it means that the
curvature function near the origin is close to be linear with respect to arc length. For the hyperbolic spiral,
the curvature function near the origin is close to an exponential function since α gets close to 0.

As t of the lituus gets closer to 0 and as t of the hyperbola or Cissoid of Diocles gets closer to ±∞,
all the LCG slopes of these curves get closer to 1

3 . Therefore, these curves have similar regions close to the
log-aesthetic curve of α = 1

3 . The spiral of Archimedes is close to the log-aesthetic curve of α = 2 except
for the region near the origin. Only in Fermat's spiral, the extended two-tone pseudo coloring shown in (h) is
used. In the extended two tone-pseudo coloring, the color of α = 3 is added because α of Fermat's spiral gets
closer to 3 as the parameter t increases.

6 CONCLUSIONS

In this paper, we derived the LCG slope α and the LTG slope β of curves in terms of curvature and torsion.
By computing α and β for each point of a di�erentiable parametric curve, we can get the shape information
related to log-aesthetic (space) curves. We also proposed a method for visualizing the shape information using
two-tone pseudo coloring. By using two-tone pseudo coloring, users can read out the approximate value of α
or β for each point of a curve. For some planar parametric curves in di�erential geometry, we clari�ed the
similarities with log-aesthetic curves by taking the limit of α as the parameter t approaches the limit value. For
example, in the lituus, the hyperbola, and Cissoid of Diocles, there are similar regions with the log-aesthetic
curve of α = 1

3 .
Future work includes clarifying the similarities of spaces curves with log-aesthetic space curves and extending

the visualization of shape information to surfaces.

A MATHEMATICA CODE FOR COMPUTING THE LCG SLOPE

Mathematica Code 1 shows a code for computing the LCG slope of the hyperbolic spiral. By replacing
HyperbolicSpiral [a_][t_], we can compute the LCG slopes of other curves, including Bézier curves or B-
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(d) hyperbola(c) tractrix

(e) Cissoid of Diocles (f) spiral of Archimedes (g) Fermat’s spiral
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Figure 22: Two-tone pseudo coloring of the shape information of various planer curves.
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spline curves, either polynomial or rational. We can also compute the LTG slope by replacing the curvature
function with the torsion function.

Mathematica Code 1: Computing the LCG slope of the Hyperbolic Spiral

I n [ 1 ] := normfd [ f_ ] [ t_ ] :=
Sqr t [D[ f [ x ] , x ] .D[ f [ x ] , x ] ] / . x −> t

In [ 2 ] := kappa [ f_ ] [ t_ ] :=
Sqr t [ C ros s [D[ f [ x ] , {x , 1} ] , D[ f [ x ] , {x , 2 } ] ] .
C ro s s [D[ f [ x ] , {x , 1} ] , D[ f [ x ] , {x , 2 } ] ] ]
/ normfd [ f ] [ x ]^3 / . x −> t

In [ 3 ] := dkds [ f_ ] [ t_ ] :=
D[ kappa [ f ] [ x ] , x ] / normfd [ f ] [ x ] / . x −> t

In [ 4 ] := d2kds2 [ f_ ] [ t_ ] :=
D[ kappa [ f ] [ x ] , {x , 2} ]/ normfd [ f ] [ x ]^2 −
D[ kappa [ f ] [ x ] , x ] D[ f [ x ] , x ] . D[ f [ x ] , {x , 2} ]
/normfd [ f ] [ x ]^4 / . x −> t

In [ 5 ] := l c gS l o p e [ f_ ] [ t_ ] :=
−1 + kappa [ f ] [ x ] d2kds2 [ f ] [ x ] / ( dkds [ f ] [ x ]^2) / . x −> t

In [ 6 ] := H y p e r b o l i c S p i r a l [ a_ ] [ t_ ] :=
{a Cos [ t ] / t , a S in [ t ] / t , 0}

I n [ 7 ] := l c gS l o p e [ H y p e r b o l i c S p i r a l [ a ] ] [ t ] // F u l l S i m p l i f y

Out [7]= (4 − 5 t ^2)/(4 + t ^2)^2
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