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Visualization of the Curvature Monotonicity Regions of Polynomial Curves
and its Application to Curve Design
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Abstract. Freeform curves, such as Bézier curves or B-spline curves are widely used in many
applications. Although freeform curves have many nice properties, controlling the curvature
variation by manually moving a control point is not easy. For polynomial Bézier and B-
spline curves, this paper proposes a real-time method to visualize the region of a control
point where the curvature becomes monotonically varying. By representing the numerator
of the curvature derivative in Bernstein form, the proposed method checks the curvature
monotonicity of a speci�c control point for every pixel on the screen using a GPU. With this
approach, a user can determine where to move the control point to achieve monotonically
varying curvature. Additionally, two applications of the proposed method are presented.
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1 INTRODUCTION

Freeform curves, such as Bézier curves or B-splines curves, are widely used in many applications, such as
Illustration software and CAD systems. Although these curves have many desirable properties, controlling the
curvature variation by manually moving a control point is not easy.

Sapidis et al. clari�ed the theoretical region of a control point where the curvature of quadratic Bézier
curves becomes monotonically varying [13]. However, for Bézier curves of degree 3 or higher, the curvature
monotonicity region, i.e., the region of a control point where the curvature becomes monotonically varying, has
not been visualized before. By visualizing the curvature monotonicity region in real time, a user can determine
where to move the control point to achieve monotonically varying curvature.

Yan et al. proposed κ-curves [18], which are interpolating quadratic Bézier curves that have local maxima of
curvature only at interpolating points. Miura et al. extended the method to cubic curves, providing additional
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control by α. However, in both approaches, the curve shape cannot be modi�ed locally without introducing
additional curvature extrema. A method that can locally control the curve shape without such side e�ects
would be desirable.

In this study, we present a real-time method for visualizing the curvature monotonicity regions of a speci�c
control point for polynomial curves. By using this method, a user can determine where to move a speci�c
control point to achieve monotonically varying curvature. We also demonstrate two applications of this
approach.

2 RELATED WORK

To design aesthetically pleasing objects, the use of fair curves is essential. According to [3], fair curves are
de�ned as curves whose curvature plots have relatively few regions of monotonically varying curvature. For
polynomial quadratic Bézier curves, Sapidis and Frey [13] presented the necessary and su�cient condition
for the curvature to be monotonically varying. Frey and Field [5] demonstrated the conditions for rational
quadratic curves. For cubic polynomial Bézier curves, Dietz et al. [2] proposed a method of generating curves
with monotonically varying curvature using precomputed tables. Wang et al. used the su�cient monotone
curvature conditions to generate curves with monotonically varying curvature.

Over the past two decades, various works related to class A Bézier curves [4] and log-aesthetic curve
[6, 9, 19] have emerged. Planar class A Bézier curves are curves with monotonically varying curvature, where
the control points are generated by repeatedly applying the 2 × 2 matrix M to the �rst edge of the control
polygon. IfM is a scaling and a rotation and satis�es a speci�c condition, the curvature becomes monotonically
varying, and the curves become Mineur's typical curves [8]. Romani et al. [12] showed the necessary and
su�cient conditions for the curves to be class A if M has two real eigenvalues. In [14], 3D typical curves are
investigated.

Log-aesthetic curves [19] are curves with linear logarithmic curvature graphs. The linearity of logarithmic
curvature graphs constrain the curvature monotonically varying. Approximation methods of log-aesthetic
curves in terms of freeform curves have been proposed in [20, 7]. Recently, Tsuchie et al. [15] proposed a high
quality approximation method of log-aesthetic curves using the fourth order derivative based on the equation
presented in [21]. The method approximates log-aesthetic curves in terms of rational Bézier or B-spline curves.

κ-curves [18] are quadratic Bézier curves that interpolate points and have local maxima of curvature only at
the interpolating points. Yan et al. [17] extended this method for reproducing circles using rational quadratic
curves. Miura et al. [10] further extended the method to cubic curves so that the method have additional
control by α. In contrast, smooth interpolating curves with local control have been proposed in [22, 1], but
both methods depend on non-polynomial parametric curves.

In summary, there is no method to visualize the region of curvature monotonicity for polynomial curves
with a degree higher than 2. This means that users are often unaware of where to adjust the control point to
achieve a monotonically varying curvature. By providing real-time visualization of the curvature monotonicity
region, users can identify the region of the control point where the curvature becomes monotonically varying.
We present two applications of our approach: a curve design tool, similar to the one in Adobe Illustrator, with
the visualization of the curvature monotonicity regions, and an application that locally modi�es the shape of
the curves generated by κ-curves with G1 continuity.

3 CHECKING THE CURVATURE MONOTONICITY

Let P(t) be a planar Bézier curve of degree n given by

P(t) =

n∑
i=0

Bni (t)Pi, (1)

Computer-Aided Design & Applications, 21(1), 2024, 75-87
© 2024 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


77

where Bni (t) are Bernstein polynomials and Pi are control points. Let κ and s be the curvature and the arc
length, respectively. Curvature monotonicity can be checked if dκ

ds does not change sign for t ∈ [0, 1]. For

planar curves, dκds can be computed by the following equation [3, 16]:

dκ

ds
=

det(Ṗ,
...
P)Ṗ · Ṗ− 3 det(Ṗ, P̈)Ṗ · P̈

|Ṗ|6
, (2)

where Ṗ = dP
dt , P̈ = d2P

dt2 , and
...
P = d3P

dt3 . Assuming the curve is regular, the denominator of Eq. (2) is

always positive. Therefore, checking whether dκ
ds changes sign reduces to checking whether the numerator of

dκ
ds changes sign.

Let the numerator of Eq. (2) be λ(t):

λ(t) = det(Ṗ,
...
P)Ṗ · Ṗ− 3 det(Ṗ, P̈)Ṗ · P̈. (3)

For a polynomial curve of degree n, the degree of λ(t) is 4n − 7 [16]. Since λ(t) is a polynomial, it can be
represented in Bernstein basis as

λB(t) =

4n−7∑
i=0

B4n−7
i (t)ξi. (4)

where B4n−7
i (t) is the i-th Bernstein basis of degree 4n− 7 and ξi are the corresponding coe�cients. In [16],

for cubic Bézier curves, the su�cient condition of ξi ≥ 0(i = 0, . . . , 5) or ξi ≤ 0(i = 0, . . . , 5) is used to
guarantee the monotonicity of curvature. In this paper, we check the curvature monotonicity more strictly.

Fig 1 (a) shows a cubic Bézier curve with monotonically varying curvature and its corresponding λ(t).
Since ξi are negative, the curve is judged to be monotonically decreasing. Fig 1 (b) shows a cubic Bézier
curve with non-monotonically varying curvature. Since ξ0 · ξ5 < 0, the curve is immediately judged to be
non-monotonically varying. If ξi do not satisfy either of the two conditions, the curve is recursively subdivided
until the �rst condition is satis�ed for all the subdivided segments, or the second condition is satis�ed in one of
the subdivided segments. We use Algorithm 1 for checking the curvature monotonicity. Note that Algorithm
1 does not take into account the sign change of the curvature, which indicates the presence of an in�ection
point. We will shortly describe a method to detect the existence of an in�ection point.

P0 P1

P2

P3

(a) A curve with monotonically varying curvature and its λ(t) (b) A curve with non-monotonically varying curvature and its λ(t)
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Figure 1: Cubic Bézier curves and their λ(t).

Algorithm 1: Curvature monotonicity

(1) If ξi ≥ 0(i = 0, . . . , 4n− 7), the (subdivided) curve segment is judged to be monotonically increasing.

(2) If ξi ≤ 0(i = 0, . . . , 4n− 7), the (subdivided) curve segment is judged to be monotonically decreasing.
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(3) If ξ0 · ξ4n−7 < 0, the (subdivided) curve segment is judged to be not monotonically varying.

(4) Recursively subdivide the curve at t = 0.5, until the condition (1) or (2) is satis�ed for all subdivided
curve segments. If the condition (1) and (2) are simultaneously satis�ed, the condition (3) is satis�ed, or
the recursion reaches the user-speci�ed depth, the curvature is judged to be not monotonically varying.

For a speci�c control point, the curvature monotonicity is checked for all the case where the control point is
placed on every pixel on the screen, and the corresponding pixel is colored depending on whether the curvature
is monotonically decreasing or increasing. In the fragment shader, we obtain the screen coordinate of the pixel
being processed. Using the obtained coordinates, we replace the coordinate of the speci�ed control point,
and compute ξi in Eq. (4). We then check the curvature monotonicity using Algorithm 1. If the curvature
is monotonically decreasing or increasing, we paint the corresponding pixel blue or red, respectively. Since
this process is performed for all the pixels in parallel using a GPU, the curvature monotonicity region can be
visualized e�ciently.

There are two ways to implement Algorithm 1: depth-�rst search and bread-�rst search. Let maxDepth
denote the maximum depth speci�ed by the user. In depth-�rst search, a stack with the array size proportional
to maxDepth is used. In breadth-�rst search, a queue with the array size proportional to 2(maxDepth−1)

is required. Since the size of memory in the fragment shader is limited, we employ the depth-�rst search
in Algorithm 1. For small values of maxDepth, breadth-�rst search can be used, but the strict curvature
monotonicity check is not possible.

Algorithm 1 does not check the existence of an in�ection point. Therefore, a curve segment may include
an in�ection point, which may be undesirable in certain practical situations. To avoid this issue, it is necessary
to check for the existence of an in�ection point by representing the numerator of the curvature function

κ =
det(Ṗ, P̈)

|Ṗ|3
(5)

in terms of Bernstein form and checking for the existence of 0 in the parameter range t ∈ [0, 1]. The numerator
of the curvature function of a Bézier curve of degree n can be represented by a Bernstein polynomial of degree
2n− 4:

η(t) = det(Ṗ, P̈) =

2n−4∑
i=0

B2n−4
i (t)νi. (6)

where νi are the coe�cients of the Bernstein polynomial. Algorithm 2 is used to check for the existence of
an in�ection point. In our implementation, we determine that a curve has an in�ection point if the recursion
reaches the user-speci�ed depth, as we aim to avoid having in�ection points on the curve.

Algorithm 2: Existence of an in�ection point

(1) If ν0 · ν2n−4 ≤ 0, the curve has an in�ection point.

(2) If νi < 0(i = 0, . . . , 2n− 4) or νi > 0(i = 0, . . . , 2n− 4), the (subdivided) curve segment is judged to
be without an in�ection point.

(3) Recursively subdivide the curve at t = 0.5 until one of the following conditions is satis�ed: the condition
(1) is satis�ed in one of the subdivided curve segments, the condition (2) is satis�ed for all the subdivided
curve segments, or the recursion reaches the user-speci�ed depth.

We have two types of curvature monotonicity regions:

� CMRWI: CMRWI refers to a region where the curvature varies monotonically, but an in�ection point
may be present.
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� CMR: CMR refers to a region where the curvature of a curve varies monotonically without an in�ection
point.

If a control point is placed within its CMRWI, the curvature varies monotonically, and the curve may contain
an in�ection point. If a control point is placed within its CMR, the curve does not have an in�ection point.
To visualize a CMR, we �rst check for the existence of an in�ection point and then verify the curvature
monotonicity. If the existence of an in�ection point is con�rmed, the curvature is considered to be non-
monotonically varying.

To visualize the CMRWI of a speci�c control of a Bézier curve, we compute ξi in Eq. (4) and check for
the curvature monotonicity using Algorithm 1 for all cases where the speci�c control point is placed at every
pixel in the screen window. Visualization of CMR is performed similarly, except that we initially check for the
existence of an in�ection point. For e�ciency, we perform the computation using a GPU. For CMRWIs, we
compute ξi and check for the curvature monotonicity using Algorithm 1 in the fragment shader. For CMRs, we
also compute νi. Depending on whether the curvature is monotonically increasing, monotonically decreasing,
or not monotonically varying, we paint the corresponding pixel with user-speci�ed colors. In this research,
we paint regions with monotonically increasing curvature using red and regions with monotonically decreasing
curvature using blue.

4 VISUALIZATION OF THE CURVATURE MONOTONICITY REGIONS

4.1 Bézier Curves

Figure 2 illustrates the CMRWIs for P0 and the corresponding curvature plots with varying positions of P0.
If P0 lies within the blue region, the curvature monotonically decreases, as depicted in Figure 2(a). If P0 lies
within the red region, the curvature monotonically increases, as shown in Figure 2(c). Note that the curve
has an in�ection point. Figures 2(b) and (d) depict the cases where P0 is outside these regions, indicating
that the curvature does not monotonically vary.

κ

t

κ

t

κ

t

κ

t

P0

P1

P2

P3

P0 P1

P2

P3

P0

P1

P2

P0

P1

P2

(a) decreasing curvature (b) curvature not monotonous (c) increasing curvature (d) curvature not monotonous

P3P3
P3

Figure 2: CMRWIs for P0 and the curve plots.

Fig. 3 shows CMRWIs and CMRIs of all control points for a cubic Bézier curve. To visualize the regions for
all control points, the curvature monotonicity is repeatedly checked for each control point. For the overlapping
regions where the CMRWIs (or CMRs) of di�erent control points overlap, the color values are subtracted from
white by the number of times they overlap. Therefore, a darker region means that the curvature monotonicity
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regions overlap. Note that there is no overlapping region in Fig. 3, whereas there are overlapping regions in
Fig. 4. To see which region corresponds to which control point, we can interactively move one of the control
point, and the region that does not change its shape is the region for the control point. We can also select to
visualize the region for a speci�c control point from the user interface.

P0 P1

P2

P3

region for P1

region for P2

region for P3

regions for P0

(a) CMRWIs for all control points (b) CMRs for all control points

P0 P1

P2

P3

region for P1

region for P2

region for P3

regions for P0

Figure 3: CMRWIs and CMRs for a cubic Bézier curve.

Figure 4 shows the CMRs for all control points and the corresponding curvature plots. Figure 4(a) shows a
cubic Bézier curve with the CMRs and its curvature plot. The curvature is not monotonically varying. Figure
4(b), (c), (d), or (e) shows an example of moving each control point within its curvature monotonicity region
so that the curvature becomes monotonically varying.
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(a) curvature monotonicity regions for all control points and the curvautre plot 
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(b) moving P0 (c) moving P1 (d) moving P2 (e) moving P3

Figure 4: CMRs for all control points and the curvature plots. In (b), (c), (d), (e), each control point is
moved within its CMR so that the curvature becomes monotonically varying.
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Figure 5(a) and (b) show a cubic Bézier curve and its curvature plot. Although the CMRs are set to
visualize for all the control points, no regions are shown. This is because the curvature cannot be modi�ed
to be monotonically varying by moving only one of its control points at every pixel on the screen. For cubic
polynomial curves, the regions can be immediately shown by moving one of their control points. Fig. 5(c)
shows an example of moving P1 so that the curvature monotonicity region of a control point is visualized.
Fig. 5(d) shows a curve moving P2 within its corresponding blue region to make the curvature monotonically
varying. Fig. 5(e) shows its curvature plot.

κ

t
(a) cubic Bézier curve (b) curvature plot of (a)

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

(c)  P1 moved (d) P2  moved in the corresponding region

κ

t

region for P2

region for P0

region for P1

region for P2 region for P3

(e) curvature plot of (d)

Figure 5: A cubic Bézier curve with no CMRs and an example of moving control points to make the curvature
monotonically varying.

Fig. 6(a) and (b) show CMRWIs and CMRs for a quintic Bézier curve. Fig. 6(c) shows an example of
moving P5 within its CMR so that the curvature becomes monotonically decreasing. Fig. 6(d) shows its
curvature plot. In general, it is much harder for quintic or higher degree Bézier curves to place control points
such that CMRWIs or CMRs are shown. One approach is to �nd a cubic Bézier curve with monotonically
varying curvature and degree elevate it. Another approach is to place control points close to typical curves
[8].

The curvature is monotonically varying if condition (1) or (2) in Algorithm 1 is satis�ed in the curve
segment or every subdivided curve segment. On the other hand, if (3) in Algorithm 1 is satis�ed in at least
one (subdivided) segment, then the curvature is not monotonically varying. Fig. 7 shows the CMRWIs and
non-CMRWIs (the region where the curvature is not monotonically varying) with di�erent depths for each
control point. The red or blue regions become darker as the required depth in Algorithm 1 increases for
con�rming curvature monotonicity. The gray region also becomes darker as more depth is required to con�rm
that the curvature is not monotonically varying. The lightest blue or red regions correspond to the su�cient
condition in [16].
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(a) CMRWIs (b) CMRs (c) Moving P5 within its CMR (d) curvature plot of (c)
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region for P1

region for P4
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region for P5

region for P2
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Figure 6: CMRWIs and CMRs for a quintic Bézier curve.

(a) CMRWIs and non-CMRWIs for P0 (b) CMRWIs and non-CMRWIs for P1 (c) CMRWIs and non-CMRWIsfor P2 (d) CMRWIs and non-CMRWIs for P3

Figure 7: CMRWIs and non-CMRWIs for a cubic Bézier curve with di�erent depth. The darker the red or
blue region is, more depth is required in Algorithm 1 to con�rm the curvature monotonicity. The darker the
gray region is, more depth is required to con�rm that the curvature is not monotonically varying.

4.2 B-spline Curves

Visualization of CMRs or CMRWIs can also be applied to B-spline curves. In this section, we show examples of
polynomial cubic B-spline curves. By using B-spline curves, users can generate a curve composed of multiple
segments with monotonically varying curvature. Additionally, users can generate a curvature extremum that
satis�es C2 continuity.

To visualize CMRs or CMRWIs of B-spline curves, the Bézier control points are computed, and the curvature
monotonicity is checked for all the segments in the fragment shader. If the curvature is either monotonically
increasing or decreasing for all the segments, the corresponding pixel is painted with red or blue, respectively.
This setting is useful to ensure that the curvature varies monotonically throughout the entire curve.

Fig. 8(a) shows CMRs for a cubic B-spline curve with knots [0, 1, 2, 3, 4, 5, 6, 7] (uniform knots) and 6
control points. Note that knots are speci�ed in polar form [11]. CMRs are shown only for P1, P2, and P3.
This means that no matter where P0, P4, or P5 is moved, the curvature will never be monotonically varying.
If P1, P2, or P3 is moved within its corresponding CMR, the curvature becomes monotonically increasing.
Fig. 8(b) shows an example of moving P3 within its CMR. Note that the control points are placed in a
clockwise direction, so the curvature is negative. Therefore, the CMRs are shown in red, indicating that the
curvature will be monotonically increasing if a control point is placed within its corresponding CMR.
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(a) CMRs for a cubic B-spline curve (b) Moving P3 within its CMR

Figure 8: CMRs for a cubic B-spline with knots [0, 1, 2, 3, 4, 5, 6, 7].

Fig. 9(a) shows CMRs for a cubic B-spline curve with knots [0, 0, 0, 1, 2, 3, 3, 3] and 6 control points. Fig.
9(b) shows an example of moving P3 to ensure that the curvature increases monotonically for the entire curve.
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region for P1
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region for P2

(a) CMRs for a cubic B-spline curve (b) Moving P3within its CMR

Figure 9: CMRs for a cubic B-spline with knots [0, 0, 0, 1, 2, 3, 3, 3].

Suppose we desire a curvature extremum at the connection point between k-th segment and (k + 1)-
th segment. Then in the fragment shader, the curvature monotonicity is checked separately for the �rst k
segments and the remaining segments. If we want a curvature maxima, then the �rst k segment should be
monotonically increasing and the remaining segments should be monotonically decreasing. This setting is useful
for intentionally creating a curvature extremum at the connection point of curve segments. Note that a control
point may a�ect the two segments separated by the curvature extremum. In our current implementation, the
corresponding pixel is painted with blue if the curvature of the latter segment is monotonically decreasing, or
red if the curvature is monotonically increasing.

Fig. 10(a) shows an example of creating a curvature extremum between the 2nd and 3rd curve segment.
In Fig. 10(a), P5 in Fig. 9(b) is moved and CMRs for P5 are shown. To visualize the CMRs of P5, the
curvature monotonicity is checked separately for the �rst two segments and the third segment. In this example,
the curvature is monotonically increasing for the �rst two segments and monotonically decreasing for the third
segment. If P5 is positioned in the red region, the curvature becomes monotonically increasing for the entire
curve, as shown in Fig. 9(b).

P0

P1

P2

P3 P4

P5

(a) CMRs for P5  are shown (b) Curvature plot of (a)

tκ

curvature extremum

Figure 10: An example of creating a curvature extremum.
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5 APPLICATIONS

5.1 Application 1: Curve Design - Visualizing the Regions of Curvature Monotonicity

We have developed a curve design tool, similar to the one in Adobe Illustrator and have added the visualization
of the CMRWIs. Furthermore, our current tool can be easily adjusted to visualize CMRs instead. By visualizing
CMRWIs or CMRs, we can determine where to move a control point to achieve the curvature monotonicity
for a particular segment of the curve.

Fig. 11 illustrates an example of visualization. The dark red region close to Q3 indicates that the curvature
of the cubic Bézier curve de�ned by Q1, Q2, Q3 and Q4 becomes monotonically varying if Q3 lies within
the region. Similarly, the cyan region close to Q5 indicates the same for the curve de�ned by Q4, Q5, Q6,
Q7. When Q4 is moved, both Q3 and Q5 are moved accordingly to maintain G1 continuity between the two
Bézier curve segments. If Q4 is placed within the purple region, then both the curvature of the curve de�ned
by Q1, Q2, Q3 and Q4 and the curvature of the curve de�ned by Q4, Q5, Q6 and Q7 become monotonically
varying.

Figure 11: Visualization of monotone curvature regions in a curve design tool. Two Bézier curve segments
with G1 continuity.

Fig. 12(a) shows an apple designed without visualizing the curvature monotonicity region. The basis apple
shape, except for the core and the leaf, is composed of 8 cubic Bézier curve segments with G1 continuity.
Fig. 12(b) to (f) demonstrate the process of adjusting the curve shape to ensure that the curvature becomes
monotonically varying within user-speci�ed curve segments. Fig. 12(g) shows the �nal design.

5.2 Application 2: Modifying the Shape of the Curve Generated by κ-curves

Visualization of CMRWIs (and CMRs) can also be applied to modify the curve shape generated by κ-curves.
κ-curves [18] are interpolating quadratic Bézier curves and have local maxima of curvature only at the inter-
polating points.

We begin by subdividing the curves generated by κ-curves at the curvature maxima using the de Casteljau's
algorithm. As quadratic Bézier curves are employed in κ-curves, determining the parameter value at the points
of curvature maxima is straightforward. Let Pi = [xi yi]

T(i = 0, 1, 2) represent the control points. Then the
parameter value t at the point of maximum curvature is computed as the point at λ(t) = 0:

t =
(P0 −P1) · (P0 − 2P1 +P2)

|P0 − 2P1 +P2|2
(7)

Next, we degree elevate the curves to cubic Bézier curves. As shown in Fig. 13(f), we can modify Pk−1 and
Pk+1 within the blue or red regions without introducing another curvature extremum. If Pk−1, Pk, Pk+1

lie on a straight line, G1 continuity is guaranteed. Note that almost G2 continuity is guaranteed in κ-curves.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 12: Design of an apple shape. (a) is the original shape created without visualizing the curvature
monotonicity regions. (b) to (f) are the process of modifying the shape so that the curvature becomes
monotonically varying within a user-speci�ed curve segment. (g) is the shape of the �nal design.

Although our approach may reduce the continuity to G1 where we modify the curve shape, it may not be a
problem in many illustration applications.

Fig. 13(a) shows a shape created by κ-curves. Fig. 13(b) shows an instance of modifying the curve shape
using our approach. Fig. 13(c) to (f) depict the intermediate process. Our method enables local modi�cation
of curve shape without introducing another curvature extremum.

6 CONCLUSIONS

In this work, we presented a real-time method to visualize the curvature monotonicity regions (CMRWIs) and
the curvature monotonicity regions without an in�ection point (CMRs) of polynomial Bézier or B-spline curves
using a GPU. By visualizing these regions, users can determine the control point region where the curvature is
monotonically varying. We showed that our approach can be immediately applied to a curve design tool, similar
to the one in Adobe Illustrator. Futhremore, we demonstrated that the curve shape generated by κ-curves can
be locally modi�ed without introducing another curvature extremum, while maintaining G1 continuity.

Currently, we are working on applying this idea to planar rational curves and 3D polynomial and rational
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(a) (b)

(c) (d) (e) (f)

Pk-1

Pk

Pk+1

Figure 13: Locally modifying the shape (a) generated by κ-curves to (b) using the proposed approach without
introducing another curvature extremum. (c) to (f) are intermediate processes.

curves. In higher degree polynomial curves (degree 9 or higher), visualizations of CMRWIs becomes signi�cantly
slower, possibly due to the large fragment shader �le size and computational cost. A concise and e�cient
representation of the numerator of dκ

ds in Bernstein form, particularly for rational curves, is desired. Our
future work also includes theoretically clarifying how the shape of the curvature monotonicity region changes
depending on the position of a control point.
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