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Abstract.
Curvilinear toolpaths are the preferred choice for high-speed machining of 2.5D pockets

when capable machine tools are available. Curvilinear toolpaths support high feed rates
since the tool engagement and movement direction change only gradually. By maintaining
a near-constant tool engagement, curvilinear toolpaths also increase the life of the tools.
Automatically generating such toolpaths, however, requires complex algorithms.

In this paper, we describe a simulation-driven method for generating curvilinear toolpaths.
A GPU executes the simulation by rendering the pocket and the tool cross-sections on a
discrete frame bu�er. The tool is moved in small increments, and a discrete tool engagement
value is computed by comparing the framebu�er data before and after the tool is moved.
The direction in which to move the tool is determined using a brute-force approach that
explores a range of angles in the neighborhood of the previous move direction and selects the
direction in which the tool engagement value is closest to a preferred value.
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1 INTRODUCTION

Despite the popularity of 3-axis and 5-axis CNC machines, machining 2.5D pockets remains important. Large
volumes of a given part can be quickly removed using 2.5D roughing [15, 1]. There are three main types
of 2.5D roughing toolpaths - contour-parallel, direction-parallel, and curvilinear (sometimes also called a
spiral toolpath). Amongst these, curvilinear toolpaths are best suited for high-speed machining. However,
generating curvilinear toolpaths is not easy. Implementing a production-quality curvilinear toolpath library that
can machine arbitrary pocket shapes can take several years of hard e�ort. Although computationally more
expensive than a geometry-based approach, a simulation-driven method o�ers a quick and low-code approach
to solving this problem.
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1.1 Simulation-Driven Algorithms

Although Moore's law has slowed down in recent years, the availability of computing power has kept increasing,
and its cost has continued decreasing [20]. This increase in the availability of computing power can be
seen as a response to the demand for GPU-driven algorithms in arti�cial intelligence and machine learning
[18]. A�ordable GPU computing power has also made simulation-driven algorithms feasible and attractive.
Simulation-driven methods may be slower than a traditional computational geometry-based approach for
speci�c problems. However, these methods are well-poised to use newer hardware when available. More
importantly, simulation-based algorithms are much simpler to implement because they replace some of the
more complex parts of intelligent algorithms with either a statistical black box (like a neural network) or a
brute-force computation.

1.2 Our Cutting Simulation Approach

In this paper, we describe a simulation-driven method for generating curvilinear toolpaths. The algorithm
simulates the material-cutting process in 2D using the GPU to accelerate the simulation. The toolpath is
generated by determining the next best direction in which to move the tool at each step, given its last
movement direction and tool engagement constraints. The algorithm works for all pocket shapes without
requiring complex heuristics. Furthermore, a simulation-based approach enables the toolpath developer to
focus on higher-level meta-heuristics rather than lower-level geometric details. Before describing our method,
we brie�y review some 2.5D toolpath generation techniques.

2 RELATED WORK

This section discusses prior work on generating toolpaths for machining 2.5D pockets, focusing primarily on
modern methods for generating curvilinear toolpaths for high-speed machining.

2.1 Contour-Parallel and Direction-Parallel Toolpaths

Contour-parallel techniques have been used for machining pockets for a very long time. Here the pocket is
machined by driving the tool along curves o�set from the pocket boundary (see Fig. 1 (left) for an illustrative
example). The contour-parallel toolpath generally starts from a point near the center of the pocket and
gradually advances toward the boundary.

Alternatively, direction-parallel techniques like zig and zig-zag approaches can also be used (see Fig. 1
(middle)). Here the tool is moved in a direction parallel to a given direction, either always moving in one
direction (in the case of zig toolpaths) or moving alternately in opposite directions (in zig-zag toolpaths).

The toolpaths generated by these techniques are often optimized to reduce the number of retractions and
the overall length of the toolpath. However, such toolpaths are still far from optimal since they completely
ignore machine dynamics [4]. Both contour-parallel and direction-parallel toolpaths contain many sharp corners.
During machining, the tool has to slow down before it approaches a sharp corner and then speed up again as it
exits the corner. The need to decelerate and accelerate repeatedly can signi�cantly slow down the machining
process. Toolpaths with sharp corners also wear down the tools faster since the tool engagement increases
abruptly in these corners.

2.2 Curvilinear Toolpaths

Curvilinear or spiral toolpaths are smoother versions of contour-parallel toolpaths used mainly for high-speed
machining. High-speed machining techniques minimize sharp corners in toolpaths and maintain a near-constant
tool engagement throughout the process.
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Figure 1: Left: Contour parallel toolpath for an L-shaped pocket. Middle: Zig-zag toolpath for the same
pocket. Right: A naive spiral toolpath with sharp corners.

Smoothing corners of toolpaths generated using contour-parallel techniques can be used as a starting point
for generating high-speed toolpaths (see [19] [21]). In [4], a method is described where the toolpath starts
as a spiral near the center of the pocket and gradually morphs into the pocket shape as it approaches the
part boundary. In [8], a method based on maintaining constant tool engagement while machining the external
contour of a given part is described. In [22], a method that limits the maximum curvature in the toolpath
is described. In [6], the generation of a curvilinear toolpath is framed as an optimization problem where the
machining time and the forces on the tool are minimized. In [3], a continuously morphed spiral toolpath
consisting of splines is proposed. A technique where the pocket is �rst mapped onto a circular domain and
then a guide spiral in the circular domain is inversely mapped to the pocket is proposed in [23]. In [16], an
analytic method for morphing a spiral toolpath to �t the shape of the pocket is presented. In [10], [11], and
[2], the authors propose di�erent spiral toolpath generation methods based on the medial axis transform.

In [14] and [12], discrete and geometry-based simulation methods for analyzing and modifying toolpaths
are described. In [24], a method for generating smooth toolpaths is described based on extracting iso-curves
from a blurred version of a discrete medial axis transform image of the pocket.

2.3 Summary of Existing Techniques

For a review of the various traditional techniques and limitations of pocket-machining, see [15] and [9].
Traditional pocket machining techniques are still commonly used due to a conservative familiarity with the
techniques and sometimes due to the limitations of the CNC machine and software licensing costs. At this
time, however, it is clear that a combination of a spiral toolpath and trochoidal moves for machining the corners
and slots are the best-known strategies for high-speed machining. As noted above, several possible curvilinear
toolpaths exist for a particular pocket shape, and there are several ways of generating such toolpaths. This
paper presents a novel simulation and metric-driven method for computing similar toolpaths. Our method
requires much less code (all signi�cant parts of the algorithm are included in this paper in pseudocode) and is
thus easier to implement than other methods.

3 PIXEL-BASED TOOL ENGAGEMENT

For simulation, we use a hardware-accelerated 2D rendering engine, using which the pocket, tool, and plunge
holes are rendered on screen or onto an o�-screen framebu�er. An illustrative screenshot is shown in Fig. 2
(left), where the pocket cross-section is rendered in grey, and a plunge-hole from where to start the machining
process is rendered in black.
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Figure 2: Left: Simulation environment showing an L-shaped pocket with a plunge-hole. Middle: Pixel
engagement computation. Right: Cutting simulation result showing tool engagement.

3.1 A Discrete Toolpath

The toolpath is computed as a polyline consisting of small segments of equal length. The tool engagement
over each segment is approximated by counting the di�erence in the number of pocket pixels in the framebu�er
when the tool is rendered at the start and then at the end point of the segment. Such a toolpath with many
small segments may not be appropriate for older CNC machines. As noted in [8], this problem can be somewhat
mitigated using the Douglas-Peucker or similar polyline simpli�cation algorithms. Modern NC controllers can
automatically smooth toolpaths consisting of small segments when the G64 G-code instruction is speci�ed.

The pixel-based tool engagement computation is illustrated in Fig. 2 (middle). Here the pocket material is
shown in grey, material that has already been cut is shown in blue, the tool located at position pn is shown in
fuchsia, and the tool located at the next position pn+1 is shown in outline in yellow. The additional material
that gets cut when the tool moves from position pn to pn+1 is indicated in red. The count of red pixels forms
our measure of tool engagement for this move. During simulation, the tool is rendered in graded shades of
purple, with increasingly pink values indicating larger tool engagements and bluer shades indicating smaller
tool engagement values. This enables quick visual inspection of the changes in the tool engagement value as
the pocket is machined, as shown in Fig. 2 (right).

3.2 Toolpath Step, Engagement Angle and Rendering Resolution

The tool engagement angle can also be approximated from the framebu�er data. However, when the tool is
moved smoothly and in equal increments, the pixel engagement count is directly proportional to the engagement
angle under most circumstances and can be used as a reliable proxy. An important concern is determining the
delta measure by which the tool should be moved in each step. A tiny move may cut only a handful of pixels in
each step giving only a rough estimate of the tool engagement that can be very noisy. A large delta move, on
the other hand, will result in a faceted and inaccurate toolpath. Therefore, an appropriate delta move needs
to be carefully chosen depending on the required engagement angle and the resolution of the framebu�er at
which the simulation is being rendered. For example, a smaller engagement angle will require a framebu�er
with a larger resolution for a given toolpath delta step.

4 DEVELOPING A SIMULATION-BASED STRATEGY

The pixel tool engagement data can be used to develop various strategies for computing a simulation-driven
toolpath. A simulation-based approach enables us to use a low-code [17] method for computing complex
toolpaths, which would otherwise require a lot of time and e�ort. Our method is most similar to the ones
described in [8] and [14], with the di�erence that we develop the toolpath from the ground up. In contrast,
these previous methods rely on modifying an existing toolpath. In [8], the authors describe a simulation-driven
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Figure 3: Left: Euclidean distance transform of the L-shaped pocket. Middle: Discrete Medial Axis obtained
by thresholding the maximum values in the transform. Right: Plunge hole created at the �rst point of the
skeleton.

strategy for machining the outer contour of a given part; however, the strategy fails to maintain smoothness
when contouring near the part surface where the toolpath has to morph into the shape of the part. Also, it is
not clear if and how their strategy can be used to machine complex pockets with or without islands. Similarly,
in [12] and [13], the authors describe a geometric simulation-driven method for computing a local curvilinear
toolpath, but they do not describe an overall strategy for computing the complete toolpath for a general 2.5D
pocket.

4.1 Our Strategy in Brief

We start by computing the discrete medial axis of the pocket shape. Next, a point with the largest value on
this medial axis (a point farthest from the pocket boundary) is chosen, and a plunge hole of diameter a little
larger than the tool diameter is made in that location. Multiple plunge holes may also be made depending on
the length of the medial axis. The tool is then placed in the plunge hole and advanced incrementally in small
movements in a pre-determined direction until it starts cutting into the material.

Once the tool starts cutting material, further moves are chosen such that the tool engagement always lies
within a speci�c narrow range, and each toolpath move makes only a small angle from the previous move
direction. These two constraints are su�cient to create a spiral toolpath that stops when it hits the pocket
boundary where it �rst fails to maintain su�cient engagement. Therefore, additional heuristics are needed to
keep the tool moving to machine the corners and other regions of the pocket. This can be done by relaxing
the engagement constraints and allowing the tool to follow the boundary of the pocket when the engagement
criteria cannot be met. The method exits when the tool completes a full traversal of the outer boundary of
the pocket without cutting any additional material.

At this stage, the toolpath is neither optimal nor smooth and contains numerous redundant non-cutting
moves. Several post-processing steps are required to �x these issues. The toolpath is �rst segmented into
regions where it is cutting material and where it is not. Next, the cutting regions are grouped to form trochoidal
sections by adding linking moves. The non-cutting regions are also grouped and connected with the trochoidal
sections to create the complete toolpath. Finally, the sharp corners in the toolpath where the non-cutting and
linking moves join the cutting regions are smoothed out. We explain these steps in more detail in the sections
below. We also show how the overall strategy can be developed starting from a more naive approach.

4.2 Discrete Medial Axis Computation

Fig. 3 shows an L-shaped pocket's discrete medial axis. The discrete medial axis is obtained by �rst computing
the Euclidean distance transform using the grass�re algorithm and then thresholding the maximum value in
this transform [5] to create a skeleton (shown in pink in Fig. 3 (middle)).
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Depending on its length, one or more plunge holes may be created on the medial axis. Depending on
where the plunge hole is made on the medial axis, the resulting toolpath can be very di�erent. Given enough
computational resources, multiple toolpaths may be created by choosing di�erent plunge hole locations, and
the best amongst the resulting toolpaths can be selected. To focus on the paper's main ideas, we chose the
�rst point in the medial axis for creating the plunge hole, as shown in Fig. 3 (right).

Algorithm 1: Simple spiral toolpath strategy

Input: Ptp = [p1, p2, · · · , pn] // points comprising the toolpath

θmax // the maximum deviation angle

δstep // toolpath step size

εmin, εmax // tool engagement limits

Function CheckEngagement(p):
FBbefore ← readP ixels() // read the framebuffer data

renderTool(p) // render the tool in the next location

FBafter ← readP ixels()
ε← pocketP ixels(FBbefore)− pocketP ixels(FBafter) // count change in pocket pixels

return ε

Function GetEngagement(Ptp, θ):
~d← pn − pn−1 // direction of the last toolpath segment

~dθ ← Rθ(~d) // rotate the last direction by θ

p← pn + ~dθ ∗ δstep
return (p, checkEngagement(p))

Function FindNextMove(Ptp, θmax):
Aθ ← [0◦,+1◦,−1◦,+2◦,−2◦, · · · ,+θmax,−θmax]
for θ ∈ Aθ do

(p, ε)← GetEngagement(Ptp, θ)
if εmin ≤ ε ≤ εmax then

return p
end

end

4.3 Spiral Toolpath with Simple Heuristics

A spiral toolpath that terminates when the tool hits the pocket boundary can be obtained using simple
heuristics. However, such a strategy can only cut a circular region within a pocket. Over the following few
sections, we show how this strategy can be extended to handle arbitrary pockets.

4.3.1 Pseudocode Description

Algorithm 1 shows the simple spiral strategy in pseudocode. The function FindNextMove computes the
next point to which the tool should be moved given the previous points comprising the toolpath Ptp and the
maximum deviation angle θmax from the last direction. This algorithm is called repeatedly to compute the
complete toolpath. The function GetEngagement returns the tool engagement value for a particular angle
and has been refactored to make the algorithm more readable. We will keep referring to this function in later
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Figure 4: Left: Material cut and tool engagement using Algorithm 1. Middle: Toolpath for the result on the
left using Algorithm 1. Right: Choosing the best angle results in a better spiral toolpath.

improvements to the algorithm. We have also tried to keep the notation consistent and avoid repeating some
inputs and constants in later algorithms.

Here Ptp contains the points representing the current toolpath as a line strip. θmax is the maximum angle
by which a toolpath segment can deviate from the previous segment. θmax along with the step size δstep
controls the smoothness of the generated toolpath with smaller values resulting in smoother toolpaths. The
δstep also depends on the resolution of the simulation framebu�er and will have a minimum value beyond which
it cannot be decreased (see section 3.2). The checkEngagement function computes the tool engagement
as the tool moves from the position pn to pto. The algorithm greedily accepts the �rst valid move with the
smallest angular deviation from the previous direction.

The results of the simulation-driven toolpath using Algorithm 1 are shown in Fig. 4. Fig. 4 (left) shows the
material that has been cut using the toolpath displayed on the right. The cut material is rendered in shades
of blue and pink, where increasingly pink values indicate increasing tool engagement. While very simple, such
a toolpath is unsatisfactory since it can machine only a small portion of the overall pocket.

Algorithm 2: Simple brute-force/non-greedy toolpath strategy

Input: εtar // target required engagement

Function FindNextMove(Ptp, θmax):
Aθ ← [0◦,+1◦,−1◦,+2◦,−2◦, · · · ,+θmax,−θmax]
δbest ← εtar // the smallest difference from target engagement

pbest // the best position to move to

for θ ∈ Aθ do
(p, ε)← GetEngagement(Ptp, θ)
if |ε− εtar| < δbest then

δbest ← |ε− εtar|
pbest ← p

end

end
return pbest

4.3.2 Some Minor Improvements

The initial large tool engagement can be avoided by letting the algorithm explore a larger range of angles since
a somewhat higher curvature is initially required for a spiral toolpath. Additionally, on closer observation, it
can be seen that the toolpath is not exactly spiral. This is because Algorithm 1 is a greedy algorithm where
we choose the �rst valid angle. A better approach is to choose the angle that results in an engagement closest
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to the desired tool engagement. The modi�ed algorithm is shown in Algorithm 2, and the toolpath is shown
in Fig. 4 (right).

If we further increase the maximum deviation angle, then we can move in straight segments along the
boundary (see Fig. 4 (right)). During these moves, the tool engagement falls well below the target engagement
and must be relaxed. However, further exploring this line of thought does not result in a robust overall strategy.
Our solution is to separate the strategy into two parts. The �rst part tries to �nd a move within the engagement
limits. If such a move cannot be found the second part tries to �nd a move along the boundary of the pocket.
We explain this strategy in detail in the next section.

5 A BOUNDARY FOLLOWING STRATEGY

Our strategy for constructing the initial toolpath consists of two parts (a) the part that computes the best
cutting move and (b) the part that ensures that the tool moves along the boundary when a valid cutting move
cannot be found.

Algorithm 3: Best Spiral Move Function
Input: εtar // target engagement

δtol // max preferred change from target engagement

Function FindBestMove(Ptp, θmax):
δbest ← εtar
θ ← −θmax
while θ ≤ θmax do

(p, ε)← GetEngagement(Ptp, θ)
δ ← |ε− εtar|
if δ < δtol then

return (p, true)
end
if δ < δbest then

δbest ← δ
pbest ← p

end
if δbest < εtar and δ > δbest then

return (pbest, true)
end
θ ← θ + 1

end
return (pbest, δbest < εtar)

5.1 Best Cutting Move

The function to compute the best spiral move is shown in Algorithm 3 with various early return optimizations.
The function returns a tuple with the best-found move pbest and another variable indicating its validity. For
each angle in the range −θmax to θmax, we compute the tool engagement ε and the magnitude δ of its
di�erence from the target engagement εtar. If this di�erence δ is less than a small amount δtol, then return
the found position. Else if this di�erence is smaller than the smallest di�erence δbest, we update δbest and the
best move position pbest. In the last if block, we check if we have reached a local minima and return early if
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the δ di�erence starts increasing beyond δbest. We may reach the end of the loop if no δ that is less than δtol
is found. In this case, we return true if a positive tool engagement was found.

5.2 Best Boundary Move

The function to get the tool to follow the boundary of the pocket is shown in Algorithm 4. If a valid boundary
move is found in the angle range −θmax to θmax, the function returns a tuple (p, true) with the current position
and validity set to true. If no valid boundary move is found, the function returns (_, false), indicating strategy
failure and stopping the initial toolpath generation process. The boundary can be found by comparing the
values of the current engagement ε with that of the previous engagement εprev. If the previous engagement
εprev is −1 (the checkEngagement function from Algorithm 1 and therefore the GetEngagement functions
return −1 when a gouge is detected) and the current engagement is 0, then we return the current position.
Else if the previous engagement εprev is 0 and the current engagement is −1 then we compute the position
for the previous engagement and return.

Algorithm 4: Boundary Move Function

Function FindBoundaryMove(Ptp, θmax):
(_, εprev)← GetEngagement(Ptp,−θmax)
θ ← −θmax + 1
while θ ≤ θmax do

(p, ε)← GetEngagement(Ptp, θ)
if εprev = −1 and ε = 0 then

return (p, true)
else if εprev = 0 and ε = −1 then

(p, ε)← GetEngagement(Ptp, θ − 1)
return (p, true)

end
εprev ← ε
θ ← θ + 1

end
return (_, false)

A simpli�ed version of the overall algorithm that computes the next move is shown in Algorithm 5, where
the FindBestMove tries to �nd the best cutting move within the speci�ed angle range (here ±90◦) and the
FindBoundaryMove function tries to move along the pocket boundary in case a cutting move is not found.

Algorithm 5: Overall Move Function

Function FindNextMove(Ptp):
(pn+1, valid)← FindBestMove(Ptp, 90)
if not valid then

(pn+1, valid)← FindBoundaryMove(Ptp, 90)
end
return pn+1

This strategy gives us a toolpath consisting of spiral and curvilinear moves (see Fig. 5 for some examples).
However, it also contains a lot of redundant boundary moves. It is possible to avoid these redundant moves
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Figure 5: Boundary following toolpaths for variations of an L-shaped pocket with islands.

by using a more complicated strategy, but it will be di�cult to generalize such a strategy across arbitrary
pocket shapes. An easier and more robust way is to remove the redundant boundary moves and group the
near-parallel curvilinear moves into trochoidal sections using post-processing steps.

6 POST-PROCESSING

In post-processing we �rst identify the cutting and non-cutting sections of the toolpath. This can be done
by checking the tool engagement values at each toolpath segment and grouping contiguous cutting and non-
cutting segments. The next step involves identifying trochoidal groups from amongst the cutting sections.
This can be done by checking if two cutting sections are nearly parallel to each other and also approximately
separated by the stepover distance (see Fig. 6 (left)). Finally, we also need to identify overlapping boundary
moves in the non-cutting sections discarding all but the smallest such move in each overlapping boundary
group (see Fig. 6 (middle)).

Figure 6: Grouping of trochoidal toolpath segments (left), grouping overlapping boundary segments (middle)
and the composed toolpath (right).

Next, we connect the curvilinear moves in each trochoidal group to create the trochoidal toolpath in these
regions(see the dashed lines in Fig. 6 (left)). This is followed by a composition step that connects the initial
spiral and boundary moves with the trochoidal moves to create the complete toolpath (see Fig. 6 (right)
where the dashes lines indicate linking moves). Lastly, the sharp moves in the toolpath are smoothed out
using a smoothing step. The �nal toolpath can be checked for gouge, and the tool engagement variation can
be inspected by using the simulation environment to step through the tool path and create a rendering like
that shown in Fig. 2 (right).
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6.1 Identifying Cutting and Non-cutting Regions

The cutting and non-cutting regions can be identi�ed using the tool engagement data. Contiguous toolpath
segments with zero or low engagement are grouped into a single non-cutting region, and contiguous segments
with positive engagement are grouped into a single cutting region. A composite data-structure called a `Region'
is used, which consists of a polyline, a boolean indicating if the region is cutting or non-cutting, and an integer
indicating the trochoidal or boundary group to which the region belongs. The procedure is shown in Algorithm
6 where the FindRegion function (not shown but trivial to implement) returns a contiguous region starting
at a given index istart. The algorithm's output is a list of regions used in the next post-processing steps.

Algorithm 6: Identifying cutting/non-cutting regions

Input: Etp = [ε1, ε2, · · · , εn] // tool engagement values at each point

struct {
polyline pl, bool cutting, int group

} Region

Function SegmentRegions(Ptp):
R = [] // segmented regions

istart ← 0 // index from which to start segmenting

while istart < n do
r = FindRegion(Ptp, Etp, istart)
R← R+ r
istart ← istart + length(r)

end
return R

6.2 Grouping Trochoidal Regions

Once the cutting and non-cutting regions have been segmented, we can identify the trochoidal groups from
amongst the cutting regions. The potential trochoids are grouped into stacks and identi�ed by checking if a
cutting move is approximately parallel (with a distance equal to the stepover) to the top cutting move in an
existing stack. If such a stack is found, then the cutting move is pushed into this stack, else a new stack is
created with this cutting move.

Checking whether two cutting moves are approximately parallel can be done by sampling the two polylines
and comparing the closest distances at these sample points. The procedure is shown in Algorithm 7. The
FindStack function (not shown here) searches through the existing stacks to �nd the stack whose top polyline
is approximately parallel to the input region. If an appropriate stack is not found, the FindStack function
returns −1. Figure 6 (left) illustrates a typical scenario where the cutting moves can be grouped into a
trochoid.

Before the complete toolpath can be composed, we must connect the curves in each trochoidal region
using linking moves. This can be quickly done by connecting one curve's end point with the next curve's start
point, as shown in Fig. 6 (left). Note that connecting the trochoidal curves using straight line segments will
result in sharp corners at the connecting ends that must be smoothed later.
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Algorithm 7: Grouping Trochoidal Regions

Input: Rtp = [r1, r2, · · · , rn] // regions in the toolpath

Function GroupTrochoids(Rtp):
Strochoid = [] // trochoidal stacks

for r ∈ Rtp do
if r.cutting then

s← FindStack(r, Strochoid, Rtp)
if s = −1 then

Strochoid ← Strochoid + []
s← length(Strochoid)

end
r.group← s
Strochoids[s]← Strochoid[s] + r

end

end
return Strochoid

6.3 Grouping Boundary Regions

Before composing the �nal toolpath, we also need to group the overlapping non-cutting or boundary regions.
The process is very similar to one for grouping the trochoidal regions. In this case, we need to check if one
non-cutting region is a subset of a larger region, in which case these regions must be grouped together. Fig 6
(middle) illustrates which overlapping boundary moves must be grouped. The boundary moves are rendered
as thick lines to indicate that they are overlapping. When traversing the segmented toolpath, the overlapping
boundary or non-cutting moves are encountered in the order of increasing lengths. Therefore, these overlapping
boundary moves can be grouped by checking if the endpoints of the top segment in the boundary stack lie on
the current boundary segment.

6.4 Composing the Complete Toolpath

The algorithm for composing the complete toolpath starts by looping over the regions. The �rst time a region
belonging to a trochoid group is encountered, the whole trochoid group is added to the toolpath. Similarly,
the �rst time a region belonging to a boundary group is encountered, the �rst and smallest region from the
boundary group is added to the toolpath. Once a trochoid or a boundary group has been added, further
encounters with the groups are ignored. Lastly, the composed toolpath is traversed to check for gaps between
the segments, which are patched with linear moves. The procedure is shown in Algorithm 8.

6.5 Patching Gaps

At this stage there will still be some gaps in the toolpath. This is because we use the smallest boundary moves
from the boundary stacks, and rarely are they directly connected to the trochoid groups. These gaps can be
closed using straight linking moves in most cases. Sometimes, however, these linking moves may gouge the
pocket boundary. Therefore a gouge check is performed on the connecting moves by computing the smallest
distance of each linking move with the pocket boundary. If a gouge is detected, we must �nd an alternate
non-gouging rapid move. Currently, we use a boundary following move that connects these segments; however,
more elaborate and optimal strategies can be used.
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Figure 7: Smoothed toolpaths for variations of an L-shaped pocket with islands.

Algorithm 8: Composing the Complete Toolpath

Input: Tstack = [t1, t2, · · · , tm] // trochoid stacks

Bstack = [b1, b2, · · · , bk] // boundary stacks

Tregion = [T1, T2, · · · , Tm] // trochoid regions

Function Compose(Rtp, Tstack, Bstack, Tregion):
Ctp ← [] // composed toolpath

for r ∈ Rtp do
if r.cutting then

if ! Tstack[r.group].added then
Ctp ← Ctp + Tregion[r.group]
Tstack[t.group].added = true

end

else
if !Bstack[r.group].added then

Ctp ← Ctp +Bstack[r.group].top
Bstack[r.group].added = true

end

end

end
return Ctp

6.6 Smoothing Corners

When joining the trochoidal moves in a trochoid group and when joining the boundary moves with the
trochoidal sections, the corners at the joins are unlikely to be smooth. Di�erent methods can be used to
smooth out these corners. Since our toolpath consists of small, approximately equal-length segments, a
modi�ed version of Chaikin's algorithm [7] can be used to smooth out the corners. The results of smoothing
the toolpaths for the example L-shaped parts are shown in Fig. 7.

Smoothing the toolpaths requires merging all the cutting and the non-cutting regions. Maintaining the
cutting/non-cutting status of the segments while smoothing can be complex and error-prone. A more straight-
forward approach is to recover the status of the segments and recreate the regions by running the toolpath
through the simulation environment again and re-computing the engagement values for the toolpath at each
segment.

The pixel engagement statistics and the angular deviation between adjacent toolpaths segments for the
smoothed toolpath in Fig. 7 (left) are shown in Fig. 8. The horizontal axis represents the time step in the
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Figure 8: Pixel engagement (blue) and inter-segment angular deviation (orange) for the toolpath simulation
result on an L-shaped pocket (left).

toolpath simulation, and the vertical axis indicates both the pixel engagement count and the angular deviation
between consecutive toolpath segments in degrees, which are conveniently in the same range allowing us to
overlay the two graphs. On the left of Fig. 8, the color-coded pixel engagement result from the cutting
simulation is displayed, where one can see some material left along the boundary of the pocket due to toolpath
smoothing.

The blue graph shows the pixel engagement value, and we can see that the engagement values are within a
narrow range except where they fall to zero for the linking moves where no material is being cut. The angular
deviation in degrees is plotted in orange and can be seen to be within 5-10 degrees in the cutting regions,
except at the very start and in the two trochoidal regions near the start. The high angular deviation in the
trochoical regions is an artifact of the constant large individual steps in the toolpath. It is possible to reduce
these sharp changes using an adaptive approach where the length of toolpath segments is reduced in the
neighborhood where the linking moves connect with the cutting segments resulting in a smoother toolpath.

7 CONCLUSIONS

Toolpath generation algorithms are usually very complex and can take a very long time to develop into a form
that can be used with production software. The proposed simulation-based method requires very little code
to implement and minimal heuristics. Despite this, the method can handle complex pocket geometries and
works for all pocket shapes. The method can also be extended easily to handle multiple plunge holes for more
optimal toolpaths.

Unfortunately, at this time, a simulation-based approach like this is still computationally too expensive
for real-time applications. It is also di�cult to parallelize a simulation-based approach since only a single
simulation environment is typically available. Maintaining multiple simulation environments and synchronizing
them maybe even more expensive. More research is required to �nd a method to parallelize the simulation
process. The brute-force exploration for the best tool movement direction is the most time-consuming part of
the algorithm, and this can be considerably sped up using a learning algorithm.
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