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Abstract. The estimation of bounds on derivatives of rational Bézier curves has 
significant application in Computer Aided Geometric Design (CAGD). This paper 

proposes a piecewise method to estimate the derivative bounds of the rational 
Bézier curves. This method applies the Bernstein basis functions' extreme value 

characteristics and fundamental inequalities to estimate the derivative bounds of 
the rational Bézier curves. Both theoretical analysis and numerical examples show 
that our bound is sharper than existing ones. The proposed method has an 

excellent convergence effect for smooth rational Bézier curves with severe weights 
and control points. 
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1 INTRODUCTION 

Bézier curves and surfaces are widely used in free-form geometry design, and rational Bézier 
curves can accurately represent certain analytical curves and surfaces. Significantly, the estimation 
of derivative bounds is one of the few vital global properties of curves, which has essential 

applications in computer-aided geometric design [1] and computer graphics [2].  
In computer graphics and modeling, parametric curves and surfaces are often tessellated into 

piecewise linear segments for rendering [3], mesh generation [4,5], and surface intersection [6]. 
Moreover, various curve algorithms depend on the approximation error, such as linear 
approximation, creation of offset curves, and determination of inflection points or singularities. In 

such applications, the approximation error is typically taken as the maximal distance between the 
original and the approximating segments, determined by the global parameter interval or step size 

valid over the entire domain. One popular approach is establishing a relatively simple relationship 
between the step size and the bound of a rational curve or surface. The estimation of a bound 
should ideally be as accurate as possible to ensure a larger step size without violating the 

prescribed tolerance.  
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Many researchers have introduced estimation methods for the derivative bounds of rational 
Bézier curves [7-17,19]. A rational Bézier curve ( )R t  of degree n  is given by the control points 

3
iP R   and corresponding positive weights i R   as follows: 
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where are the Bernstein polynomials given by ( ) (1 )n i n i
i

n
B t t t

i
 . In connection with this paper, 

( )R t  means the 2-norm of the derivative of ( )R t  . 

With the present study, we want to propose a unified result about first-order derivative bounds 

of the rational Bézier curves based on the characteristics of Bernstein basis functions, the 
definition of derivatives, and some fundamental inequality relations. Moreover, the bounds given in 

this paper are sharper than the existing bounds, especially for smooth rational Bézier curves with 
abrupt changes in weights and control points, which have an excellent convergence effect. 

2 PREVIOUS WORK 

Many researchers have given the estimation method of the derivative bounds of the rational Bézier 
curves. Generally, a bound on the magnitude of the derivative of rational Bézier curves is the 
product of a positive real number and a module defined by control points and weights. Based on 

(1.1), Floater [7] presented two estimations for the rational Bézier curve as 
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Selimovic [9] obtained tighter bounds for rational Bézier curves as 
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Huang [10] presented such a bound as 
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where 1 1( ) ( )ij i i i i i iQ P P P P . 

Deng [12] gave the following bound 
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Deng and Li [9] obtained a new inequality of the rational Bézier curves as 
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Jin [16] provided an estimation method for the rational conic Bézier curves. They proved that the 

bound can be defined as 
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where 
10 1

max i ii
d P P , 0 2max ,M , 0 2min ,m . 

Very recently, Wang [17] gave the following bound of a NURBS curve of order k  (degree 1k ) as  
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There are various derivative bounds of the rational Bézier curves. We consider these bounds with 

drastically changing weights and control points. Then, we found that the estimated bounds of 
these methods are much larger than the exact bounds. The above methods are only applicable 
when the weights change smoothly. The key to the algorithm in this paper is how to suppress the 

influence of the weights and control points on the upper bounds of the derivative of the rational 
Bézier curves. 

3 METHOD  

3.1 Preliminaries 

In this section, some novel conditions for estimating the bounds are presented. We present and 

prove the following Theorem.  

Theorem 1 

General polynomials and Bernstein polynomials can be transformed into each other. 

Proof. 

Let 0 1( ) n
np x a a x a x  have real coefficients, Cargo and Shisha [18] note that ( )p x  has a 

representation in Bernstein form, namely 
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By (3.1)-(3.2), Theorem 1 holds. 

3.2 Estimating the bounds on the magnitude of derivatives of rational Bézier curves 

Theorem 2 

For the rational Bézier curve defined by (1.1), we have 
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According to the properties of Bernstein basis functions, we have  
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By (3.3)-(3.5) we have 
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For brevity, we decompose ( )R t  into ( )A t , 1( )A t , 2( )A t , ( )B t , 1( )B t , 2( )B t  and ( )C t  as follows: 
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A t B t x x B t  is the x-component of ( )A t , ( )yA t  is the y-

component of ( )A t , and ( )zA t  is the z-component of ( )A t . Similarly, ( )xB t  is the x-component of 

( )B t , ( )yB t  is the y-component of ( )B t , ( )zB t  is the z-component of ( )B t . 

For the rational Bézier curve of degree n  , the Bernstein polynomial 2( ( ) ( ))x xA t B t   can be 

transformed into a uniform Bernstein polynomial of degree 4 2n . The same transformation 

method was applied to 2( ( ) ( ))y yA t B t  and 2( ( ) ( ))z zA t B t . Based on the extreme value characteristic 

of the Bernstein basis function, the interval of the parameter t  of 2( ( ) ( ))x xA t B t  should be equally 

divided into 4 2n   parts to estimate the extreme value. Similarly, the interval of 2( )C t   should be 

equally divided into 2n  parts. We set 
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t

A t B t . To get the maximum value of ( ) ( )A t B t  , we first consider obtaining the 

extremum value of  2( ( ) ( ))x xA t B t . According to Theorem 1, we have the Bernstein form of 

polynomial 2( ( ) ( ))x xA t B t ,  then we transform the Bernstein form into a unified general form of 

2( ( ) ( ))x xA t B t  . We define the general form of 2( ( ) ( ))x xA t B t  as Ax BxGen . To estimate the 

extremum value, we transform Ax BxGen  into a unified Bernstein form called Ax BxBez  . Similarly, 

we can obtain the unified Bernstein form of y-component and z-component which called Ay ByBez  

and Az BzBez . We use the same method to estimate the minimum value of 2( )C t  , whose Bernstein 

form is CBez . 

The degree of ( )Ax Bx Ay By Az BzBez Bez Bez  is 4 2n , and the degree of CBez  is 2n . The 

parameter interval is divided into 6 2n m  segments, where m  is the number of repeated node 

values. Bernstein basis functions of ( )Ax Bx Ay By Az BzBez Bez Bez  and CBez  are monotonic over 

each interval segment. We estimate the extreme values of  ( ) ( )A t B t  and 2( )C t  on each interval, 

and calculate the upper bound of the derivative by (20) and (21). Take the maximum value of all 

the estimated upper bounds as the final result and define 
[0,1]

0

min( ( ) )
n

n
i it

i

B t . Then we have the 

sharp bounds 

                                                      

2 2 2

2
( )

x y z
R t .                                                    (3.8) 

By (3.3)-(3.8), Theorem 2 holds. 

4 RESULTS AND DISCUSSIONS 

This section presents some numerical experiments based on the proposed algorithm and discusses 
the comparisons of multiple solutions. 

4.1 A numerical Example 

An example is presented to illustrate the superiority of the proposed results. Control points 

( 0,1,2,3)iP i  and weights ( 0,1,2,3)i i  for the example curve 0( )R t : 0(19,61,0)P , 1( 61,52,0)P ,  

2(17,55,0)P , 3(49, 20,0)P , 0 1.7 , 1 0.5 , 2 1 , 3 6.7 . 

The Bernstein basis function is shown in Figure 1. 

It can be obtained that the interval has been divided into 14 segments to estimate the 

extreme value. The segments are 0,0.1 , 0.1,0.166 , 0.166,0.2 , 0.2,0.3 , 0.3,0.333 , 0.333,0.4 , 

0.4,0.5 , 0.5,0.6 , 0.6,0.666 , 0.666,0.7 , 0.8,0.833 , 0.833,0.9 , 0.9,1 . The Bernstein basis function is 

monotonic in each interval, and the extreme value can be calculated by calculating the value of the 

start and end points in each interval. By simple calculation, we can derive that the estimated 
bound is 303.69. From Theorem 2, the derivative of the example rational Bézier curve has the 

following result: 
0 ( ) 303.69R t . 
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Figure 1: The Bernstein basis function of 2( ( ) ( ))A t B t . 

 

Figure 2: The Bernstein basis function of 2( ( ))C t . 

 
Then we compare our new bound with many other bounds. All of the cases of rational Bézier 

curves ( ( ), 1,2, 8iR t i )are provided in Appendix. 

 

Curve Exact New 
bound 

Floater Selimovic Huang Deng Li Jin Wang 

0( )R t  181.41 303.69 43924 73573 2455 1203 578.79 - 43924 

1( )R t  5.45 9.299 2000 2000 200 200 28.28 - 2000 

2( )R t  2.797 4.02 2700 81000 125.17 42.9 30.06 - 2700 

3( )R t  41.77 55.17 3.4E+7 1.6E+8 2668.6 6363.5 847.02 - 3.4E+7 

4( )R t  309.3 573.4 4.52E+7 5.6E+9 14791 61476 2067.02 - 4.52E+7 

5( )R t  328.0 523.4 3.2E+8 1.1E+15 72729 41826 9598 - 3.2E+8 

6( )R t  90.63 159.5 63818 5.63E+10 5.63E+4 2.07E+5 2.55E+4 - 63818 
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7( )R t  27.08 40.76 1.4E+6 3.4E+13 2917.5 42081 291.29 - 1.4E+6 

8( )R t  201.2 455.1 1006.2 1006.2 201.2 188.25 201.24 4.55 1006.2 

 
Table 1: The estimation bounds of different methods. 

 
Huang and Zhu [20] proposed a fast point-by-point generating algorithm for rational para-metric 

curves. The core step of the algorithm needs to use the derivative bound of the curve to determine 
the iteration step size. Our new bound is closer to the exact one, minimizing the size of iterations 

and thus saving much calculation time. Figure 3 shows the drawing result of curve 0( )R t , and the 

calculation time results are displayed in Figure 4. In Zheng’s manuscript [21], the estimation 

bound influences the step size of rational Bézier curves. We ran several numerical comparisons on 
test step size cases of randomly generated rational Bézier curves. The results are displayed in 
Figure 5. It is worth noting that the calculation time and step size are set to 1 with the exact 

boundary value, and other estimation results are presented as ratios. The curves are numbered 1-

9 to present curves 0( )R t - 8( )R t . 

 

Figure 3: The drawing result of 0( )R t . 

 

 

Figure 4: The calculation time results. 
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Figure 5: The step size results. 

4.2 Comparisons and Discussions 

There are many derivative bounds of rational Bézier curves. We compare Theorem 3.1 with the 
estimations proposed by Floater [7], Selimovic [9], Huang [10], Deng [12], Li [13], Jin [16] and 

WGJ [17]. We compare results for the bounds in higher degree cases on the rational Bézier curves. 

We compare our new bounds with many other bounds by numerical examples, which are 
summarized in Table 1, and the remaining results are similar, hence are not reported here. Since 

the method of Jin [16] only applies to rational conic Bézier curves, it is invalid in some numerical 
examples. These results show that our new bound is generally better than those proposed in the 

current literature. The curve generation time is significantly reduced, and the generated step size 
within the tolerance range is as large as possible to benefit the mesh generation algorithm. 

The proposed method has an excellent convergence effect on the typical conic section curve 

and the standard Bézier curve in engineering, significantly when the local weight factor changes 
drastically.  The estimation methods proposed in the current literature have huge estimation errors 

for this situation. In the current estimation method, the control points and the weights are 
separated to estimate the derivative value of the rational Bézier curve. Weights usually appear in 
the denominator, and the control points appear in the numerator. However, this ignores the 

influence of the local change rate of the control points and weight factors on the estimation 
bounds. When the curve is smooth, and the local control points and weights change drastically, it 
will cause significant errors in the estimation. The method we propose is based on the 

characteristics of Bernstein basis functions, and the product of the control points and the weight 
factors are used as a whole part to estimate the derivative value in sections, thereby avoiding this 

problem. 

Li and Deng’s estimation [13] is the same as Huang’s [10]. However, this kind of curve is 
scarce in the practical application of engineering, and our estimated result is less different from the 

precise value. In general, our method shows better results than Li and Deng's. 

5 CONCLUSIONS 

This paper presents a novel method for estimating the bounds of the derivatives of rational Bézier 

curves using Bernstein basis functions' characteristics and fundamental inequalities. Theoretical 
analysis and numerical examples validate that our new bounds are tighter than the existing ones 
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for smooth rational Bézier curves with drastic weights and control points. In addition, the new 
bound is less affected by changes in weights and control points, proving our method's superiority. 

Furthermore, the proposed method solves the problem that the existing bounds in the literature 
will cause significant errors when the weights change considerably. It has an excellent convergence 

effect for smooth but local control vertices and severe changes in weight factors, which is beneficial 
for studies on computer graphics and complex geometric modeling. In the following works, we can 
follow the derivation in the manuscript and extend the method to the upper bound estimation of 

the second-order derivative of rational Bézier curves. 
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APPENDIX 

This part provides the cases of rational Bézier curves. The control point is represented here as 

( , , , )x y z  .It should be noted that the x, y and z coordinate values are the products of the 

original coordinate values and the weights. 

1( )R t : control points (0,0,0,1),(0,1,0,0.1),(2,2,0,1)P  

2( )R t : control points (0,0,0,1),(0,1,0,0.1),(0.1,0.1,0,0.1),(3,0,0,3)P  

3( )R t : control points 
(6.1,30.5,0,6.1),(2.73,2.73,0,0.39),( 0.24, 0.3,0,0.03),( 1.1, 11,0,1.1),

( 110.4, 55.2,0,18.4)
P  

4( )R t : control points 
(7791, 882,0,147),( 46.2,435.6,0,6.6),( 44.8, 32.2,0,0.7),( 131.4,77.4,0,1.8),

(67.9, 47.6,0,0.7),( 264,228,0,4)
P  

5( )R t : control points 
(61.2, 39.1,0,1.7),(38.4,43.2,0,0.8),(2.8, 2.6,0,0.2),(6.4,1.3,0,0.1),

( 27.2,21.6,0,0.4),(25.8, 0.6,0,0.6),(2142,5796,0,63)
P  

6( )R t : control points 
(38.7,38.7,0,4.3),( 10.4,0,0,2.6),(1,0,0,0.2),( 9.1,0,0,1.3),

(4, 4,0,0.4),(1.2 1.8,0,0.6),( 10.8,24.3,0,2.7),(3.1, 15.5,0,3.1)
P  

7( )R t : control points 
(117,78,0,39),( 11.5,18.4,0,2.3),(0.96,3.84,0,0.96),(12.6,18,0,1.8),

(0.4, 3.2,0,0.4),( 4.2,3,0,0.6),(0,13,0,1.3),(2.8,0.7,0,0.7),(110.4, 18.4,0,18.4)
P  

8( )R t : control points ( 0.9, 3,0,0.3),(9,12,0,1.5),(1.2,2.4,0,0.6)P  
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