
68

Curvature Monotonicity Regions of 2D Polynomial and Rational Bézier Curves
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Abstract. In this study, we visualize the curvature monotonicity regions for 2D polynomial
and rational Bézier curves based on the su�cient condition. These regions are represented
as the intersection of half-spaces de�ned by implicit curves. We verify that the degrees
of implicit curves are up to cubic, for polynomial and rational Bézier curves up to degree
10. Using GPU technology, we can visualize regions, including implicit curves, in real time.
Visualization of the regions, including implicit curves, partly elucidates how the curvature
monotonicity regions are constructed.
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1 INTRODUCTION

Freeform curves, such as Bézier curves and B-spline curves, exhibit numerous desirable properties and �nd
wide-ranging applications. However, determining the placement of control points to achieve monotonically
varying curvature poses a challenge. Although CAD systems o�er tools to visualize the curvature comb and
observe changes resulting from control point adjustment, identifying the speci�c region of a control point
that ensures monotonically varying curvature remained unclear. In our previous work [21, 10], we introduced
a real-time method to visualize the monotonicity regions of the curvature of polynomial and rational curves.
Using the method, users can know the region of a control point to achieve monotonically varying curvature.
However, investigations into these regions have remained unexplored.

In our current study, we visualize the regions of curvature monotonicity of 2D polynomial and rational
Bézier curves, relying on a su�cient condition to check curvature monotonicity. Hereafter, we refer to the
curvature monotonicity region based on the su�cient condition as a su�cient region. Using GPU technology,
we propose a real-time approach for visualizing su�cient regions, including the implicit curves that bound
the su�cient region. Implicit curves are the coe�cients of the curvature monotonicity evaluation function,
denoted ξi in Eq. (4).

This paper makes the following contributions:
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1. We propose a real-time visualization method of su�cient regions as the intersection of half-spaces de�ned
by related implicit curves.

2. We propose a GPU-based real-time method for visualizing the half spaces de�ned by implicit curves.

3. We elucidate that the su�cient region is composed as the intersection of half-spaces de�ned by implicit
curves up to degree 3. We veri�ed this fact for polynomial and rational Bézier curves up to degree 10,
using Mathematica.

4. Visualization of the su�cient region partially elucidates how the curvature monotonicity regions are
constructed.

The structure of this paper is as follows: Section 2 provides a review of related work. Section 3 reviews the
curvature monotonicity evaluation functions [10]. Section 4 introduces a method for real-time visualization
of regions de�ned by implicit curves using a GPU. This method is used to visualize curvature monotonicity
regions on the basis of a su�cient condition. Section 5 proposes a method to visualize su�cient regions,
including the implicit curve. We show results for cubic and quartic polynomial, as well as rational cubic Bézier
curves. Section 6 presents the conclusions.

2 RELATED WORK

Numerous studies have tackled the generation of freeform curves with monotonically varying curvature. The
theoretical foundation for curvature monotonicity regions has been established for quadratic polynomial Bézier
curves by Sapidis et al. [12] and quadratic rational Bézier curves by Frey et al. [4], elucidating both the
necessary and su�cient conditions. For cubic or higher-degree curves, various methods have been proposed,
most of which are related to a su�cient condition for curvature monotonicity. Walton et al. introduced
Pythagorean hodograph quintic spirals [15]. Wang et al. proposed a fair curve design method based on the
su�cient condition for curvature monotonicity [17]. Minueur et al. introduced typical curves [8], and Farin
proposed class A Bézier curves [3]. Yoshida et al. proposed an interactive control method of class A Bézier
curves and demonstrated that typical class A Bézier curves approaches logarithmic spirals under the same G1

Hermite interpolation condition as the degree gets higher [19]. For matrix M that has two real eigenvalues,
Romani et al. showed the necessary and su�cient conditions for the curves to be class A [9]. Yoshida et al.
[20] approximated log-aesthetic curves in terms of rational cubic Bézier curves, while Lu et al. [7] employed
quintic polynomials for the same purpose. 3D class A Bézier curves are investigated by Yoshida et al. [18],
Tong et al. [14], and Wang et al. [16].

Unlike other approaches that investigate a su�cient condition for curvature monotonicity, Yoshida and
Saito et al. proposed methods for real-time visualization of curvature monotonicity regions in 2D polynomial
Bézier curves [21], and for 2D rational Bézier curves [10]. Our approach of visualizing a su�cient region is
based on the visualization of regions bounded by implicit curves. Previous works for visualizing implicit curves
focus mainly on the topological aspects of implicit curves, such as isolating singular points [1, 5, 6]. In this
study, we employ a straightforward yet e�cient method for visualizing regions bounded by implicit curves,
leveraging the computational power of a GPU.

3 CURVATURE MONOTONICITY EVALUATION FUNCTION

This section reviews the curvature monotonicity evaluation functions for 2D polynomial and rational Bézier
curves proposed by Saito et al. [10]. A 2D Bézier curveP(t) of degree n with n+1 control pointsPj = [xj yj ]

T

and weights wj (0 ≤ j ≤ n) is de�ned by

P(t) =
Q(t)

W (t)
, (1)
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where

Q(t) =

n∑
j=0

Bn
j (t)wjPj , W (t) =

n∑
j=0

Bn
j (t)wj , (2)

and Bn
j (t) is a Bernstein polynomial. We assume that the curve is regular. If all the weights wj are 1, Eq.

(1) represents a polynomial curve. Otherwise, Eq. (1) represents a rational curve.
The curvature monotonicity of a Bézier can be veri�ed by checking whether dκ

ds ≤ 0 or dκ
ds ≥ 0 within

t ∈ [0 1]. dκ
ds for 2D curves is given by [2] as

dκ

ds
=

(Ṗ ∧
...
P)(Ṗ · Ṗ)− 3(Ṗ ∧ P̈)(Ṗ · P̈)

|Ṗ|6
, (3)

where Ṗ, P̈, or
...
P represents the �rst, second or third derivative of P with respect to t. Since the denominator

is always positive, curvature monotonicity can be veri�ed by the numerator of dκ
ds , which we denote λ(t). The

numerator of dκ
ds can be represented as a Bernstein polynomial of degree nc:

λ(t) =

nc∑
i=0

Bnc
i (t)ξi. (4)

For polynomial curves, nc = 4n− 7, whereas for rational curves, nc = 8n− 12 [10]. We refer to λ(t) as the
curvature monotonicity evaluation function. We consider ξi as implicit functions with respect to the control
point coordinates for which we want to visualize the curvature monotonicity regions. The intersection of these
functions will provide us with the su�cient regions.

We introduce internal division points and weights of the de Casteljau algorithm. For 0 ≤ k ≤ m ≤ n, k-th
internal division point Qm,k(t) and weight Wm,k(t) at (n−m)-th step are:

Qm,k(t) =

n−m∑
i=0

Bn−m
i wk+i(t)Pk+i, (5)

Wm,k(t) =

n−m∑
i=0

Bn−m
i wk+i(t). (6)

If both m and k are single digit integers, the comma between them is omitted, as in Q01. Note that for
polynomial curves, all weights wi are 1 and Eq. (6) is not used.

λ(t) of polynomial Bézier curves with degree n (n ≥ 3), which we denote Kn(t), is

Kn(t) = S4(V1 · V1)− 3S3(V1 · V2), (7)

where

V1 = n (Q11 −Q10),

V2 = n(n− 1) (Q22 − 2Q21 +Q20),

S3 = n2(n− 1) (Q20 ∧Q21 +Q22 ∧Q20 +Q21 ∧Q22),

S4 = n2(n− 1)(n− 2) (8)

((1− t)(Q31 −Q30) ∧ (2Q31 − 3Q32 +Q33) (9)

+ t (Q30 − 3Q31 + 2Q32) ∧ (Q33 −Q32))
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and the curvature monotonicity can be evaluated using the degree 4n− 7 function Kn(t).
λ(t) of rational Bézier curves with degree n (n ≥ 3), which we denote kn(t), is

kn(t) = ((V5 ∧ V6)V5 + 3S7V8) · V5

= (V5 ∧ V6)(V5 · V5) + 3S7(V8 · V5), (10)

V5 = n (W10Q11 −W11Q10),

V6 = n(n− 1)(n− 2) (11)

(W30Q33 − 3W31Q32 + 3W32Q31 −W33Q30) (12)

S7 = n(n− 1)

(W22(Q20 ∧Q21) +W21(Q22 ∧Q20) +W20(Q21 ∧Q22)),

V8 = n2(n− 1) ((1− t)(2W11(W20Q21 −W21Q20)

−W10(W20Q22 −W22Q20))

+ t (W11(W20Q22 −W22Q20)

− 2W10(W21Q22 −W22Q21)),

and the curvature monotonicity can be evaluated using the degree 8n − 12 function kn(t). See [10] for the
derivation of Kn(t) and kn(t).

In [10], to visualize the curvature monotonicity regions, di�erent fragment shader codes were used depend-
ing on the degree of Bézier curves. Using Eq. (7) or Eq. (10) in Bernstein form, fragment shader codes for
di�erent degree Bézier curves can be consolidated to a single fragment shader. In this approach, fragment
shader code is stored as text within the application program. Degree-speci�c components are then dynamically
replaced, and the fragment shader is subsequently recompiled. Using this approach, we only need one code for
polynomial curves and one for rational curves, regardless of the degree, and we can visualize su�cient regions
as long as the fragment shader �ts into GPU memory.

4 REAL TIME VISUALIZATION OF THE REGIONS DEFINED BY IMPLICIT CURVES

To visualize the curvature monotonicity regions based on the su�cient condition in Sec. 5, we need to visualize
the regions de�ned by implicit curves. This section introduces a real-time method for visualizing the regions
de�ned by implicit curves using a GPU.

Our approach to visualize the regions de�ned by implicit curves using a GPU is similar to the idea of
[21, 10]. In this method, computations are performed in the fragment shader for each pixel in a window, with
the pixel being painted accordingly. Suppose that an implicit function is f(x, y), and we need to visualize the
region where f(x, y) ≤ 0. If we need to visualize the region where f(x, y) ≥ 0, f(x, y) is negated. In the
fragment shader of a GPU, f(x, y) is computed in parallel for every pixel (x, y) in a window by drawing a
rectangle of the window's size. If f(x, y) ≤ 0 for a pixel, the pixel is colored with a user-speci�ed color, or
the color of the pixel is synthesized when drawing more than one implicit curves. Otherwise, the pixel color
remains unchanged. In our implementation, f(x, y)s are computed for a 3×3 pixel grid to enable antialiasing.
The color of the center pixel is computed as the weighted average of the colors of the surrounding 3×3 pixels.

Our approach can visualize regions de�ned by implicit curves much faster than Mathematica. Fig. 1 shows
an example of visualizing the regions de�ned by six implicit curves using Mathematica. These curves consist
of two cubic, two quadratic, and two linear curves. The colored regions indicate where at least one implicit
function is positive. The white region near the origin indicates that all the implicit functions have negative
values. The visualization presented in Fig. 1 was generated using Mathematica on a computer equipped with
a Ryzen 9 5950X CPU with 64GB of memory and a GeForce RTX 4080 GPU with 16GB of memory. It took
approximately 150 seconds to generate this visualization. The window size of Fig. 1 is 1300×1300 pixels. Fig.
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1 corresponds to Fig. 3(a1). Computing Fig. 3(a1) with our approach on the same computer takes about 4
ms for a window of 1536 × 1536 pixels. In our implementation, we utilize C++ and OpenGL Shaders. The
computation time depends on the number of implicit functions, their degrees, and the window size.

Figure 1: Visualization of the regions de�ned by implicit curves using Mathematica

5 CURVATURE MONOTONICITY REGION AS THE INTERSECTION OF IMPLICIT REGIONS

In this section, we visualize the su�cient regions as the intersection of implicit curves. We visualize su�cient
regions of cubic polynomial, quartic polynomial, and rational cubic Bézier curves.

For a Bézier curve, if λ(t) ≥ 0 or λ(t) ≤ 0 within t ∈ [0 1], the curvature is monotonically varying. As
shown in Eq. (4), λ(t) is an explicit Bézier curve [13] with control points ξi. We refer to the curvature
monotonicity regions computed using the condition λ(t) ≥ 0 or λ(t) ≤ 0 within the interval t ∈ [0, 1] as
the exact curvature monotonicity regions, or simply as the exact regions. The curvature of a curve can be
monotonically varying even if ξis have di�erent signs. Fig. 2 shows a cubic Bézier curve, its curvature plot,
λ(t), and dκ

ds , where the signs of ξi are di�erent, but λ(t) ≥ 0 within t ∈ [0 1] as shown in Fig. 2(c). Note

that ξis are scaled so that |ξi| ≤ 1. dκ
ds is λ(t) divided by |Ṗ|6, which is shown in Fig. 2(d). Although the

curve in Fig. 2(c) and the curve in Fig. 2(d) are quite di�erent, both curves are positive within t ∈ [0 1].
When the curvature is monotonically varying, ξis may have di�erent signs. To simplify the situation,

we investigate the curvature monotonicity regions based on a su�cient condition. Our su�cient region is
de�ned by ξi ≤ 0 for curves with monotonically decreasing curvature or ξi ≥ 0 for curves with monotonically
increasing curvature, where 0 ≤ i ≤ 4n − 7 for polynomial curves or 0 ≤ i ≤ 8n − 12 for rational curves.
Concerning the su�cient region of a control point Pj (0 ≤ j ≤ n), it is the intersection of all ξi ≥ 0 (for curves

(a) cubic Bézier curve (b) curvaure plot (c) λ(t)

κ

t t

λ(t)

ξ0

ξ1

ξ2

ξ3
ξ4

ξ5

P0

P1

P2

P3

(d) dκ/ds

dκ/ds

t

Figure 2: Cubic Bézier curve, curvature plot, and λ(t)
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with monotonically increasing curvature) or ξi ≤ 0 (for curves with monotonically decreasing curvature) with
Pj = [xj yj ]

T representing a variable associated with ξi. Note that a su�cient region may be disconnected.
For a control point Pj for which we want to visualize the su�cient region, and for each ξi, we will �nd the

region in the (x, y) plane where Pj can be replaced, ensuring that ξi ≤ 0 (or ξi ≥ 0) still holds. To visualize
the region of ξi ≤ 0 (or ξi ≥ 0) for Pj , we compute the value of ξi in the fragment shader by replacing the
coordinate of Pj with the coordinates corresponding to each pixel in a window. When we visualize the region
for decreasing curvature, the corresponding pixel is painted with a user-speci�ed color if ξi < 0. Otherwise,
the pixel remains white. When we visualize the region for increasing curvature, the corresponding pixel is
painted if ξi > 0. Repeating the computation of ξi by 4n − 7 times (or 8n − 12 times for rational curves),
and appropriately synthesizing the colors, allows us to visualize all regions de�ned by ξis simultaneously.

To compute ξi, Eq. (7) is used for polynomial curves, whereas Eq. (10) is used for rational curves. For
Bernstein multiplications, employing scaled Bernstein [11] signi�cantly simpli�es the process, as binomial co-
e�cients are only required in the �rst and last steps of multiplication. In our implementation, our visualization
program works for polynomial curves up to degree 13 and rational curves up to degree 9 using a GeForce RTX
4080 GPU with 16GB of memory. Visualizing su�cient regions enables us to o�er a partial explanation for
the exact curvature monotonicity regions, particularly when the sizes of the exact regions and the su�cient
regions are similar.

5.1 Su�cient Regions of a Cubic Bézier Curve

We visualize the su�cient regions of a cubic polynomial Bézier curve with P0 = [0 0]T, P1 = [1 0]T,
P2 = [3 1]T, and P3 = [4 5]T. Fig. 3 illustrates the curvature monotonicity region for each control point,
along with the control polygon and the curve. In su�cient regions, the regions with ξi ≥ 0 are colored, while
the regions ξi < 0 remain white. Therefore, the su�cient regions are colored white. Note that for visualizing
su�cient regions with monotonically increasing curvature, regions with ξi ≤ 0 are colored. For each control
point Pj , ξi = 0 is an implicit curve with respect to xj and yj . In Fig. 3, the exact regions are computed
using the method proposed in [21, 10].

In the su�cient region of P0 in Fig. 3(a1), ξ0 = 0 and ξ1 = 0 are implicit cubic curves. ξ2 = 0 and
ξ3 = 0 are implicit quadratic curves. In this case, ξ2 = 0 forms an ellipse and ξ3 = 0 is a hyperbola. ξ4 = 0
and ξ5 = 0 are both lines. ξ0 = 0, ξ1 = 0, and ξ2 = 0 go through P1. We veri�ed that these three curves
pass through P1 in the general case using Mathematica. Note that ξ4 = 0 intersects with P1 in this speci�c
case, but not necessarily in a general context. Upon careful examination of the theoretical region, it becomes
evident that the boundary is de�ned by ξ0 = 0 and ξ1 = 0 in this context.

In the su�cient region of P1 in Fig. 3(b1), ξi = 0 (0 ≤ i ≤ 4) are implicit cubic curves. ξ5 = 0 is an
implicit quadratic curve, which takes the form of a hyperbola in this context. ξ0 = 0, ξ1 = 0 and ξ2 = 0 go
through P0. The boundary of the su�cient region is de�ned by ξ0 = 0 and ξ4 = 0 in this context.

In the su�cient region of P2 in Fig. 3(c1), ξ0 = 0 is an implicit quadratic curve, which takes the form of
a hyperbola in this context. ξi (1 ≤ i ≤ 5) are implicit cubic curves. ξ3 = 0, ξ4 = 0 and ξ5 = 0 go through
P3. The boundary of the su�cient region is de�ned by ξ0 = 0, ξ2 = 0 ,ξ3 = 0, ξ4 = 0 and ξ5 = 0 in this
context.

In the su�cient region of P3 in Fig. 3(d1), ξ0 = 0 and ξ1 = 0 are lines. ξ2 = 0 and ξ3 = 0 are quadratic
implicit curves, taking the form of hyperbolas in this case. ξ4 = 0 and ξ5 = 0 are implicit cubic curves. ξ3 = 0,
ξ4 = 0 and ξ5 = 0 go through P2. The boundary of the su�cient region is de�ned by all ξis in this context.

If ξ0 = 0 or ξ5 = 0 serves as a boundary for the su�cient region, ξ0 or ξ5 also forms the boundary of the
exact region. This is because λ(t) is in the Bernstein basis. Since λ(t) is in the Bernstein basis, it always goes
through the �rst and last control points. In Fig. 3(a1), ξ0 = 0 occupies most of the boundary of the exact
region. In Fig. 3(d1), ξ0 = 0 from point a to point b, and ξ5 = 0 from point b to point c, coincide with the
boundary of the exact region.
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(a1) sufficient region
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(a) sufficient and exact regions for P0

(a2) exact region

(b1) sufficient region
(b) sufficient and exact regions for P1

(b2) exact region

(c1) theoretical region
(c) sufficient and exact regions for P2

(c2) exact region

(d1) theoretical region
(d) sufficient and exact regions for P3

(d2) exact region

a b

c

P0 P1

P2

P3

Figure 3: Regions of a cubic Bézier curve for each control point

5.2 Su�cient Regions of a Quartic Bézier Curve

We visualize su�cient regions of a quartic polynomial Bézier curve with P0 = [0 0]T, P1 = [0.2 0]T,
P2 = [0.6 0.2]T, P3 = [0.8 0.6]T, and P4 = [1.2 1.4]T.

Fig. 4 shows the su�cient and exact regions for each control point.
In Fig. 4(a1), ξi = 0(0 ≤ i ≤ 2) are implicit cubic curves. ξi = 0(3 ≤ i ≤ 5) are implicit quadratic curves.

ξ3 = 0 is an ellipse, and ξ4 = 0 and ξ5 = 0 are hyperbolas in this context. ξi = 0(6 ≤ i ≤ 8) are lines. ξ9 is a
constant, which takes a negative value in this context. ξ0 = 0, ξ1 = 0, ξ2 = 0 go through P1.

In Fig. 4(b1), ξi = 0(0 ≤ i ≤ 5) are implicit cubic curves. ξ6 = 0 and ξ7 = 0 are implicit quadratic curves,
which are hyperbolas in this context. ξ8 = 0 and ξ9 = 0 are lines. ξ0 = 0, ξ1 = 0, ξ2 = 0 go through P0.

In Fig. 4(c1), ξ0 = 0 and ξ9 = 0 are implicit quadratic curves, which are hyperbolas in this context.
ξi = 0(0 ≤ i ≤ 8) are implicit cubic curves.

In Fig. 4(d1), ξ0 = 0 and ξ1 = 0 are lines. ξ2 = 0 and ξ3 = 0 are implicit quadratic curves, which are
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hyperbolas in this context. ξi = 0(4 ≤ i ≤ 9) are implicit cubic curves. ξ7 = 0, ξ8 = 0, ξ9 = 0 go through
P4.

In Fig. 4(e1), ξ0 is a constant, which takes a negative value in this context. ξi = 0(1 ≤ i ≤ 3) are lines.
ξi = 0(4 ≤ i ≤ 6) are implicit quadratic curves, which are hyperbolas in this context. ξi = 0(7 ≤ i ≤ 9) are
implicit cubic curves. ξ7 = 0, ξ8 = 0, and ξ9 = 0 intersect at P3.

If ξ0 = 0 or ξ9 = 0 serves as the boundary of a su�cient region, it also forms the boundary of the exact
region.

5.3 Su�cient Regions of a Rational Cubic Bézier Curve

Fig. 5 shows the su�cient and exact regions of a rational cubic Bézier curve with P0 = [0 0]T, P1 = [1 0]T,
P2 = [3 1]T, P3 = [4 5]T, w0 = 1, w1 = 0.9, w2 = 1.1, and w3 = 1. Compared to the curve in Fig. 3, only
the weights are di�erent.

In Fig. 5(a1), ξi = 0(0 ≤ i ≤ 8) are implicit cubic curves. ξ9 = 0 and ξ10 = 0 are implicit quadratic
curves, which are hyperbolas in this context. ξ11 = 0 and ξ12 = 0 are lines. ξ0 = 0, ξ1 = 0, and ξ2 = 0 go
through P1.

In Fig. 5(b1), ξi = 0(0 ≤ i ≤ 11) are implicit cubic curves. ξ12 = 0 is an implicit quadratic curve, which
is a hyperbola in this context. ξ0 = 0, ξ1 = 0, and ξ2 = 0 go through P0.

In Fig. 5(c1), ξ0 = 0 is an implicit quadratic curve, which is a hyperbola in this context. ξi = 0(1 ≤ i ≤ 12)
are implicit cubic curves. ξ10 = 0, ξ11 = 0, and ξ12 = 0 go through P3.

In Fig. 5(d1), ξ0 = 0 and ξ1 = 0 are lines. ξ2 = 0 and ξ3 = 0 are implicit quadratic curves, which are
hyperbolas in this context. ξi = 0(4 ≤ i ≤ 12) are implicit cubic curves. ξ10 = 0, ξ11 = 0, and ξ12 = 0 go
through P2.

If ξ0 = 0 or ξ12 = 0 serves as the boundary of a su�cient region, it also forms the boundary of the exact
region.

5.4 Degrees of ξi

Table 1 shows the degrees of ξis of polynomial and rational Bézier curves up to degree �ve. For a control
point Pj = [xj yj ]

T, the degree is related to both xj and yj . For example, for a polynomial cubic Bézier
curve, concerning P0, ξ0 and ξ1 are implicit cubics with respect to both x0 and y0. The degrees of ξis are
veri�ed using Mathematica. In the Mathematica code for computing the degree, the degrees of xi and yi
are checked for each term of ξi, and the degree of xi and the degree of yi are added. The maximum degree
among each term of ξi is selected as the degree with respect to xi and yi.

From Table 1 and considering the computation of Eq. (7) and Eq. (10), we can hypothesize that the
maximum degree of ξis is 3 for both polynomial and rational Bézier curves with any degree (n ≥ 3). If this
hypothesis holds, the su�cient region is the intersection of half-spaces de�ned by implicit curves up to degree
3. We veri�ed using Mathamatica that this hypothesis is true for polynomial and rational Bézier curves up to
degree 10.

5.5 Limitations

In many cases, the shape of a su�cient region closely resembles that of the exact region. However, instances
arise where the su�cient region is signi�cantly smaller than the exact region or does not exist at all. Fig. 6
presents such a case involving a cubic Bézier curve with P0 = [0.1 −0.4]T, P1 = [0.2 0]T, P2 = [−0.5 0.6]T,
and P3 = [−1.4 − 0.3]T. Fig. 6(a) illustrates the exact region of P2. Fig. 6(b) shows ξi(0 ≤ i ≤ 5) for
P2. The absence of a white region indicates that the su�cient region does not exist. This phenomenon of
vanishing su�cient regions similarly occurs for higher-degree curves. Consequently, our analysis, which relies
on investigating the su�cient region, is ine�ective in this case.
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Table 1: Degrees of ξi

P0 P1

degree 3 2 1 0 3 2 1 0

cubic polynomial ξ0, ξ1 ξ2,ξ3 ξ4, ξ5 - ξ0 to ξ4 ξ5 - -

quartic polynomial ξ0 to ξ2 ξ3 to ξ5 ξ6 to ξ8 ξ9 ξ0 to ξ5 ξ6, ξ7 ξ8,ξ9

quintic polynomial ξ0 to ξ3 ξ4 to ξ7 ξ8 to ξ11 ξ12,ξ13 ξ0 to ξ6 ξ7 to ξ9 ξ10 to ξ12 ξ13

rational cubic ξ0 to ξ8 ξ9,ξ10 ξ11, ξ12 - ξ0 to ξ11 ξ12 - -

rational quartic ξ0 to ξ13 ξ14 to ξ16 ξ17 to ξ19 ξ20 ξ0 to ξ16 ξ17, ξ18 ξ19,ξ20

rational quintic ξ0 to ξ18 ξ19 to ξ22 ξ23 to ξ26 ξ27,ξ28 ξ0 to ξ21 ξ22 to ξ24 ξ25 to ξ27 ξ28

P2 P3

degree 3 2 1 0 3 2 1 0

cubic polynomial ξ1 to ξ5 ξ0 - - ξ4,ξ5 ξ2, ξ3 ξ0,ξ1 -

quartic polynomial ξ1 to ξ8 ξ0, ξ9 - - ξ4 to ξ9 ξ2, ξ3 ξ0,ξ1

quintic polynomial ξ1 to ξ9 ξ0, ξ10, ξ11 ξ12,ξ13 - ξ4 to ξ12 ξ2,ξ3,ξ13 ξ0, ξ1 -

rational cubic ξ1 to ξ12 ξ0 - - ξ4 to ξ12 ξ2,ξ3 ξ0,ξ1 -

rational quartic ξ1 to ξ19 ξ0, ξ20 - - ξ4 to ξ20 ξ2, ξ3 ξ0,ξ1

rational quintic ξ1 to ξ24 ξ0, ξ25, ξ26 ξ27, ξ28 - ξ4 to ξ27 ξ2, ξ3, ξ28 ξ0,ξ1 -

P4 P5

degree 3 2 1 0 3 2 1 0

quartic polynomial ξ7 to ξ9 ξ4 to ξ6 ξ1 to ξ3 ξ0 - - - -

quintic polynomial ξ7 to ξ13 ξ4 to ξ6 ξ1 to ξ3 ξ0 ξ10 to ξ13 ξ6 to ξ9 ξ2 to ξ5 ξ0,ξ1

rational quartic ξ7 to ξ20 ξ4 to ξ6 ξ1 to ξ3 ξ0 - - - -

rational quintic ξ7 to ξ28 ξ4 to ξ6 ξ1 to ξ3 ξ0 ξ10 to ξ28 ξ6 to ξ9 ξ2 to ξ5 ξ0,ξ1

6 CONCLUSIONS

We propose a method to visualize the curvature monotonicity regions for 2D polynoimal and rational Bézier
curves based on a su�cient condition. The visualization of these su�cient regions uses a real-time method for
visualizing the half-space of implicit curves, facilitated by GPU technology. Using a GPU enables interactive
adjustments of a control point, allowing for the real-time display of the su�cient region alongside all implicit
curves (ξi = 0). We established that the su�cient region constitutes the intersection of half-spaces de�ned by
implicit curves up to degree 3, a �nding veri�ed for polynomial and rational Bézier curves of degrees up to 10.
Although our demonstrations focused primarily on su�cient regions for cubic and quartic polynomial Bézier
curves, as well as for a rational cubic Bézier curve, our program is capable of accommodating higher-degree
curves, contingent upon the compatibility of the fragment shader code with the GPU's capacity.

Our visualization of a su�cient region is based on Eq. (3). Thus, our su�cient region may include the
region where an in�ection point is generated. To avoid this, the 3D equation of dκ

ds , Eq. (7) in [10], should be
used. The degree of λ(t) increases to 6n− 11 for polynomial curves or 11n− 8 for rational curves, resulting
in an increase in the number of implicit curves.

An exact curvature monotonicity region encompasses its su�cient region. Thus, our examination of the
su�cient region partially elucidates the construction of curvature monotonicity regions. However, a more
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rigorous analysis of the exact curvature monotonicity region is deferred to future work. We are currently
extending the concept proposed in this paper to 3D curves.
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