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Abstract. With the widespread adoption of Computer-Aided Design (CAD) in the 
textile industry, there is an urgent need for efficient and automated design methods 
in sweater design to meet the rapidly changing market demands. This study explores 

the application of deep learning technology and computer-aided techniques in 
sweater product design. This paper proposes an improved model based on Yolov5s-

SimAM for texture structure recognition and classification in sweater design, which 
effectively realizes digital design and production processes. By incorporating the 
SimAM attention mechanism, the deep learning network structure is improved, and 
related loss functions are designed. Experimental results show that the model is 
highly efficient and accurate in recognizing sweater texture structures, significantly 
outperforming traditional design methods. Moreover, with the current development 

of artificial intelligence, the application of deep learning technology has shortened 
the development cycle of sweater products, further promoting the rapid development 
of digital and intelligent design in knitwear. 
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1 INTRODUCTION 

As the fashion industry rapidly develops and computer technology becomes increasingly widespread, 

more and more apparel companies are adopting corresponding CAD systems for garment design 
based on different product types. Among them, the CAD system for sweater products can help 
designers quickly create and modify the fabric structure of knitting patterns, accurately calculate the 
knitting process, achieve the digital design and production process, improve production efficiency, 
and reduce errors. Sweater products with a unique molding method, that is, the yarn through the 
knitting equipment directly processed into clothing or clothing pieces—the main production 
equipment includes, the main production equipment includes computerized flat knitting machines 

and full-form computerized flat knitting machines. Sweater garment CAD systems primarily comprise 
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computerized flat knitting machine CAD design systems and full-form CAD design systems. During 
the knitting process of a sweater, changes in the pattern and knitted structure of the fabric not only 
affect the appearance and functionality of the garment but also its comfort and aesthetic appeal. 

The style effect of sweater garments is mainly composed of changes in yarn and fabric structure 

that constitute the external characteristics of sweater fabrics, and the design process not only 
demands creativity but also tests designers' time and energy. Designers need to have an in-depth 
understanding of the characteristics of various knitted structures and the properties of yarns and 
flexibly use different knitting techniques and color matching to achieve the desired style effect. 
Traditionally, designers have had to create every structural pattern based on the desired garment 
effect. For garments that are sample-processed, this often involves manually dismantling them to 
analyze and design the structure, a process that is not only labor-intensive and time-consuming but 

also lacks automation. Such methods no longer suffice due to rapidly changing market demands and 

the need for quick production cycles. 

With the development and application of deep learning technology, deep learning-based textile 
and apparel design has shown great potential and value, providing new possibilities for improving 
design quality and efficiency [1]. The integration of artificial intelligence and augmented reality can 
analyze and diagnose textile defects without human intervention. Hu et al. [2] proposed a lightweight 

convolutional neural network-based method for identifying and classifying weft-knitted fabric 
structures, which can efficiently extract double-sided features of knitted fabrics. Malaca et al. [3] 
addressed the issue of online monitoring of fabric texture in industrial scenarios by using histogram, 
Laws, and Sobel filters, as well as image pyramid analysis methods to obtain feature vectors. [4] 
proposed a method for woven fabric pattern recognition and classification based on deep 
convolutional neural networks, which is an important factor for improving the design and production 
of high-quality fabrics. Therefore, adopting deep learning technology can automatically identify 

sweater fabric structures, improving design efficiency during the computer-aided design stage. For 

instance, this can be used to construct a database of sweater patterns. Furthermore, this method 
can directly generate knitting instructions for the corresponding structures, saving a significant 
amount of design time and labor costs. The application of deep learning technology shortens the 
product development cycle, accelerates the sweater industry's move towards high efficiency and 
intelligence, and brings unprecedented design freedom and market responsiveness to the industry. 

At present, target detection algorithms based on deep learning technology can be roughly 

divided into  two kinds: one is based on region proposal, mainly using a region proposal network to 
generate candidate regions for classification and regression; the other is based on end-to-end 
methods, such as Yolo series algorithms. Yolo series algorithms excel in target detection by treating 
it as a single regression problem. These algorithms simultaneously predict the categories and 
locations of multiple targets using convolutional neural networks, making them highly effective for 
detecting small targets and widely used in real-time object detection systems. The Yolo series 

algorithms are widely used. [5] proposed a lightweight garment object detection method based on 

an improved YOLOv5 network. [6] proposed an improved YOLOv5s algorithm for object detection 
with an attention mechanism.  

Therefore, this study addresses the problem of fabric structure design in computer-aided sweater 
design and proposes automatic detection and identification of fabric structure using convolutional 
neural network (CNN), and in this way, constructs a knitted structure database to assist designers 
in optimizing the overall design process of sweaters. The innovations of this study are as follows: 

(1) Addressing the challenge of identifying tiny and numerous fabric structures, we've introduced 
the SimAM attention mechanism to the Yolov5s model, enhancing the accuracy of structure detection 
while maintaining high efficiency.  

(2) Study and design the relevant loss function for organizational structures with inconspicuous 
contour boundaries as well as organizational structures of different sizes.  

(3) The improved model is applied to different datasets and compared with other models, and 
the experimental results show that the proposed improved model has better generalization ability. 
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In this paper, we first explore the necessity of employing deep learning to assist in fabric 
structure recognition within sweater CAD for swift design implementation. We then outline the 
advancements in deep learning for knitted structure recognition and related research in CAD. Next, 
we discuss optimization methods and how to construct a classification model using the Yolov5s-

SimAM algorithm. Finally, we evaluate the effectiveness of this algorithm in optimizing fabric 
structure designs in CAD systems, summarizing the research work and findings. 

2 RELATED WORK 

2.1 Literature Review 

Currently, deep learning techniques have made some progress in the research field of knitted 

structure recognition applications. Xiao et al. [7] proposed an automated recognition method that 
significantly boosts production efficiency. This approach involves constructing a knitted structure 
database and leveraging a deep convolutional neural network (CNN) with transfer learning. The 
method automatically extracts texture features and performs classification using a pre-trained 
AlexNet model, originally trained on ImageNet but adapted through transfer learning to recognize 
knitted fabric structures. Experimental results demonstrate the method's robustness, effectively 

handling challenges such as fabric rotation, fuzziness, and uneven lighting and achieving high 
recognition accuracy. Tang et al. [8] developed a diverse dataset of weft-knitted fabrics and 
introduced a lightweight dual-branch classification network. This network addresses the issue of 
superficial similarity among weft-knitted fabrics and boosts feature recognition through an attention 
mechanism. Additionally, they employed an enhanced encoder-decoder network for fabric 
segmentation and MobileNetV2 with depthwise separable convolution to optimize multi-scale feature 
extraction and resolution enhancement. Xiang et al. [9]  devised an image retrieval method for wool 

fabrics that enhances accuracy through soft similarity and listwise learning. They established a soft 
similarity metric for image pairs, created a compact CNN architecture with cross-domain 
connectivity, and implemented listwise learning for model training. Testing on a wool fabric dataset 
indicated a significant improvement over previous methods, especially in handling the high variability 
and complexity of fabric appearances while achieving stringent retrieval accuracy. Giri et al. [10] 
introduced a novel forecasting model that combines image feature attributes of garments with sales 

data to predict future demand. Utilizing data from European fashion retailers, they extracted key 
features of product images using deep learning techniques. Machine learning clustering based on 
product sales profiles and image similarities was then performed to predict weekly sales of new 
fashion garments. This model not only showed strong prediction performance but also provided an 
effective solution for fashion product demand forecasting. Chang et al. [11] explored a deep learning 
approach for clothing style recognition using Yolov5. Their research focused on developing 
lightweight learning algorithms to increase recognition speed and reduce model size. They used 

image samples from fashion apparel datasets and online stores to classify images into five 

categories: plaid, solid color, block, horizontal stripes, and vertical stripes. Experimental results 
demonstrated that Yolov5 surpasses other learning algorithms in recognition accuracy and detection 
speed. [12] utilized principal component analysis to obtain the minimum redundancy and maximum 
principal component feature vectors and used a probabilistic neural network (PNN) to classify the 
fabrics. [13] used wavelet decomposition for multi-resolution decomposition and feature extraction 
of fabric images. They constructed a hybrid classifier using the BP network and Bayesian methods, 

achieving a classification accuracy of up to 96.67% for colored woven fabric structures. 
In the field of computer-aided garment knit design, Trunz et al. [14] demonstrated a system 

that recognizes and localizes different knit types from a single image specified by the user. This 
rough localization information is then used to derive the underlying mesh structure and further 
extract knitting instructions. The framework employs an integer linear programming approach to 
optimize the mesh structure to extract the repeated knitting fabric structures and correct the errors 

according to the visual perception theory to determine the fabric structures' starting position. This 

approach provides a new way to derive knitting fabric structures from images not only automatically 
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but also successfully demonstrates how the knitted structure can be transformed into actual knitting 
instructions through computer-aided design  [15] deI designed and developed a weft knitting 
CAD/CAM system with a simulation interface that translates pattern structure diagrams into 
executable instructions and generatesachine files for weft knitting machines. Kaspar et al. [16] built 

a dataset of real and synthetic images and proposed a learning framework that blends real and 
synthetic data to improve the accuracy of mapping from images to knitting programs. The deep 
learning model used in the study inferred weaving instructions directly from fabric images, effectively 
bridging the gap between image recognition and manufacturing instruction generation. Kaspar et al. 
[17] developed an interactive computer-aided design tool for shaping and preparing knitted 
garments. The tool simplifies the design process for machine-knit garments by allowing the user to 
customize the shape and surface fabric structures of the garment. By integrating parametric knitting 

primitives and multi-layered knitting fabric structures, the system not only supports continuous user 

customization but also enhances interactivity through automatic layout and real-time fabric structure 
feedback. [18] provided a large and diverse dataset of knitted textures and their attributes, which, 
using a heuristic optimization algorithm, can be converted into knitting patterns that can be output 
as instructions for machine or hand knitting. [19] proposed a deep learning model based on LSTM 
that can generate low-level code for novel knitting patterns from high-level knitting design sketches 

and describe the knitting instructions as a one-dimensional sequence of tokens. 

2.2 Sweater Design Method 

The sweater design process is a systematic and intricate process that begins with market research 
and trend analysis to capture consumer demand and market trends. Extensive market research is 
needed to focus on popular colors, fabric structure, yarn selection, and consumer preferences. 

Subsequently, it enters the design stage, including garment style design and fabric structure design. 
Style structure is the foundation of garment modeling. In sweater design, it is necessary to convert 

the style structure into knitting technology and set up the silhouette modeling of the sweater through 
the CAD design system. The fabric structure is fundamental to sweater clothing, as shown in Figure 
1, encompassing basic, modified, and color organization. Common structures include ' Rib stitch 
1+1', ' Rib stitch 2+2', 'Purl stitch,' 'Loop transfer stitch,' 'Float stitch,' 'Tuck stitch,' 'Cable stitch,' 

'Plain stitch, and so on.  Through the CAD design system, the fabric structure can be designed and 
set by the process instruction to generate the file that can be knitted on the machine. In the 
traditional method, when designing the fabric structure, the designer usually needs to continuously 
work on the design in the CAD system and then transfer the design result to the machine for 
experimental weaving. This cumbersome process is both time-consuming and prone to lead to 
deviations between design and actual production, thus hindering the process of intelligent 
development of sweater CAD design systems. With the development of science and technology, as 

shown in Figure 2, the use of deep learning technology to identify and reconstruct the fabric structure 
on a large number of sweaters for application in sweater auxiliary design has become a research 

hotspot for the digital intelligent design of sweaters. This method aims to establish a knowledge 
base of the fabric structure, improve the design efficiency by directly displaying the effect of the 
acquired fabric structure, and complete the design of the new structure by quickly modifying it using 
process instructions. The application of this technology can not only reduce the time and labor cost 
in the design process but also improve the rapid adaptability of apparel enterprises so that they can 

adapt to market demand and trend changes more flexibly. The research is mainly divided into the 
following stages: 

(1) Using SimAM attention mechanism and Yolov5 model to achieve accurate recognition and 
labeling of the basic structure of knitting fabric structures. 

(2) By collecting knitted fabric image data, a knitted structure recognition network fused with 
SimAM was constructed to improve the recognition of knitted features. 

(3) Comparison of different configurations of Yolov5 was performed to optimize the loss function, 

and precision, recall and average accuracy were used as performance evaluation criteria. 
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StructureName Real Structure 
Diagram 

Coil Structure 
Diagram 

Simple Weaving Instructions 

Plain stitch 

  

Both the front and back 
needle beds can be used for 
weaving.  

Purl stitch 

  

Both the front and back 

needle beds can be used for 
weaving. 

Rib stitch 

  

The needle slots of the two 

beds are aligned, with 
needles arranged alternately. 

Tuck stitch 

  

During knitting, the loops are 

collected. 

Float stitch 

  

The floating thread position is 
moved to the back needle 
bed, and after knitting one 

row, it is moved back to the 
front needle bed. 

Loop transfer 
stitch 

  

Single-needle loop transfer. 

Cable stitch 

  

During knitting, first drop the 
loop on the right onto the 
needle bed's needle and then 
place the loop on the left onto 
the needle. 

 
Figure 1: Common representation methods of sweater structures. 

 

 
  

Figure 2: Sweater design process. 
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3 EXPERIMENTAL STUDY 

3.1 Recognition Network Construction Based on SimAM Attention Mechanism 

In this study, the continuity and density of the fabric structure lend significant spatial correlation to 
sweaters. At the same time, the similarity in features between different fabric structures necessitates 
careful consideration of the correlation and continuity between these structures during the 
recognition process. To address this, the SimAM attention mechanism is integrated after the CSP 
layer in the Yolov5s recognition model. This modification aims to enhance the model's performance 
on cross-knit garments by improving the accuracy and efficiency of recognizing structural features. 

The network model developed in this study comprises four main components: the input layer, 
the backbone network, the neck network, and the output detection layer [20]. Notably, a SimAM 
attention layer is appended after the last CSP layer in the neck network to boost the model's 

capability in identifying knitted structural features. The model's structure is diagrammatically 
represented in Figure 3. In the task of recognizing basic knit structures, the model is required to 
handle eight different labels. Given that the captured images vary in size and the shapes and sizes 
of the labels are influenced by design and aesthetic considerations, the Yolov5s-SimAM network is 

specifically designed to meet these challenges. The input layer addresses various preprocessing 
operations such as data augmentation, adaptive anchor frames, and image scaling. These measures 
not only tackle issues related to sample and size imbalance but also enhance data diversity, thereby 
improving the network’s detection accuracy for knitted structure targets. 

 

 
 

Figure 3: Mapping the network structure of the Yolov5 attention mechanism. 

 

In order to effectively deal with the problem of inconspicuous and blurred feature contours in knit 
structure datasets, this study employs the CSPDarknet53 network, an improved network based on 
the Darknet architecture. This network introduces Cross Stage Partial (CSP) connections, aiming to 
enhance the efficiency of information flow and thus more accurately capture and represent the input 
image. The CSPDarknet53 comprehensively processes the image through a convolutional neural 

network architecture, where the backbone network is responsible for extracting features of the 
sweater's fabric structure, the neck network achieves the fusion of multi-scale features, and the 
head network is responsible for performing the final regression prediction. 

Moreover, each neuron within the network is associated with a set of weights. As input signals 
pass through a neuron, each input value is multiplied by its corresponding weight, summed up, and 
then activated by an activation function, such as the Sigmoid function. This function compresses the 

input values into a range between 0 and 1, mimicking the stimulus-response of the neuron. This 

activated output is then forwarded to the next layer of neurons, thereby perpetuating the forward 
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propagation process throughout the network. This process continues until the output layer is 
reached, as depicted in Figure 4. 

Additionally, the study introduces the Adaptively Spatial Feature Fusion (ASFF) technique to 
refine the feature fusion process further. This technique enables the network to perform effective 

spatial filtering of features across different layers while retaining useful information for integration. 
Such enhancements significantly bolster the model's ability to distinguish between eight distinct 
organizational features, markedly improving its performance. 

 

 
 

Figure 4: SimAM attention mechanism. 
 

For similar structures, the SimAM module uses an adaptive learning process to identify and adjust 
the similarity information between labels, thus optimizing the importance of features. This process 
requires no additional parameters, allowing the network to focus on key neurons while remaining 

structurally stable. Quantitative evaluations for various visual tasks show that the SimAM module 
demonstrates flexibility and effectiveness for a wide range of visual tasks, significantly improving 
the feature characterization capabilities of a variety of convolutional neural networks (ConvNets), as 

shown in Equation（ 3.1): 
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                                  (3.1) 
Where t

  and 
ix
 denote the linear transformations of two different neurons in the input feature and 

M  denotes the number of neurons. Where a smaller value of e t
 indicates that the neuron is more 

important. 
 

3.2 Loss Function 

In order to solve the above problems of subtle differences in the characteristics of fabric structures 
and inconspicuous contour boundaries, as well as to effectively recognize fabric structures of 

different sizes, a loss function consisting of three parts, lbox, lobj, and lcls, is designed in this study. 
lbox represents the rectangular box loss, which is evaluated by calculating the intersection and 

concatenation ratio ( oUI ) between the predicted bounding box and the target bounding box, and 
focuses on evaluating the performance of the model in terms of target localization accuracy. lobj is 

the confidence loss, while lcls is the classification loss, both of which are computed using the cross-
entropy loss function so as to measure the performance of the model in terms of target detection 
confidence and classification accuracy. The cross-entropy loss function formula for the multi-
classification problem is shown in Equation (3.2): 

                                      
1 1

1
log( )

N C

ij iji j
Loss y p

N = =
= −  

                                               (3.2) 

In Equation, N  is the total number of training samples, while C  denotes the number of categories, 

which for this study is 8 different organisational units. Here, 
ij

y  indicates whether the i  sample 
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belongs to category j  or not, while 
ij

p represents the probability that the model predicts that the ith 

sample belongs to category j . The category labels of these 8 knitted structures include:' Rib stitch 

1+1', ' Rib stitch 2+2', 'Purl stitch,' 'Loop transfer stitch,' 'Float stitch,' 'Tuck stitch,' 'Cable stitch,' 
'Plain stitch.' Considering the balanced number of samples in these categories, this study uses a 
multiclassification cross-entropy loss function to accommodate this diverse classification task. 

The intersection and union ratio ( oUI ) is a metric that assesses the degree of overlap between 

two bounding boxes or regions, with a value between 0 and 1, where 0 indicates no overlap and 1 

indicates complete overlap. In organisational structure recognition tasks, oUI  serves as a key metric 

for measuring the accuracy of model positioning. When the oUI  exceeds a specific threshold, 

commonly used thresholds include 0.5 or 0.95, the model's prediction can be considered accurate. 

Specifically for the knitted structure recognition task, the model accuracy can be up to 86.7% when 

the oUI  threshold is 0.5, while the accuracy drops to 65% when the oUI  threshold is increased to 

0.95. The oUI  calculation formula is shown in Equation (3.3): 

                                            

( )
( , )

( )

Area A B
IOU A B

Area AUB


=

                                                     (3.3) 

In Equation (3.3), A is the position of the predicted frame and B is the position of the real frame, 

and the oUI  loss calculation formula is shown in Equation (3.4): 

(1 )LossLoU IoU= −
                                                         (3.4) 

The overall loss function formula is shown in Equation (3.5): 

 
Loss lbox lobj lcls= + +

                                                      (3.5) 

4 EXPERIMENTS AND ANALYSIS 

In this study, the experimental manipulation environment is set to Windows 10x64 operating system 
with RTX 3,060 graphics card (12G memory) and Intel Xeon E3-1245 V3 CPU. The project is 
constructed using Python programming language and Darknet deep learning framework.  

After screening and excluding obviously defective images, a total of 1,021 image samples were 
obtained for the experiments. In the model training stage, the Yolov5s model improved by SimAM 

was selected. Considering the balance between computational resources and performance, the batch 
size was set to 6, and 2,000 iterations were executed, with the learning rate set at 0.0001. The 
overall experimental design and configuration aim to maximize the efficiency of hardware resource 
usage and to ensure that the deep learning model demonstrates excellent performance and 
generalization ability in image processing. 

 

4.1 Data Preparation 

Before recognizing the basic structures in sweaters, it is essential to acquire images representing 
various fabric structures. A total of 1,021 image datasets were collected and labeled, containing 
information about the structures on different garments. Each image includes one to three different 
fabric structure categories, with each category represented in approximately 600 to 1,200 samples. 

Notably, these fabric structures are not isolated in separate images but may coexist with other 
categories within the same image.During data annotation, <object> tags are utilized to mark each 
target border, where the number of tags corresponds to the number of labeled boxes in each image. 
The positions of these boxes are defined by the coordinates of two diagonal corners, specifically the 
upper left (xmin, ymin) and the lower right (xmax, ymax), ensuring precise identification and 

localization of each fabric structure. 
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A text file containing paths to the training and validation set images is automatically generated 
in the project's root directory. Care is taken during annotation to ensure that each labeled box 
contains only a single class of structure, avoiding nested labels or only labeling the interior of nested 
structures, as depicted in Figure 5.Prior to training, the dataset is divided into a training set and a 

validation set, with 80% of the data allocated for training and 20% for validation. Additionally, new 
images equivalent to the number of those in the validation set are selected for testing to assess the 
model's generalization capabilities. 

 

 
 

Figure 5: Example of labelling. 

4.2 Evaluation Indicators 

In target detection tasks, especially the classification and recognition of fabric structures, the 
evaluation of model performance usually relies on two core metrics, Precision and Recall. Here, TP 
(True Positive) indicates that the model correctly recognizes positive samples as positive, TN (True 

Negative) indicates that the model correctly recognizes negative samples as negative, FP (False 
Positive) indicates that the model incorrectly recognizes negative samples as positive, and FN (False 
Negative) indicates that the model incorrectly recognizes positive class samples as negative classes. 
Precision, which is the proportion of positive classes that are actually positive among those predicted 
by the model to be positive, and Recall, which is the proportion of all actual positive class samples 
that are correctly recognized by the model, are calculated according to Equations(4.1) and  (4.2). 

In order to comprehensively evaluate the effectiveness of the algorithm, the F1 score is used as a 

comprehensive evaluation index, as shown in Equation (4.3): 
 

   
TP

P
TP FP

=
+                                                           (4.1) 

  
TP

R
FN TN

=
+                                                            (4.2) 

 

2 Precision  Recall 
1

 Precision  Recall 
F


=

+                                                       (4.3) 

Specifically, the intersection and merger ratio oUI  is the ratio of intersection and merger between the 

predicted and real frames, which is used to measure the precision of the predicted frames and judge 
the accuracy of the predictions. In model evaluation, the mean average precision (mAP) is used as 

the main evaluation metric, according to Equations (4.4) and (4.5): 
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oU  
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
=

                                                             (4.4) 

TP TN
mAP

TP FN FP TN

+
=

+ + +                                                      (4.5) 

4.3  Experimental Process and Result Analysis 

To verify the effectiveness of the proposed model, a series of comparative experiments were 

conducted against a range of commonly used deep learning networks in target detection, 
classification, and recognition. In the horizontal comparison experiments, the Yolov5s model was 
assessed both with and without the addition of the SimAM attention mechanism. For vertical 
comparisons, the model was juxtaposed against the Fastrcnn network model. These comparisons 

allow for a thorough evaluation of performance differences among the models specifically for the 
task of detecting sweater fabric structures, aiding in the selection and optimization of the most 

suitable model for this application. The experiments used a consistent set of training parameters 
across all tests on the sweater fabric structure dataset. The comprehensive training process included 
key phases such as data preparation, model selection, model initialization, defining the loss function, 
model training, tuning, and evaluation. 

As can be seen from Table 1, on the dataset, the proposed Yolov5s-SimAM model has a precision 
rate of 72%, reflecting the model's performance in recognizing correctness; the recall rate (R) 
reaches 80%, indicating that the model is able to accurately capture all the positive instances to a 

greater extent, ensuring that fewer positive instances are missed. In the sweater fabric structure  
recognition project, it is limited by the large number of unlabeled features in the background, 
resulting in relatively high recall and slightly lower precision, which is consistent with the training 

results. When the value of oUI  is 0.5, the model's accuracy mAP is up to 90%, and when oUI  is 0.95 

it corresponds to a more stringent localization requirement, so the accuracy is reduced. The model 
that introduces the SimAM attention mechanism performs better in handling data with insignificant 
background and feature differences and smaller target sizes. In contrast, Fastrcnn has not yet 
reached convergence on this dataset. As we know from the above, the Yolov5s-SimAM model not 

only recognizes only one category of diagrams but also supports the recognition of multiple fabric 
structures for a single sample. In addition to this, the model generates a txt file of predicted 
coordinate frame information for each image, which is represented by the file format classname, 
xmin, ymin, xmax, ymax, giving all the predicted categories in the diagram and the corresponding 
coordinates, respectively. 

 

 

Table 1: Identification and comparison of horizontal knitting organisation structure of different 
network models. 
 

All models are initialized with pre-training weights, and experiments show that better training results 
can be obtained when batch size is set to 4, the learning rate is set to 0.0001, and the momentum 

value is set to 0.9. As shown in Figure 6, the loss function comparison curves of each model are 

 Precision(%) Recall(%) mAP0.5 mAP0.95 F1score 

Yolov5sSimAM 0.72 0.8 0.9 0.6 0.758 

Yolov5s 0.06 0.07 0.09 0.06 0.065 

Fastrcnn 0.03 0.06 0.06 0.06 0.04 
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plotted, and usually, the lower the loss value implies that the model's prediction accuracy is higher, 
and the difference between its predicted value and the real value the smaller the difference between 
its predicted value and the true value. By visualizing the analysis of each parameter during the 
training process, it is observed that the Yolov5s-SimAM model has the lowest loss value of 0.03 in 

each round of iteration. Meanwhile, compared to the other models, as shown in Figure 7, the model 
exhibits higher accuracy. Figure 8 shows the comparison of F1 test result curves of different models. 
The F1 parameter is a commonly used model performance metric that integrates the accuracy and 
recall of the model. The highest F1 parameter of Yolov5s-SimAM indicates a higher performance of 
the model in the classification task.  

       

 
 

Figure 6: Comparison curve of loss function for different model training processes. 
 

 
 

Figure 7: Training model accuracy comparison curve mAP. 
 

4.4 Design Applications 

In the CAD design stage of sweater production, designers traditionally need to create both the styles 
and fabric structures based on specific demands. However, the method described in this paper can 

significantly accelerate the design and development process, enhancing overall efficiency. 
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Figure 8: F1 test results for different models. 
 

As outlined earlier, sweater design companies typically compile and sell detailed information on 

sweater processes and structures, along with corresponding process instructions, and build 
databases to support this activity. For this study, we have accessed a sweater database and utilized 
deep learning technology to identify the fabric structures on the sweaters. This research focuses on 
a common set of eight fabric structures to explore the structure identification algorithm. The 
identification of fabric structures from the knowledge base allows for the immediate determination 

of structure types, which then serve as a foundation for linking each structure’s process instructions 
to specific color codes used in designs. This method enables designers to access a database of 

existing fabric images and use the process instructions to swiftly modify designs for new structures. 
As illustrated in Figure 9, this method aids in the rapid design of sweater structures: Figure a and 
Figure b show the identified fabric structures; Figure c displays the process instructions associated 
with each structure’s color code; Figure d demonstrates the rapid adjustment of process instructions; 
and Figure e shows the new fabric structure ready to be knitted directly on the machine. This 
innovative approach eliminates the traditional need for constant redesigning in CAD and repetitive 

sampling on machinery, thereby significantly enhancing the rapid adaptability of apparel enterprises. 
Integrating deep learning technology with existing database systems not only speeds up the design 
process but also reduces the time and effort involved in bringing new sweater designs to market. 

5 CONCLUSIONS 

The rapid advancement of computer-aided manufacturing technology has significantly enhanced the 
capabilities of computer-aided sweater design. Utilizing existing sweater fabric structures to develop 
new designs quickly is becoming an integral part of product development for apparel enterprises. 

This research focuses on the application of sweater-aided design, aiming to harness digital intelligent 
design tools to visualize and swiftly realize new fabric structures using a dedicated knowledge base. 
This approach is aimed at boosting design efficiency, enabling apparel companies to respond more 
quickly to market demands, and fostering innovation and development in products. In this study, 
we leverage the fabric structure of sweaters as a pivotal point, employing an enhanced Yolov5s 
model integrated with the SimAM attention mechanism to detect and recognize common sweater 
fabric structures. This methodology circumvents the time-intensive processes traditionally 

associated with the design and development of sweater fabric structures, facilitating computer-aided 
design capabilities. Experimental results indicate that this method effectively mitigates issues related 

to fabric rotation, variations in fabric thickness and diameter, fabric hairiness, and uneven lighting 
during image acquisition while maintaining a high recognition rate. 
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(a) Identification of structure, (b) Definition of structure, (c) Process instruction correlation, 

 

          
 

(d) Modification of process instructions, (e) The new structure is woven. 
 

Figure 9: Sweater CAD design. 

 

The proposed enhanced model not only improves recognition accuracy but also maintains high 
detection efficiency without the addition of extra learnable parameters compared to other models. 
In the sweater development stage, it is crucial to adhere to a design principle of high efficiency, 
selecting the most suitable methods to quickly realize fabric structure designs that meet the needs 
of apparel design.Looking forward, it is anticipated that the rapid design of fusion combination 
structures will become a key trend in knitwear design, significantly enhancing both design efficiency 

and accuracy. 
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