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Abstract. This paper explores the development and application of a surrogate model 

for predicting die cracks in die-cast products, focusing on the geometrical features of 
the product design. Die casting, a method renowned for its efficiency in rapidly 
producing complex shapes, is particularly significant in the automotive industry in 
reducing vehicle weight and part count. However, ensuring product quality and 
minimizing development lead time remain critical challenges exacerbated by 
difficulties in predicting defects in complex shapes at the product design stage. 
Traditional simulation technologies, while standard, are limited by long preparation 

and execution times, prompting a shift towards utilizing big data and machine 
learning for more efficient defect prediction. This study introduces a novel surrogate 
model that employs Variational Autoencoders (VAEs) and neural networks to predict 
the occurrence of die cracks, a pressing issue in die-casting that can lead to 

significant production delays and costs. By analyzing engine block parts and transaxle 
cases from Toyota Motor Corporation, the model demonstrates promising results in 
predicting die cracks with high accuracy. The findings suggest a new direction for 

improving the die-casting process, leveraging product shape data for early defect 
detection, thereby enhancing manufacturing efficiency and product quality. 
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1 INTRODUCTION 

Die casting is widely used in industrial production because it mass-produces products with complex 
shapes at high speed. Especially in the automotive industry, die casting has attracted renewed 
attention in recent years from the viewpoint of vehicle weight reduction and reduction of the number 
of parts in products, e.g. [1]. To ensure high competitiveness as an industrial product, it is necessary 
to supply products that correctly reflect market trends on time, and for this purpose, it is crucial to 

shorten the lead time for product development. 

Usually, the product development process in the automotive industry follows the flow below:  

Product design ⇔ Die design ⇔ Productivity simulation ⇔ Process design ⇔ Functional evaluation ⇔ 

Mass production 

This process is not unidirectional but iterative, enhancing the completeness of the product design 
through repeated cycles of each step. However, as the process advances, the specifications become 

more complex, and corrections or rework tend to increase. Therefore, it is crucial to proceed with as 
few reworks as possible. 

To reduce the number of reworks and shorten the product development lead time, it is essential to 
achieve a high-quality design that considers not only the product shape but also material selection 
and the development of a manufacturing plan from the early stages of product design. According to 
best practices as stated by Pahl and Beitz [2], product design must encompass these aspects to 

ensure the final product meets all necessary criteria. However, it is often challenging to make 
accurate predictions for products with complex shapes in the initial design stages, and this can lead 
to rework if these factors are not adequately considered early in the design process. 

In this context, a "pre-prediction" refers to a preliminary estimation of potential defects during the 
early design stages. This differs from a detailed prediction, which is conducted in the subsequent 

design phases. Accurate pre-predictions are challenging for products with complex shapes, and 
inaccuracies at this stage can contribute to the need for rework. 

2 LITERATURE REVIEW 

2.1 Simulation Technology in Industrial Product Development 

One way to solve this problem is to predict the functionality using simulation before manufacturing 

the product and rectifying issues beforehand. Indeed, simulation technology is widely adopted and 
has become a standard technique in industrial product development processes [3, 4, 5, 6]. Efforts 
are also ongoing to enhance accuracy, for instance, in casting simulation, traditionally focusing on 
fluid analysis of molten metal, but now also incorporating calculations for ambient air compression 
behaviors to examine the back pressure influences and improve accuracy regarding splashing 
behaviors at the spout [7]. Additionally, research is being carried out to reduce computation time 

using quantum computers to speed up the examination cycle [8]. However, even if these 
technologies are put into practical use, preparing model information of the die for manufacturing is 
necessary to execute a simulation. Including revisions, it takes several days to complete a simulation 
once. Therefore, even if improvements in simulation accuracy and time reduction are realized, only 
part of the problem of long preliminary examination time utilizing simulation is solved, leaving the 
challenge of easy defect prediction in the early stages of product development unresolved. 
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2.2 Limitations of Current Simulation Techniques 

Given these limitations with simulation technology advancements, an alternative approach is actively 

pursued, which involves analyzing and utilizing big data obtained from defect occurrence information 
of manufactured products in the past and accumulated simulation results to convert pattern 
recognition into added value for current and future productivity predictions [9]. Among these efforts, 
the technique known as surrogate modeling, which employs machine learning or other methods to 
predict using patterns obtained from known data instead of executing detailed simulations, is gaining 
traction as it enables the reduction of computation costs and pre-required information. For instance, 

Amir Pouya proposed a model capable of predicting the cross-sectional temperature distribution of 
the welding pool by learning laser welding processing parameters using a neural network [10]. 
Additionally, Andres and others reported the effectiveness of a predictive model utilizing SVM as a 
means to estimate the cross-sectional shape of aircraft blades at a low computation cost [11]. 

Therefore, surrogate models, performing necessary predictions with reduced, original information 
based on known data, are likely to solve the problem of accurately predicting product quality from 
product shape in the early development stages. However, many of the cases reported so far simplify 

the problem by reducing three-dimensional phenomena to two dimensions, and it needs to be 
clarified whether it can be directly applied to phenomena where complex three-dimensional shapes 
are the subject of prediction. Also, there are very few reports on the effectiveness of surrogate 
models for defect occurrence in the casting process based on the geometric information of the 
product. If the possibility of realization is shown, it significantly impacts the industrial product 
development process.  

2.3 Big Data and Surrogate Modeling 

In our previous research [12], we reported the successful development of surrogate models for 
predicting soldering defects in die-cast products using a Variational Autoencoder (VAE) [13] and 

Neural Network (NN). Variational Autoencoders (VAEs) are a class of deep learning models that have 
gained attention for their ability to learn efficient representations of data in an unsupervised manner. 

Unlike traditional autoencoders, VAEs impose a probabilistic structure on the latent space, which 
allows for generating new data points that are similar to the training data. This characteristic makes 
VAEs particularly useful in applications where data augmentation and anomaly detection are crucial. 
In the context of manufacturing, VAEs can be leveraged to predict defects by learning from historical 
data and identifying patterns that signify potential issues. This technique not only enhances the 
accuracy of predictions but also reduces the computational burden associated with traditional 
simulation methods. 

This notably contributed to the improvement of the development process, especially by 
enhancing prediction accuracy during the product design phase. However, the effectiveness of this 
approach for predicting other types of defects that may arise during the die-casting process, 
particularly cracks in dies, has not yet been confirmed. 

This paper details the development process of the die crack prediction model, the data set used, 
the methods of accuracy evaluation, and the results obtained, proposing new directions for the 

improvement of the die-casting process. 

3 TARGET FAILURE 

Die cracking, which refers to cracks in the casting die caused by thermal stress, is illustrated in Figure 
1. This thermal stress arises from non-uniform thermal expansion or contraction resulting from 
temperature changes within an object. The occurrence of thermal stress is largely dependent on the 
material properties, the rate of temperature change, and especially the shape of the object. 

The impact of shape on thermal stress is significantly important, especially in areas where 

thermal expansion is severely constrained, such as corners or fine details, leading to pronounced 
stress concentration due to shape. Additionally, the heat supplied by the contacted molten metal 

contributes to the temperature rise, but the amount of heat received per volume of the die depends 
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on the contact area, the thickness of the cast product, and the volume of the die, indicating a 
substantial impact of shape factors in this aspect as well. 

Given this background, attempts to predict die cracking based on the characteristics of the 
product shape are considered valid. Therefore, it has been selected as a target defect for prediction 

using surrogate models. 
 

 

 
Figure 1: Image of Die in the actual die-casting process, which has cracks (red lines) on the surface. 

4 DATASET AND ANALYSIS TARGET 

4.1 Simulation of the Prediction Target 

Metal fatigue failure progresses exponentially with the number of cycles of repeated stress. 
Additionally, in die-casting processes, die cracking, which is a major issue, often occurs due to low-
cycle fatigue. Reference [14] sets the number of cycles at 20,000 shots to evaluate the fatigue 

strength of various hot-work tool steels. Die failure in Toyota's die-casting process also often occurs 
at around 10,000 shots. This record is considered a typical failure cycle, given the aforementioned 
evaluation cycle of hot-work tool steels and the exponential dependence of fatigue failure cycles. 
Consequently, this study assumes that the cracking phenomena targeted in these dies are 
predominantly classified as low-cycle fatigue, which is a type of fatigue fracture caused by thermal 
stress. Therefore, the maximum compressive strain was selected as the target for prediction. 

The calculation of the maximum compressive strain employs the Adventure cluster, which is sold by 
SCSK Corporation. The governing physics equations for compressive strain are used in this 
calculation. The stress integration employs the Backward Euler integration metho [15], where the 

trial stress in the elastic predictor step is calculated and corrected onto the yield surface if it exceeds 
the yield stress (equation 4.1) Specifically, the trial stress 𝑡′𝜎(𝑇) is computed using the elastic 

constitutive tensor CCC, and if it exceeds the yield stress, it is corrected back to the yield surface 
using the plastic strain increment ∆𝑒𝑝 to obtain the final stress 𝑡′𝜎(𝐹).  

The equation used for this correction is: 

𝑡′𝜎(𝐹) = 𝑡′𝜎(𝑇) − 
3

2
 

∆𝑒𝑝

𝑡′𝜎(𝐹)
 2𝐺𝜎(𝐹)

′         (4.1) 
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Where G represents the shear modulus of elasticity. The term 2𝐺𝜎𝐹
′  ensures that the stress is 

corrected back to the yield surface if it exceeds the yield stress. 

The numerical values obtained after the calculation are transferred to a voxel-based 3D model and 
linked with the shape feature quantities extracted by a 3D VAE (Variational Autoencoder), which are 
then used as training data for the machine learning model described later. 

 

4.2 Parts to be Analyzed 

This study analyzed 113 kinds of engine block parts and 130 trans axel cases produced by Toyota 

Motor Corporation by die casting in the past. Figure 2 shows an image of the product shape. In this 
study, detailed in Chapter 5, a surrogate model is constructed using voxel-based shape information. 
Consequently, the CAD model is converted into a voxel-based model composed of 1.6mm cubes. 
This model conversion is carried out using the post-processing functions of TopCAST, a casting 
analysis CAE software provided by TOYOTA SYSTEMS Corporation. Additionally, the analysis model 

used in the stress analysis on the Adventure cluster mentioned earlier is not voxel-based, making it 
impossible to link the shape and analysis values directly. To address this issue, the analysis model 
from the Adventure cluster is superimposed onto the voxel-based model, and the nearest simulation 
results are mapped to each voxel. This mapping is then utilized to construct the subsequent 
surrogate model. Table 1 summarizes the maximum, minimum, and average values of the shape 
and volume of the engine block, and Table 2 provides the same for the transaxle case. 

 

   

 
Figure 2: Image of product shape (a)Engine block, (b)Trans axel case. 

 

 

Table 1: Engine block shape and volume statistics.  

 

 

Table 2: Trans axle case shape and volume statistics.  

width[mm] length[mm] hight[mm] volume[mm^3]

max 252 417 242 8151175

min 184 410 239 7911446

average 217 412 240 8060845

width[mm] length[mm] hight[mm] volume[mm^3]

max 474 649 253 4250977

min 175 491 134 3364684

average 361 534 173 3929535
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5 CREATION OF A SURROGATE MODEL 

The procedure for constructing the surrogate model is as follows. First, for each voxel on the surface 
of the 3D model, which is entirely voxelized, a cube with a side length of 48 mm centered on the 
voxel is cut out. Then, a Variational Autoencoder (VAE) is trained using the cubic shape created at 

each point on the surface. Through this process, an encoder that can translate the cubic shape feature 
into a vector is obtained. Finally, a neural network is trained with the feature vector as input and the 
simulation result at the center of the cube as output. The flow of estimation is illustrated in Figure 3. 
In this study, 20 parts from each of the 113 parts of the engine blocks and 120 parts of the trans 
axel cases were used to train the VAE, and the remaining parts were used to train the NN. Further 
details regarding the VAE and neural network structure will be described in the following sections. 

 

 
Figure 3: Image of constructing the surrogate model. 

 

5.1 Evaluation Method of Surrogate Model 

When the CAE analysis results and the predicted results from the surrogate model were plotted on 
the 3D model geometry, the clumps of regions with values above a threshold were each defined as 
soldering regions, and the degree to which the regions in the CAE analysis results and the regions 

in the predicted results matched over the entire part was evaluated. A program using Python was 
created to determine and compare the regions, automating the entire aggregation process. 

In this study, the F1 score was used as the evaluation index, and the threshold value at which the 

F1 score is the maximum was obtained for both the surrogate model and the rule-based model. 
 

 
 

Figure 4: Image of evaluation method. 
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5.2 Voxel-Based Variational Autoencoder and Neural Network 

The Variational Autoencoder (VAE) constructed in this study is inspired by models that have 

demonstrated high accuracy in object classification tasks. A VAE is a type of autoencoder, which is 
a neural network trained to reproduce input data at its output layer. The 'variational' part refers to 
making it a probabilistic graphical model by adding a stochastic layer. VAE compresses data into a 
lower-dimensional space and then reconstructs it back into the original space. During this process, 
the VAE learns to capture the intrinsic features of the data in this lower-dimensional space, 
generating feature vectors. The specific structure of the model follows one that has previously shown 

success in die-casting. Before finalizing the architecture, preliminary experiments were conducted 
to ensure the structure adopted would guarantee accuracy. The factors that significantly impacted 
accuracy included the input cube size, the type of activation function, and the weighting of the loss 
function. It is suggested that these aspects be referred to as proper parameter tuning, which may 

be required depending on the nature of the problem. After training the VAE, the feature vectors 
extracted from the latent space serve as inputs for another neural network designed for regression 
prediction. This neural network is a four-layer multilayer perceptron that includes dropout, consisting 

of an input layer with 100 nodes, two hidden layers with 50 and 10 nodes, and a single-node output 
layer. Following each hidden layer, there is a batch normalization layer with an epsilon of 2e-5 and 
a dropout layer with a dropout rate of 0.25. The activation function between layers is the leaky ReLU 
function with a negative slope of 0.2, and the output layer uses the soft plus function. Details of the 
learning process are described in Chapter 5.3, 'Model Training'. 
 

 
Figure 5: Architecture of VAE and neural network. 

5.3 Model Training 

For the VAE, the training was conducted with a batch size of 10 and for one epoch with a learning 
rate of 0.001. The optimizer used was AdaGrad, and the loss function parameters included a 

reconstruction error calculation sampling number of 1 and a KL divergence term coefficient of 1. For 
the Neural Network, the training was conducted with a batch size of 32 for one epoch and a learning 

rate of 0.001. These parameters ensured the appropriate progression of learning for each network. 
Figure 6 shows the training curve of (a) VAE, (b) Neural Network for Engine Block, and (c)Neural 
Network for Trans axel case. We can see that each of them was trained appropriately. The results 
confirm that learning progressed appropriately in each network. 

6 EVALUATION RESULT 

We evaluated the performance of models for predicting the occurrence of die cracks in both engine 

block parts and transaxle case parts. The performance of the models was assessed using the F1 
score, which is the harmonic mean of precision and recall. For the engine block parts, there were 
594 True Positives (TP), 208 False Negatives (FN), and 530 False Positives (FP), resulting in an F1 

score of approximately 0.62. For the transaxle case model, there were 174 TPs, 73 FNs, and 178 
FPs, with an F1 score of about 0.58. 
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Figure 6: Train curve of a) VAE, b) Neural network for the engine block, and (c)Trans axel case. 

 

Figure 7 illustrates the trend of the F1 score as the decision threshold was varied for both the engine 

block and transaxle case models using a line graph. The results indicate that it is possible to achieve 
a relatively high F1 score in both cases. Next, to assess how the performance compares to that of a 
previously implemented surrogate model for predicting die soldering [12], we tested the difference 
in precision between models using the bootstrap method [16]. When resampling bootstrap samples, 
we created sub-samples for each product shape and conducted tests for differences. Figure 8 shows 

the bootstrap distribution of differences as a histogram. The results suggest that the difference in 
F1 scores between the surrogate model for previously reported die soldering and the surrogate 
model for die cracking developed in this study does not reach the 90% confidence interval. 
Therefore, the approach in this endeavor is considered capable of achieving the same level of 
predictive accuracy for multiple types of defects in the die-casting process. 

 

 
 
Figure 7: Transition of F1 score of a) Engine block’s surrogate model and b) Trans axel case’s 
surrogate model. 
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Figure 8: Bootstrap distribution of F1 score difference between (a) Engine model and referenced 
model, and (b)Trans axel case model and referenced model. 

 
The accuracy shown in Figure 7 was obtained when all the data prepared for this study was used for 
training, but Figure 9 also shows the accuracy when the amount of data was small. As can be seen 
from Figure 9, the improvement in accuracy with the increase in data volume appears to be somewhat 
saturated. Therefore, in order to achieve further improvements in accuracy, it is likely that a 
fundamental change in the learning architecture, rather than an increase in data volume, will be 

necessary. 
 

 
 

Figure 9: Trends of the Number of Engine block models and F1 score 

 

7 CONSIDERATION OF PREDICTION ACCURACY 

In this study, we constructed a surrogate model for predicting cracks in die-cast dies and achieved 
a certain level of accuracy. This model evaluates the risk of cracking based on the structural features 
of the die and conditions during the manufacturing process. However, the application results of this 
model showed many false positive cases where the predicted cracks did not actually occur. This 
suggests limitations in the model's predictive performance and indicates the need to investigate the 
causes and consider countermeasures. 

Particularly noteworthy is the area predicted to crack in Figure 10, which has a deep valley-like shape. 
Such a shape seems reasonable to predict as having a higher risk of die cracking due to the stress 
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concentration caused by the notch effect. However, a detailed investigation of the actual die cross-
section, as shown in Figure 11, confirmed that it is sandwiched by cooling circuits on both sides. 
These cooling circuits may limit the occurrence of stress by suppressing the temperature rise during 
contact with molten metal and reducing the temperature gradient.  

In addition to these design approaches that are not apparent in surface shape, efforts such as 
reducing the amount of release agent to prevent rapid cooling and manufacturing the die from high 

thermal conductivity materials to alleviate rapid temperature gradients are undertaken to mitigate 
thermal shock and thermal fatigue [17]. Furthermore, since the type of die material also affects 
fatigue strength, the timing of crack occurrence varies even with the same thermal shock. To address 
this, selecting materials with high fracture toughness and applying thermal treatments that enhance 
grain refinement can significantly improve the die's resistance to thermal fatigue. By refining the 

grain size through processes such as thermal cycling or controlled quenching, the material's ability 
to withstand cyclic thermal stresses without crack initiation is enhanced. This approach, based on 

recent advances in the understanding of the limits of strength and toughness in steel [18], ensures 
that the die maintains its structural integrity under extreme conditions, thereby extending its 
operational life and reliability. 

Therefore, predicting the risk of cracking based solely on the surface shape of the die has limitations, 
and it is necessary to consider more detailed information, such as the internal structure, the 
arrangement of the cooling system, and other measures to prevent thermal shock and thermal 
fatigue. Such exceptional data could act as noise in the learning process of the surrogate model, 
potentially leading to a decrease in prediction accuracy. Future research should aim to accurately 
identify these exceptional cases and optimize the model's learning data. Moreover, incorporating 

more multifaceted factors into the model, such as the arrangement of cooling circuits and the 

temperature distribution within the die, is expected to reduce the occurrence of false positives and 
enable more reliable predictions. 

 
 

Figure 10: Example of (a) rule-based prediction and (b) actual die model. 

8 CONCLUSIONS 

The evaluation results suggest that it is possible to construct a surrogate model with a certain degree 
of accuracy using only product shape by leveraging VAE and NN for die-cast die crack prediction. 
However, when the product shape on the opposite side includes distinctive shape elements such as 
cooling circuits, the stress impact on the die from shape characteristics applied in this study cannot 
be fully accounted for, leading to decreased accuracy in these areas. Including detailed die design 
features in the learning data could improve accuracy, but the primary motivation of this endeavor 
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was to predict defects from product shape alone, which may represent an inherent limitation of the 
approach used in this study. 
 

 
 

Figure 11: Die architecture of the pertinent part 

 
Additionally, the data used in this study, whether for transaxle cases or engine blocks, required a 
large number of 3D models and simulation results. Collecting detailed product development-related 
data on this scale is generally challenging, which could limit the application of this approach in other 
contexts or smaller-scale projects. 

 

Tomoya Yamazaki, http://orcid.org/0009-0008-1771-7418 
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