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Abstract. This work aims to develop a novel topology optimization method for void-

lattice infill structure design by incorporating stress constraints. The ordered SIMP-
like stress interpolation is extended to the composite material criterion, and the Tsai-
Hill yield criterion-based constraint is constructed. At the same time, the stress 

measures are properly scaled to reflect the different yield limitations. The global 
stress constraint, established with the p-norm function, is combined with the stability 
transformation method to narrow the gap between the p-norm stress and the exact 
maximum local stress. This work demonstrates the technological details of the stated 
methodology and substantiates its effectiveness through a classical 2D numerical 
illustration in mechanical engineering and a lightweight bone-like porous structure 
design case in medical engineering. 
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1 INTRODUCTION 

Significant strides in additive manufacturing have enabled the production of cellular structures with 

intricate geometries [1]. Topology Optimization (TO), a practical design tool, has been extensively 
associated with additive manufacturing due to its ability to generate novel and unforeseen designs 
under the prescribed objectives and constraints [2-5]. These designs find utility across diverse 
applications, including medical engineering [6-9], automotive industry [10,11], aerospace [12,13], 
biomechanics [14], and energy industry [15]. Reducing the weight of a part subjected to stress 
constraints is able to maximize the strength-to-weight ratio of this component, which has been a 

pivotal objective in industries. The research investigates the stress constraints within TO, a field 
where numerous classical approaches have been proposed to tackle challenges in stress-based TO 

[16-22]. Additionally, the stress-based TO methodology is extended to other material fields like 
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multiple isotropic materials, anisotropic materials, and hyper elastic materials [23-25]. Combining 
the TO method with the homogenization theory, the material distribution in multiscale is properly 
tailored, and the structures with enhanced mechanical performance are achieved. In light of its 
significance, stress constraints have been investigated within the multiscale TO frameworks in some 

studies [26-28].  

The emulation of bone-like structures in the architectural design of medical engineering presents 
a compelling avenue for innovation and efficiency. Bone is composed of compact cortical bone and 
spongy cancellous bone, which form its outer shell and interior. This composite structure arises from 
a natural optimization process aligning with Wolff’s law [29]. Several methodologies have been 
proposed to emulate and optimize bone-like structures. Liu and Shapiro [30,31] introduced a 
technique for reconstructing 3D microstructures from 2D samples based on example-based texture 

synthesis, which could preserve given statistical features. Another approach is about simulating bone 

tissue adaptation through biology-inspired models, distinctly segregating local and global scales to 
mimic bone resorption and formation under mechanical stimuli. [32-35]. A study emphasized 
anisotropic filtering that directs material accumulation in preferred orientations, resembling bone-
inspired infills, resulting in enhanced stiffness and robustness. [29,36]. Moreover, Wu et al. [37] 
presented a computational method that simultaneously optimizes lattice shape and distribution, and 

it exhibits superior buckling load and mechanical versatility. Frillici and Rotini proposed suitable 
objective, constraints, and design variables as socket requirements, and they applied shape 
optimization for the design of prosthesis socket [38]. Additionally, Daynes et al. [39] aligned lattice 
architectures with principal strain directions to increase the stiffness and intensity of structures. 
Whereafter they proposed a bio-inspired approach that integrates topology and size optimization, 
resulting in promising applications across multiple loading case scenarios. [40]. However, other than 
the mechanical performance challenges encountered in the design for additive manufacturing, 

computationally economical solutions for mass-customized medical engineering problems are still 

scarce.  

This research aims to propose a stress-constrained TO method for void-lattice infill structure 
design based on the work by Xu et al. [24]. By extending the ordered Solid Isotropic Material with 
Penalization (SIMP) like stress interpolation to the composite material criterion, multiple 
microstructure distributions can be determined on the macro scale, which is an obvious distinction 
in comparison with the previous work by Xu et al. [24]. In particular, the Tsai-Hill yield criterion-

based constraint is established. This attribute presents considerable potential in enhancing 
mechanical performance, alleviating the structural design complexity, and concomitantly 
augmenting safety protocols. The remainder of the paper is organized as follows. Section 2 presents 
the algorithm framework of this method. Then, section 3 validates the proposed method through a 
2D benchmark design and a human femur structure. The conclusion is drawn in Section 4. 

2 ALGORITHM FRAMEWORK 

A model needs to be established to ensure the consistency of the yield strength of the microstructure 
on the microscale and the macroscale stress calculated by the homogenized model on the 
macroscale. Therefore, the multi-scale failure model is employed to qualify the yield strength of 
lattice structures with a predefined density ratio. Based on this model, an ordered SIMP stress 
interpolation is constructed, and a so-called scaling method is adopted to realize the stress 
constraints for diverse microstructures through one global constraint. For simplicity, in the remaining 
content, the problem is addressed under 2D orthogonal-isotropic microstructures. 

2.1 Ordered SIMP Stress Interpolation 

The constitutive behaviors of those microstructures need to be obtained to measure the 
microstructures’ stress states in the macroscale. The effective constitutive behaviors of 
microstructures are mainly governed by their geometric patterns, which can be approximately 

replaced by an equivalent homogeneous medium. Within a two-dimensional domain, the 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(2), 2025, 322-335 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

324 

homogenized elasticity tensor 𝐃m
H  of a representative medium volume Ωm (a unit cell) can be 

calculated by: 

𝐃m(ijkl)
H =

1

Ωm
∙∑[(𝐮e

A(ij)
)
T
𝐃0𝐮e

A(ij)
]

n

e=1

,                                                                    (2.1) 

where 𝐮e
A(ij)

 denotes the microscale element displacement solutions and 𝐃𝟎 is the elasticity tensor of 

the base material. As the 2D microstructures utilized in this work are orthogonal-isotropic, only three 
distinct parameters (D11, D12, D33) appear in the elasticity tensor. Three ordered SIMP functions are 

herein introduced to describe the elasticity tensor interpolation ( η11
E , η12

E , η33
E ), whose detailed 

expressions refer to the works in [24,41]. 
 

 
 

Figure 1: Illustration of density-based material sorting. 

 
The ordered SIMP method is employed here to evaluate the properties of composite materials. As 
depicted in Figure 1, the pseudo isotropic materials are sorted in the ascending order of the material 

density ρi
T. Then, the material densities are normalized as: 

ρi =
ρi
ρmax

,         (i = 1,2,3,… ,m),                                                                          (2.2) 

where ρmax is the maximum density among the involved materials, m is the total number of material 

phases, and ρi indicates the density of the 𝑖𝑡ℎ lattice structure. The elastic modulus for the element 

e (Ee) under the multi-material scheme could be formulated by an ordered SIMP interpolation function 

(ηE(ρe)) as: 
Ee = η

E ∙ (ρe) ∙ Emax,                                                                                     (2.3) 
where Emax is the elastic modulus for the stiffest material, and ρe is the density of the element e. 

Considering the anisotropic properties of lattice structures, the homogenization elastic tensor for the 
element e (𝐃e) could be expressed as: 

𝐃e = [

η11
E (ρ) ∙ D11

H η12
E (ρ) ∙ D12

H 0

η12
E (ρ) ∙ D21

H η11
E (ρ) ∙ D22

H 0

0 0 η33
E (ρ) ∙ D33

H

] = 𝛈E(ρ) ∙ 𝐃max,                                           (2.4) 

where 

𝛈E(ρ) = [

η11
E (ρ) η12

E (ρ) 0

η12
E (ρ) η11

E (ρ) 0

0 0 η33
E (ρ)

],     𝐃max = [

D11
H D12

H 0

D21
H D22

H 0

0 0 D33
H

],                                          (2.5) 

𝛈E = (
ρe − ρi

T

ρi+1
T − ρi

T)

p

∙ (
𝐃i+1
H − 𝐃𝑖

H

𝐃max
H

) +
𝐃i
H

𝐃max
H

,                                                               (2.6) 

where 𝐃i
H is the effective elastic tensor which can be calculated by the homogenization method, 𝐃max

H  

is the stiffest element, 𝛈E is the ordered SIMP interpolation function, and p is the penalty coefficient. 

When 0 < ρ < 1, expressions like η11
E D11

H  and so forth could be assumed as the components of the 
elastic tensor for material in intermediate densities described by the ordered SIMP interpolation.  

2.2 Failure Criterion Identification and Ordered SIMP Stress Interpolation Strategy 

For an element with the given density, its Cauchy stress tensor is defined as: 

ρ1
T ρ2

T ρi
T 0 

Material 1 Material 2 Material i
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[

σx
σy
τxy
] = (𝛈E ∙ 𝐃H) [

εx
εy
εxy
],                                                                                  (2.7) 

where σx, σy, and τxy are the three stress components of the eth element, and εx, εy, and εxy are the 

three stain components of the eth element. 
The Tsai-Hill criterion, widely used for anisotropic composite materials, is adopted here to describe 
the yield behaviors of multiple lattice materials. Firstly, the expression of the Tsai-Hill yield criterion 
is: 

σT−H = (
σx
σ̅X
)
2

+ (
σy

σ̅Y
)
2

−
σxσy

σ̅Xσ̅Y
+ (

τxy

σ̅XY
)
2

≤ 1.                                                             (2.8) 

where σ̅X, σ̅Y, and σ̅XY are the yield stress values for the element.  

Since the composite structure in this research is assumed to be orthogonal-isotropic, we have σX =
σY. Under this assumption, when we have two materials, the expression of Tsai-Hill yield criterion, 

σT−H, can be expressed by the following matrix equation as: 
σT−H = 𝛆T𝐃T𝐌𝐃𝛆,                                                                                       (2.9) 

where 𝛆 is the strain and 𝐌 is the criterion matrix, which is given by: 

𝐌 =

[
 
 
 
 
 
 

1

σ̅X
2

1

2σ̅Xσ̅Y
0

1

2σ̅Xσ̅Y

1

σ̅Y
2 0

0 0
1

σ̅XY
2]
 
 
 
 
 
 

,                                                                          (2.10) 

Assuming that: 

σT−H(ρi) = 𝛆
T[(𝛈E(ρi) ∙ 𝐃0)

T(𝛕(ρi) ∙ 𝐌0 ∙ 𝛕(ρi))(𝛈
E(ρi) ∙ 𝐃0)]𝛆,                                         (2.11) 

and after replacing the denominators, the Tsai-Hill stress for the weak material is expressed as: 

𝛕(ρi) =

[
 
 
 
 
 
 
 (σ̅X)0

(σ̅X)i

√(σ̅X)0(σ̅Y)0

√(σ̅X)i(σ̅Y)i
0

√(σ̅X)0(σ̅Y)0

√(σ̅X)i(σ̅Y)i

(σ̅Y)0
(σ̅Y)i

0

0 0
(σ̅XY)0
(σ̅XY)i ]

 
 
 
 
 
 
 

.                                                        (2.12) 

Introducing the ordered SIMP functions 𝛈S to interpolate the scaled stress measurements, and then 

rewrite the Eq. (2.11) as: 

σT−H(ρi) = 𝛆
T [(𝛈S(ρi) ∙ 𝐃0)

T
𝐌0(𝛈

S(ρi) ∙ 𝐃0)] 𝛆,                                                       (2.13) 

where 𝛈S needs to satisfy the following conditions:  

𝛈S(ρi) = 𝛈
E(ρi) ∙ 𝛕(ρi), i = 1,2, . . . , m.                                                              (2.14) 

At the microscale, the solid material consisting of a lattice structure is assumed to be isotropic with 
elastic solid of Young’s modulus of 1745 MPa, Poisson’s ratio of 0.3, and yield strength of 65 MPa. 

The expression of σT−H ensures that when ρe = ρ2, σ
T−H(ρe) indicates the Tsai-Hill measure for the 

microstructure 2; and when ρe = ρ1, σ
T−H(ρe) indicates the Tsai-Hill measure for the microstructure 

1. Apparently, comparing with the real σT−H calculated by the elastic interpolations (𝛈E), the σT−H 

calculated by the stress interpolations (𝛈S) is enlarged for the weaker microstructure. As a result, 

the local stress constraints of the two microstructures are expressed as the following global 
constraint: 

(σT−H)max ≤ 1.                                                                                       (2.15) 
However, the maximum function is not differentiable. A preferred approach is to use clustering 
functions to build a single global function that effectively quantifies the maximum stress value, for 
example, the p-norm function: 
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σT−HPN = (∑(σT−H(ρe))
P

Nel

e=1

)

1
P

≤ 1,                                                                   (2.16) 

where σPN is the global P-norm measure, P is the aggregation parameter, and Nel is the total number 

of elements. Note that the P-norm approaches the maximum stress (σT−H)max when P → ∞. However, 

a large P value tends to make the stress constrained problem erroneous. Relatively small P value is 

preferred in practice under given convergence stability which, however, leads to the gap between 
the exact and the approximated maximum stresses. Consequently, the stress constrained 
optimization result is conservative. Therefore, to better approximate the maximum stress without 
overly increasing the P value, the global P-norm stress measure is iteratively corrected through: 

σT−H̅̅ ̅̅ ̅̅ ̅
PN = c ∙ σ

T−H
PN,                                                                                  (2.17) 

where c is the correction parameter at the Ith iteration (𝐼 > 1) that reflects the ratio of the maximum 

von Mises stress to the P-norm stress of the current iteration. It is noted that the parameter c may 
result in abrupt fluctuations if only relying on the history-independent stress ratio to correct, 
potentially leading to numerical oscillations and instabilities. To address this issue, a parameter αI 
(αI ∈ (0,1]) is introduced to restrict the variation between cI and cI−1, as demonstrated by: 

cI = αI ∙
max(∀σVm,e)

σPN
I + (1 − αI) ∙ cI−1.                                                                (2.18) 

Here, αI = 0.5 is adopted for all iterations, and c0  =  1 is selected. Note that the set of local stress 

constraints is equivalent to one constraint under the maximum local stress, which is described as: 

σT−H̅̅ ̅̅ ̅̅ ̅
PN ≤ 1.                                                                                          (2.19) 

2.3 Optimization Problem Formulation 

The objective function is to minimize the structure weight subject to the maximum Tsai-Hill stress 

constraint. The optimization problem can be mathematically formulated as: 

{
  
 

  
 

find: 𝛒

minimize:M(𝛒) = ∑ρ̅e

Nel

e=1

subject to: {

𝐊𝐔 = 𝐅

σT−H̅̅ ̅̅ ̅̅ ̅
PN ≤ 1

ρmin ≤ ∀ρ̅e ≤ 1

,                                                                         (2.20) 

where M(𝛒) is the objective function of the optimization problem, which represents the total mass of 

the structure. 𝐊,𝐔 and 𝐅 in the equilibrium equation denote stiffness matrix, global displacement and 

prescribed external loads, respectively. The filtered design variable ∀ρ̅e is limited by the upper bound 

1, and the lower bound ρmin. The stress measure is the P-norm form formulated using the Tsai Hill’s 

stress. After obtaining the gradient of this model, the Method of Moving Asymptotes (MMA) is adopted 

to update the topological configuration iteratively. Hence, details of sensitivity analysis are presented 
in the following. The gradient of the mass objective function M is: 

∂M

∂ρ̅j
=∑(

∂ρ̅e
∂ρ̅j

∙ m0)

Nel

e=1

,                                                                                 (2.21) 

where 
∂ρ̅e

∂ρ̅j
≠ 0 only stands for j = e. Thus, the sum operation in Eq. (2.21) can be removed, and the 

functions are represented as: 
∂M

∂ρ̅j
= m0,                                                                                            (2.22) 

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂ρ̅j
=∑[

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂σT−He

∂σT−He
∂ρ̅j

]

Nel

e=1

,                                                                     (2.23) 
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∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂σT−He
= c ∙

1

P
∙ [∑ (σT−He)

P
Nel

e=1
]

(
1
P
−1)

∙ P ∙ (σT−He)
(P−1),                                              (2.24) 

∂σT−He
∂ρ̅j

=
∂𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)] 𝛆

∂ρ̅j
,                                                              (2.25) 

then we have: 

∂σT−He
∂ρ̅j

= 2𝛆T [(𝛈S ∙ 𝐃0)
T
𝐌0(𝛈

S ∙ 𝐃0)]
∂𝛆

∂ρ̅j
+ 𝛆T

∂ [(𝛈S ∙ 𝐃0)
T
𝐌0(𝛈

S ∙ 𝐃0)]

∂ρ̅j
𝛆,                             (2.26) 

where 

𝛆T
∂ [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)]

∂ρ̅j
𝛆 = 2𝛆T [(

∂𝛈S

∂ρ̅j
∙ 𝐃0)

T

𝐌0(𝛈
S ∙ 𝐃0)] 𝛆.                                      (2.27) 

According to the strain-displacement formulation, the macroscopic strain tensor on an element is 

computed as： 

𝛆 = 𝐁𝐮e,                                                                                             (2.28) 

where 𝐁 represents strain-displacement matrix and 𝐮e is the displacement vector of the eth element. 

Substituting Eq. (2.28) into the second term in Eq. (2.26), the derivatives can be expressed as: 

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂ρ̅j
=∑[

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂σT−He
(2𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)]𝐁
∂𝐮e
∂ρ̅j

+ 2𝛆T [(
∂𝛈S

∂ρ̅j
∙ 𝐃0)

T

𝐌0(𝛈
S ∙ 𝐃0)] 𝛆)]

Nel

e=1

.      (2.29) 

Knowing that 
∂ηS̅̅̅̅ e
∂ρ̅j

≠ 0 only implies that j = e. Thus, the sum operation in Eq. (2.29) is converted as: 

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂ρ̅j
=∑[

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂σT−He
(2𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)] 𝐁
∂𝐮e
∂ρ̅j

)]

Nel

e=1

 

+
∂σT−H̅̅ ̅̅ ̅̅ ̅

PN

∂σT−Hj
(2𝛆T [(

∂𝛈S

∂ρ̅j
∙ 𝐃0)

T

𝐌0(𝛈
S ∙ 𝐃0)] 𝛆).                                                       (2.30) 

The adjoint method is then adopted to address the unknown term in Eq. (2.30). Specifically, taking 
derivatives of both sides of 𝐊𝐔 = 𝐅 yields: 

∂𝐊

∂ρ̅j
𝐔+ 𝐊

∂𝐔

∂ρ̅j
= 0.                                                                                     (2.31) 

Subsequently, the following expression is derived as: 
∂𝐔

∂ρ̅j
= −𝐊−1

∂𝐊

∂ρ̅j
𝐔,                                                                                    (2.32) 

and the above derivative is further transcribed as: 
∂𝐮e
∂ρ̅j

= −𝐋e𝐊
−1
∂𝐊

∂ρ̅j
𝐔,                                                                                 (2.33) 

where 𝐋e is the global-local transform matrix, which extracts the nodal displacements of the eth 
element from the global displacement vector through 𝐮e = 𝐋e𝐔. Then, we have: 

 ∑[
∂σT−H̅̅ ̅̅ ̅̅ ̅

PN

∂σT−He
(2𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)] 𝐁
∂𝐮e
∂ρ̅j

)]

Nel

e=1

=  

                                                   −∑[
∂σT−H̅̅ ̅̅ ̅̅ ̅

PN

∂σT−He
(2𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)]𝐁𝐋e𝐊
−1)]

Nel

e=1

∂𝐊

∂ρ̅j
𝐔.                                              (2.34) 

Adopting the vector 𝛌 = ∑ λe
Nel
e=1  to indicate the adjoint vector in Eq. (2.34): 

λe = [
∂σT−H̅̅ ̅̅ ̅̅ ̅

PN

∂σT−He
(2𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)]𝐁𝐋e𝐊
−1)],                                                (2.35) 

and it is calculated from the following adjoint expression: 
𝐊𝛌 = 𝐟,                                                                                               (2.36) 

where the adjoint force vector is obtained as: 

http://www.cad-journal.net/
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𝐟 = ∑[
∂σT−H̅̅ ̅̅ ̅̅ ̅

PN

∂σT−He
(2𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)] 𝐁𝐋e)]

Nel

e=1

.                                                 (2.37) 

Then, Eq. (2.34) is written as: 

∑[
∂σT−H̅̅ ̅̅ ̅̅ ̅

PN

∂σT−He
(2𝛆T [(𝛈S ∙ 𝐃0)

T
𝐌0(𝛈

S ∙ 𝐃0)]𝐁
∂𝐮e
∂ρ̅j

)] =

𝑁𝑒𝑙

𝑒=1

− 𝛌T
∂𝐊

∂ρ̅j
𝐔.                                      (2.38) 

The global stiffness matrix could be expressed with the adaptation of the transform matrix 𝐋e, which 

has the form: 

𝐊 =∑(𝐋e
T𝐊𝐞𝐋e)

Nel

e=1

=∑(𝐋e
Tδ(𝛈E̅̅̅̅ ∙ 𝐃0)𝐋e)

Nel

e=1

,                                                           (2.39) 

where 𝐊e is the element stiffness matrix for the eth element, and δ(∗) is the element stiffness matrix 

assembly operator. Thus, the derivative of the global stiffness matrix with respect to ρ̅j equals: 

∂𝐊

∂ρ̅j
=∑(𝐋e

Tδ (
∂𝛈E̅̅̅̅

∂ρ̅j
∙ 𝐃0)𝐋e)

Nel

e=1

.                                                                      (2.40) 

Similar with Eq. (2.21), 
∂ηE̅̅ ̅̅ e
∂ρ̅j

≠ 0 only stands for j = e. Hence, the sum operation is removed, and Eq. 

(2.40) becomes: 

∂𝐊

∂ρj
= 𝐋j

Tδ (
∂𝛈E̅̅̅̅

∂ρ̅j
∙ 𝐃0) 𝐋j,                                                                              (2.41) 

 
Therefore, the derivative of the global P-norm stress measure with respect to the design variable is 
expressed by: 

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂ρ̅j
= −𝛌T𝐋j

Tδ (
∂𝛈E̅̅̅̅

∂ρ̅j
∙ 𝐃0) 𝐋j𝐔 +

∂σT−H̅̅ ̅̅ ̅̅ ̅
PN

∂σT−Hj
(2𝛆T [(

∂𝛈S

∂ρ̅j
∙ 𝐃0)

T

𝐌0(𝛈
S ∙ 𝐃0)] 𝛆).                          (2.42) 

3 CASE STUDY  

The commercial software package MATLAB is used to implement Finite Element Analysis (FEA) and 
topology optimization in this study. All numerical experiments are implemented on a computer with 
an x64-based processor. 

3.1 2D Benchmark Case 

The proposed method is first validated with a 2D L-bracket case. It is noted that the L-bracket case 
is extensively adopted to demonstrate stress-related topology optimization algorithms. For all 
numerical examples, 4-node quadrilateral elements are adopted. The default move limit of 0.5 is 

used in the MMA optimizer. The initial design variable value in this case is set to be 0.3, and the 
filter radius is 3.5 element sizes. The optimization process will be converged when no further 
enhancement of the objectives is attainable. That is, when the difference of the objective values 
between two adjacent iterations is less than 0.01 over 20 steps or when the maximum iteration 
number, which is set to 450, is exceeded. 

The boundary and loading conditions of the L-bracket case are demonstrated in Figure 2. The 
structured rectangular mesh with the 1st-order Lagrange elements is adopted in this case. The mesh 

dimension is 50 × 50 elements in the macroscale and 50 × 50 elements in the microscale and the 

homogenized stress state is calculated at the element centroid. It is noted that the selection of 
50 × 50 is a trade-off between the accuracy and efficiency of the algorithm. The top edge of the L-

bracket is clamped and a vertical load F=4500 N is exerted to the right-side upper corner, as shown 
in Figure 2. Note that the load is distributed over 6 nodes to avoid the stress concentration. 
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Figure 2: Boundary and loading conditions of L-bracket. 

 

The two microstructures are made by one isotropic material, whose yield strength is 65 MPa and 
Young’s Modulus is 1050 MPa. The mechanical properties of the two pre-designed microstructures 

are listed in Table 1. 

 

Microstructure 

1 

 

 
 

Density 

ratio 

Yield 

strength in 
x direction 

(MPa) 

Yield 

strength in 
xy direction 

(MPa) 

60% 1650 750 
𝐷11 𝐷12 𝐷33 

3.8681𝑒5 1.5835𝑒5 8.8424e4 

Microstructure 
2 

 

 

Density 
ratio 

Yield 
strength in 
x direction 

Yield 
strength in 
xy direction 

40% 1250 667 

𝐷11 𝐷12 𝐷33 
1.7575𝑒5 1.2116e5 3.9591e4 

 

Table 1: Mechanical properties of two pre-designed microstructures. 

 

The interpolation curves of the normalized elastic modulus and normalized and scaled stress modulus 
with respect to the density variables are shown in Figure 3. 

 

 

 

Figure 3: Interpolation curves for 𝜂𝑆 and 𝜂𝐸. 

1
0
0
m
m

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(2), 2025, 322-335 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

330 

 

 

Figure 4: Final result of full-scale design. 

 

  

(a) (b) 

 

Figure 5: (a) Convergence history of the objective value, and (b) convergence history of the Tsai-
Hill stress constraints. 

 

The optimized structure of full-scale design is shown in Figure 4. The stress evaluation and objective 
value histories for this case are plotted in Figure 5. It can be observed that the stress constraints in 
both microstructures are well satisfied, even though there are severe numerical oscillations occurred 
during the optimization process. The optimization terminates at the 450th iteration, which reaches 
the final mass ratio of 0.2347. Moreover, the maximum Tsai-Hill stress in microstructure 1 and 

microstructure 2 are 0.9482 and 0.8011, respectively. 

 

  

(a) (b) 

 

Figure 6: Tsai-Hill stress distributions for (a) microstructure two and (b) microstructure 1. 
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Figure 6 shows the real Tsai-Hill stress distributions for different microstructure phases. It is 
observed that the resulting structure suffers from a significant stress concentration around the 
reentrant corner for microstructure 2, as shown in Figure 6(a); while the highest stress occurred at 
the bottom area of the bracket for microstructure 1, as shown in Figure 6(b). 

3.2 Bone-like Case 

The proposed approach is subsequently validated using a bone-like case as a complex structure 
example meanwhile the two microstructures listed in Table 1 are applied in this case. The domestic 
design domain and its boundary conditions for a human femur structure are shown in Figure 7. It 

should be noted that this optimization case dismisses the biological and medical considerations 
regarding tissue growth and the practicalities of medical manufacturing. 

 

 

 

Figure 7: Design domain and boundary conditions subjected to single load case. 
 
 

 

Figure 8: Result of bone-like case. 

 

The optimized bone structure is shown in Figure 8, and Figure 9 depicts the real Tsai-Hill stress 

distributions for different microstructure phases. The final mass ratio of the optimized design reaches 
0.2644. Figure 9(a) indicates the stress distribution for microstructure 2, while Figure 9 (b) indicates 
the stress distribution for microstructure 1 for a human femur structure. The maximum Tsai-Hill 
stresses in two microstructures are 0.9981 and 0.8113, respectively. 
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(a) (b) 

 

Figure 9: Tsai-Hill stress distributions for (a) microstructure 2 and (b) microstructure 1 for a human 

femur structure.   

 

The results show that this method enables the reliable, lightweight design of the target human femur 

structure, ensuring a weight reduction of up to 75% while still meeting the strength requirements 
of the material. 

4 CONCLUSIONS 

A framework of stress-based topology optimization is proposed for void-lattice infill structure design 
in additive manufacturing. The novelty of this work is that instead of simply using the SIMP material 
interpolation, the homogenization method is employed to efficiently obtain the effective mechanical 

properties of lattice structures, ensuring compliance with maximum stress requirements. An ordered 
SIMP-like stress interpolation is developed, which is suitable for the Tsai-Hill failure criterion in 
multiscale simulation. In other words, for the effectiveness of yield strength, the modified Tsai-Hill’s 
yield criterion is applied to estimate the mechanical performance of lattice structures. A 
representative L-bracket case is provided to demonstrate the validation of this study. Moreover, this 
methodology is also implemented in bone-like porous structures. In both cases, the proposed 
approach employs multiscale stress-constrained ordered SIMP interpolation as an innovative 

algorithmic approach. Moreover, augmenting safety protocols is accomplished with modularized data 
management and enhanced structural robustness through the optimization process. This 
optimization methodology iteratively optimizes the material distributions from the design domain 
while maintaining its mechanical properties under given loadings, achieving an optimal structure 
with desired mechanical performance. 

The proposed algorithm framework is versatile for optimization processes in almost any 

simulation environment. It is primarily implemented in 2D void-lattice infill structure design but is 

adaptable to 3D with increased computational requirements. These ordered SIMP-like stress 
interpolation designs have limited degrees of freedom and exhibit relatively poor performance in the 
face of multiple microstructural variations. Moreover, the optimization of bone-like structures serves 
merely as an example within the domain of lightweight complex structures, offering insights 
applicable to related fields. Clarifying the optimization objectives and addressing customer needs, 
which brings corresponding mechanics, optimization rules, and material information on demand 

according to the customized conditions, is critical to the digitalization and mass customization of 
lightweight structures in the engineering industry. The future work will develop a modularized and 
real-time data link that contributes to the seamless synchronization of software information 
throughout the organizations, especially for the mass customization in additive manufacturing, 
namely, the complex structure development. In addition, topology optimization of 3D void-lattice 
infill structure design cases will be conducted with a newly developed optimization platform based 
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on Smooth-Edged Material Distribution for Optimizing Topology algorithm, with the aim of obtaining 
more practical and manufacturable designs. 
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