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Abstract: The outstanding capabilities of neural networks have led to their increasing 

use in combination with various other fields. However, their application in sketch 
design remains limited. To address the challenge of making decisions based on 
design sketches in the product design process, this paper proposes an innovative 
model called the Product Design Sketch Decision Network (PDSDNet). This model is 
based on an enhanced capsule network and introduces a reverse dot product 
attention routing mechanism. The ConvNeXt serves as the backbone network to 

improve the design sketch image’s feature extraction ability, and the ADAMW 
optimizer further enhances the model’s training speed and stability. To validate the 
accuracy of the model’s decisions, a dataset of design sketches for table lamps was 
established. Experts evaluated the dataset and supplemented it with semantic tags 
and key region image segmentation annotations. PDSDNet was compared with 
AlexNet, ResNet50, and the classic capsule network. The experimental results 

revealed that in the decision-making process for design area sketch styling 

semantics, the decision accuracy of PDSDNet and ResNet50 was higher compared to 
the other two models. PDSDNet was more accurate in the semantic and feasibility 
decision-making of overall sketch modeling, with F1 scores of 0.81 and 0.96, 
respectively. These results demonstrate that the model focuses on abstract features 
and subtle semantic information.  
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1 INTRODUCTION 

Industrial design, as a crucial component of innovative design, aids in establishing a connection 

between a product's multifunctional attributes and the subjective perception of users, thereby 
facilitating the realization of value in innovative outcomes [14]. Despite the availability of many 
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digital design methods, many designers still prefer to use sketches during the product design stage 
for analysis and communication with clients. With the widespread application of computer assistance 
in product design, numerous researchers have utilized relevant technologies to improve efficiency 
and accuracy in decision-making for product design sketches. Press and Cooper [9] detailed the 

decision-making process in product design, while Schmid, et al. [11] focused on analyzing and 
researching sketch strokes. Fonseca, et al. [5] achieved parameterization and recognition of sketch 
images through topological constraints. Yan, et al. [16] used generative adversarial networks to 
facilitate the computer-assisted transformation of sketches into final images using AI. These studies 
have somewhat enhanced the accuracy of sketch decision-making but often involve transforming 
sketches into another form of data, leaving a gap in decision-making model research focused directly 
on the sketches themselves. 

Deep learning, which allows computational models with multiple processing layers to learn and 

represent data with multiple levels of abstraction, mimics how the brain perceives and understands 
multimodal information. This approach implicitly captures the complex structure of large-scale data, 
with computer vision being one of the most prominent use cases of deep learning [15]. Currently, 
computer vision methods like convolutional neural networks [3] and recurrent neural networks [18] 
have been successfully applied in the field of industrial design decision-making for product design 

images. However, these decision-making models require a large number of design images containing 
detailed design information and primarily utilize images of finished product designs, which limits 
their early-stage assistive role in product design. 

The capsule network is a new concept in deep learning proposed by Sabour, et al. [10]. Unlike 
traditional Convolutional Neural Networks (CNNs) that only recognize local pixel features in images 
without understanding the hierarchical relationships of these features, capsule networks address this 
issue. Additionally, one of the significant benefits of capsule networks is that they require learning 

only a small portion of data compared to CNNs to achieve good recognition performance. Essentially, 

a capsule network is a collection of neurons, with its basic unit being a capsule containing a vector. 
Thus, capsules can indicate not only the probability of the existence of features but also the direction 
of different features. 

Building on the traditional capsule network, Tsai, et al. [13] introduced a new inverted dot-
product attention routing algorithm. In this algorithm, unlike the dynamic routing mechanism of 
traditional capsule networks where lower-level capsules compete for the attention of higher-level 

capsules, the routing decision depends on the consistency between the pose of higher-level capsules 
and the votes formed by lower-level capsules for these higher-level poses. This approach also 
transforms the sequential iterative routing in the original capsule network into concurrent iterative 
routing. Experiments have shown that these changes can effectively improve the performance of the 
capsule network while reducing some of the training parameters. 

The inverted dot-product attention routing capsule network has already seen various 

applications. For instance, Paoletti, et al. [8] utilized this network to propose a new method for 

hyperspectral image classification, addressing the issue of capsule networks not being able to 
correctly model the hierarchical spectral relationships between different images. Dinani and Caragea 
[4] significantly improved the accuracy of classifying disaster images on social networks as 
informative or non-informative using the inverted dot-product attention routing capsule network. 
This enhancement aids in more accurately filtering out messages seeking help or reporting about 
disasters when they occur. Ng and Liu [7] applied the inverted dot-product attention routing along 

with the Tanimoto loss function to improve the accuracy of voice emotion recognition. 

This paper addresses the aforementioned issues by proposing a product design sketch decision 
model based on an improved capsule network - PDSDNet (Product Design Sketch Decision Network). 
This model utilizes the ConvNeXt backbone network and inverted dot-product attention routing and 
employs the AdamW optimizer to enhance the capsule network. This approach overcomes the 
limitations of previous product design decision models, which struggled with making decisions based 

on the sketches themselves and were not applicable during the sketching stage of product design. 

The following sections summarize the parameters used in the various pre-set styles. You should 
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never really have to deal with these parameters directly, but only select one of the pre-formatted 
styles. But for completeness of documentation, this information is given here so that future 
managers of this template may more easily make selective changes to some of the styles. 

2 PRODUCT DESIGN SKETCH DECISION MODEL BASED ON PDSDNET 

2.1 PDSDNet Network Model Structure 

The basic structure of the PDSDNet network used in this model is illustrated in Figure 1. Images that 
have been preprocessed and semantically annotated are fed into the PDSDNet. Initially, the 
ConvNeXt backbone network is used to extract image features, which are then inputted into the 

precursor capsules of the capsule network. This part then serves as the main backbone and is frozen. 

Subsequently, the data passes through two convolutional capsule layers and a fully connected 
capsule layers. Finally, a softmax function is applied to the fully connected layers to obtain the 
classification results. 

 

ConvNext
（Backbone 

Network）

Convolutional 
Features

Convolution + 
Normalization

Convolutional 
Capsule Layer

Primary 
Capsule 
Layer Fully Connected 

Capsule Layer

Classification 
Capsule Layer
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Figure 1: PDSDNet network architecture. 

2.1.1 ConvNeXt Backbone Network 

In the original capsule network architecture, multiple ResNet computation blocks or a single 
convolutional layer are used as the backbone network. However, considering that design sketches 

often contain less explicit information, a backbone network with stronger feature extraction 
capabilities and a more comprehensive architecture is needed. Therefore, in PDSDNet, we use 
ConvNeXt instead of the traditional ResNet as the model's backbone network, with a structure as 
Figure 2. Compared to the ResNet backbone, ConvNeXt also adopts a modular stacked design, but 
with a different stacking ratio in its four modules, diverging from ResNet's [3:4:6:3] ratio. ConvNeXt 
utilizes an optimized [1:1:9:1] network structure, allowing later modules to have more 

computational power [6]. In the design of each Block, unlike the bottleneck layer design of the 
ResNet Block, the ConvNeXt Block uses an inverted bottleneck layer design, adjusting the 
computational load in each layer of the Block, making it easier for the network to propagate gradients 
and reduce the problem of vanishing gradients that may occur. To compensate for the reduced model 

capacity that comes with using group convolution to decrease the model's computational load, the 
number of channels is increased from 64 in ResNet to 96 in ConvNeXt, achieving higher precision 
while reducing the overall computational load of the model. To further optimize the accuracy of the 

network, certain optimizations were also made to the ConvNeXt backbone network: less frequent 
use of activation functions, switching from ReLU to GeLU functions; using fewer normalization layers, 
adding separate downsampling layers, and replacing batch normalization with layer normalization to 
minimize errors that may arise from batch normalization when the batch size is small. 

Considering the issue of limited information content in sketches, PDSDNet opts for the 
ConvNeXt-S scale of the ConvNeXt network as the backbone of the model. This choice ensures 
adequate semantic feature extraction while maintaining an appropriate network depth. By enhancing 

the feature extraction capability, the model's accuracy in making decisions about design sketches is 
improved. 
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Figure 2: ConvNeXt backbone network structure. 

2.1.2 Improved Capsule Network 

In traditional capsule networks, the routing between parent and child capsule layers typically 
involves sequential iterative routing. In this process, child capsules pass input vectors to parent 
capsules, and the parent capsules dynamically adjust their weights and update their capsule states 

based on the received information. The structure of capsules, compared to traditional Convolutional 

Neural Networks (CNNs), handles ambiguity well and can reduce the data required for training to 
some extent. However, this structure can lead to training difficulties and hyperparameter sensitivity 
due to a large number of input parameters and redundant features. 

Given that product design sketches are often composed of multiple independent design elements 
and contain less information, and the differences between sketches are not as pronounced as those 

in final product images, we have adopted an improved capsule network based on inverted dot-
product attention routing. Contrary to sequential iterative routing, in this algorithm, parent capsules 
attempt to attract the attention of child capsules. The routing probability is derived from the pose 
state of the parent in the previous iteration, as well as the votes cast by the child capsules for the 
parent's pose state in the current iteration. The main steps of this routing method are as follows: 

In the routing mechanism, l represents the layer index, and p𝑖
𝑙 ∈ 𝑅𝑠

𝑙
denotes the i𝑡ℎcapsule in the 

p𝑙matrix of layer l. Inspired by the Expectation-Maximization algorithm, the pose vector defined by 

p𝑖
𝑙 is reshaped into a matrix array R√𝑠

𝑙×√𝑠𝑙. Once the capsules are initialized, the routing mechanism 
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is applied between the lower and higher levels. There are two main steps in the application of the 
routing mechanism: consistency calculation and pose update. 

Consistency calculation involves transforming the matrix pose p𝑖
𝑙 into a voting 𝑉𝑖,𝑗

𝑙 , to calculate 

the consistency between the higher-level p𝑗
𝑙+1 and the lower level p𝑖

𝑙, as shown in Equation (1):  

 𝑣𝑖,𝑗
𝑙 =  𝑊𝑖𝑗

𝑙 × 𝑝𝑖,𝑗
𝑙   (1) 

Where  𝑊𝑖𝑗
𝑙 ∈ R√𝑠

𝑙+1×√𝑠𝑙 is the learned transformation matrix. Once the votes for the pose p𝑗
𝑙+1

 
are 

obtained, the agreement 𝑎𝑖𝑗
𝑙  is determined by Equation (2):  

 𝑎𝑖𝑗
𝑙 = (𝑃𝑗

𝑙+1)𝑇 ∙ 𝑣𝑖,𝑗
𝑙   (2) 

Once the agreement is obtained, the pose at the higher level will be updated. From this perspective, 

the agreement coefficient is processed by the softmax function to determine the routing probabilities 

𝑟𝑖𝑗
𝑙  between the lower and higher levels. 

 𝑟𝑖𝑗
𝑙 =

exp (𝑎𝑖𝑗
𝑙 )

∑ exp (𝑎𝑖𝑍
𝑙 )𝑍

  (3) 

Equation (3) defines the competition for the attention of higher-level capsules towards the lower-

level capsules, where 𝑟𝑖𝑗
𝑙

 
is the score obtained from the inverted dot-product attention. Once the 

higher-level capsules receive these scores, they update their poses using the information from the 
lower-level capsules, as shown in Equation (4): 

 𝑃𝑗
𝑙+1 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(∑ 𝑟𝑖𝑗

𝑙
𝑖 𝑣𝑖,𝑗

𝑙 ) (4) 

In the original capsule network model, the learning rate is adjusted using the Stochastic Gradient 
Descent (SGD) optimizer. Although this optimizer is structurally simple and widely applicable, its 
convergence speed can be affected by the learning rate and may face convergence issues. Therefore, 

in PDSDNet, we use the AdamW optimizer instead of the traditional SGD for optimization. Compared 

to other optimizers, AdamW can automatically adjust the learning rate without the need for extensive 
parameter tuning, reducing redundancy. Additionally, it automatically adjusts the weight decay 
coefficient, making the decision model more stable and helping to avoid overfitting. 

2.2 Design Sketch Decision Model Overall Structure 

The model takes product design sketches as input, preprocesses the images, and performs semantic 
segmentation. The segmented key design parts are then semantically annotated to build a dataset. 
The annotated dataset is trained through the PDSDNet network to develop a product design sketch 
decision-making method. This method is used to evaluate the product design sketches in the test 
set and verify their consistency with human evaluative annotations, thereby assessing the 
performance of decision-making for product design sketches. The model mainly consists of two 

parts: training the model using training data and making decisions on test data based on the training 
results. The overall structure of the model is illustrated in Figure 3. 

3 EXPERIMENTAL DESIGN 

3.1 Construction of Experimental Dataset 

3.1.1 Collection and Annotation of Product Design Sketches 

Product designs often contain different stylistic semantics in various target areas, necessitating 
semantic segmentation of different styling areas for intelligent decision-making in the field of product 
design sketch form decisions. This requires detailed semantic segmentation of images according to 
the edge contours of different design areas. 

Considering the difficulty in obtaining product design sketches, as well as to better reflect the 
differences in stylistic semantics between different design areas, this experiment uses household 

desk lamp design sketches as the dataset. Based on commonly used drawing techniques in product 
design, 102 hand-drawn sketches of desk lamp designs were collected from the works of industrial 
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design students. These sketches were created using widely used techniques in industrial design, 
such as one-point and two-point perspectives. [12]. 

 

Collect Design Proposal Data
Construct Product Design Sketch Dataset
Divide into Training, Validation, and Test 

Sets

Image Styling Feature 
Extraction

Establish Product Design Sketch 
Decision Model

Make Decisions on Design 
Sketches in the Test Set

Input Test Set Images

Image Preprocessing
Image Segmentation
Semantic Annotation

ConvNeXt

Model Performance 
Evaluation

Primary Capsule Layer

Fully Connected Capsule Layer

Classification Capsule Layer

Convolutional Capsule Layer

Routing

Routing

Routing

Routing

Classification

Convolution Operation + Layer 
Normalization

Convolutional Capsule Layer

Data Augmentation

Logits Regression

 
 

Figure 3: Overall structure of the product design sketch decision model based on PDSDNet. 

 

Given the limited volume of collected data, additional desk lamp design sketches meeting the criteria 

were gathered from the internet. After excluding invalid samples that did not meet the experimental 
requirements from this expanded dataset, a total of 500 design sketch proposals were selected. 
Each of these design sketch proposals is a one-point or two-point perspective grayscale sketch of a 

household desk lamp. Figure 4 displays a portion of the dataset. 

 

 
 

Figure 4: Partial dataset of table lamp design sketches. 

 

After constructing the basic dataset, it is necessary to perform semantic segmentation and 
annotation of the images based on the edge contours of different design areas. In the case of desk 

lamp design proposals, both hand-drawn sketches by designers and sketches selected from the 
internet are generally clear, with a simple background and no obstructions. Therefore, in this 
experiment, the contours of the 102 design sketch proposals were initially drawn using LabelMe 
software. Subsequently, the efficient image segmentation network Deeplabv3+ [2] was utilized to 
segment and extract contours from other images, and the extracted results were manually corrected. 

Based on the analysis of desk lamp-related design patents, the key parts of desk lamp design 
are mainly located in the lampshade, lamp pole, and base. Therefore, these three parts were 

annotated as Region 1 (blue), Region 2 (orange), and Region 3 (green), respectively. These three 
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parts influence each other and collectively contribute to the overall design image of the desk lamp. 
The data marking areas for the key parts of the desk lamp after segmentation are illustrated in 
Figure 5. 

 

 
 

Figure 5: Key annotation areas after structural division of the desk lamp. 

3.1.2 Selection of Stylistic Semantics and Feasibility Evaluation 

Based on a broad collection of 200 image words related to lighting products from the internet and 
magazines, and building upon previous research [1],[17], eight pairs of image adjectives that 

designers focus on during desk lamp design were identified. These pairs are: simple-complex, 
popular-personalized, generous-elegant, geometric-streamlined, warm-cold, rugged-delicate, 
business-artistic, and plain-gorgeous. Given that some characteristics are not evident during the 
sketch design stage, certain word pairs were excluded, while new pairs such as 'classic-modern' and 

'lively-quiet' were introduced. Additionally, the pair 'business-artistic' was modified to 'business-
leisure,' resulting in a total of nine pairs of image adjectives. 

In addition to the stylistic semantic labels for the three parts, overall styling semantic labels also 

need to be incorporated into the design proposals. Given that designers frequently overlook the 
manufacturing challenges of actual products during the sketching process, it is crucial to include 
feasibility labels in the design proposals, thereby offering a valuable reference for product design. 

Based on the semantic segmentation of the overall design and individual components of the desk 
lamp sketches, four experienced designers with over seven years of experience and three teachers 
of sketch design courses were invited to evaluate the style of the entire dataset, including each key 
part. In addition to this, the experts also rated the feasibility of the sketches on a 10-point scale 

based on their implementability. 

After the experts completed their evaluations and scoring, six style combinations were identified 

through cluster analysis for the overall semantic description. In the semantic description of the 
design area's styling, each styling area was divided into three different semantics. All semantic 
combinations are presented in Table 1. 

 

Styling Area Semantic Description 

Overall Styling 

Classic, Complex; 

Business, plain;  
Leisure, Lively;  
Warm, Quiet;  

Geometric, Cold;  
Personalized, Delicate. 

Region 1 (Lampshade) 

Gorgeous;  

Warm; 
Plain. 
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Region 2 (Lamp Pole) 
Streamlined;  
Geometric;  
Complex. 

Region 3 (Lamp Base) 
Delicate;  
Simple;  
Rugged. 

 

Table 1: Semantic descriptions of different styling areas of the desk lamp. 

 

Subsequently, clustering methods labeled other semantics with similar meanings as one of the 
selected semantic descriptions. For feasibility, the scores from all expert reviewers were taken, and 
a quadratic averaging method was used to eliminate discrepancies between expert scores. The final 

scores were categorized as follows: 0-3.3 points defined as difficult to implement, 3.3-6.6 points as 
feasible, and 6.6-10 points as easy to implement. 

Finally, the LabelMe software was used to complete the semantic annotation of the dataset for 
both types of evaluations. Table 2 presents an example of the annotated data. 

 

Image 
Number 

Overall Styling 
Description 

Area Styling Description 

Feasibility Evaluation 

Region 1 
(Lampshade) 

Region 2 
(Lamp Pole) 

Region 3 
(Lamp Base) 

1 Classic, Complex Gorgeous Streamlined Delicate 
Difficult  

to Implement 

2 Business, Plain Plain Geometric Simple 
Easy  

to Implement 

3 Leisure, Lively Warm Streamlined Simple 
Easy  

to Implement 

n ... ... ... ... ... 

 

Table 2: Semantic annotations of desk lamp styling design sketch dataset. 

3.2 Experimental Validation and Training Parameter Settings 

The dataset of desk lamp design sketches comprises 500 images, each containing three-part styling 
semantic descriptions, one overall semantic description, and one feasibility evaluation. The dataset 
was randomly divided into training, validation, and test sets. The training set, consisting of 300 
images, was used for training and establishing the decision model. The validation set included 100 
images for adjusting the model's hyperparameters and for a preliminary assessment of the model's 
capabilities. The test set also contained 100 images and was used to evaluate the performance of 

the trained model. 

Before training, all images were resized to 448×448 pixels for easy processing by the decision 

model. To further increase the diversity of the data and thereby enhance accuracy, the images were 
randomly flipped and pixel-wise normalized before training commenced. These data augmentation 

methods indirectly increased the diversity of the training data, improving the model's generalization 
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ability and performance. Additionally, the ConvNeXt pre-trained model was integrated into our 
model. This transfer learning approach helps the model better capture high-level features of the 
data, improves generalization capability, and accelerates convergence speed in sketch decision 
tasks. 

After processing, each batch of sketch images entering the PDSDNet product design sketch 
decision model has an input dimension of (8, 3, 448, 448), representing the batch size, color 
channels, and spatial dimensions. The images first pass through an initial convolution layer, where 
the dimension changes to (8, 96, 112, 112). Then, they proceed through the four stages of the 
ConvNeXt backbone network, ultimately reaching the dimensions of (8, 768, 14, 14). 

In the capsule network section, the primary capsule layer further processes the images, with an 
output dimension of (8, 32, 14, 14, 16). This is followed by two main capsule layers, which convert 

the feature dimensions to (8, 32, 6, 6, 16) and (8, 32, 4, 4, 16), respectively. Finally, the 

classification capsule layer produces an output of (8, x, 16), where x corresponds to the number of 
possible styling semantic description categories. 

This series of transformations demonstrates the network's ability to increase feature dimensions 
while reducing spatial size, reflecting the gradual abstraction of images from original pixels to high-
level features. The primary capsule layer and the main capsule layer each contain 32 capsules, while 

the classification capsule layer includes capsules corresponding to the number of styling semantic 
description categories. Between capsule layers, the inverted dot-product attention routing method 
is used for two updates: the first using sequential routing and the second using concurrent routing. 
This ensures effective information extraction and processing at each network stage. 

The entire experiment was conducted using Python 3.7 for programming, with the PyTorch deep 
learning framework. The training was performed using a 4-core CPU and an NVIDIA A4000 graphics 
card. The learning rate initialized with AdamW was set to 0.0005, with a total of 100 epochs of 

training and a batch size of 8. 

3.3 Evaluation Metrics 

To directly observe the performance of the decision model, we used precision, recall, accuracy, and 
F1 score for evaluation in the experiment. Precision represents the degree of accuracy in predicting 

positive sample results; recall is the probability of correctly predicting a positive sample from all 
positive samples. Accuracy indicates the model's predictive precision, but in cases of unbalanced 
sample sizes, it may not accurately reflect the model's performance. The F1 score is a crucial 
indicator, with higher scores indicating better overall performance of the model. The definitions of 
precision, recall, accuracy, and the F1 score are shown in Equation (5). To comprehensively evaluate 
model performance, the macro average method is used to calculate the average value of various 
metrics. 

 

{
 
 

 
 precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃

recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

accuracy =
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁

F1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁

 (5) 

The explanations of TP, FP, FN, and TN in Equation (5) are shown in Table 3. 
 

Confusion Matrix 
Actual Values 

Positive Negative 

Predicted Values 
Positive TP(True Positive) FP(False Positive) 

Negative FN(False Negative) TN(True Negative) 

 

Table 3: The explanations of TP, FP,FN and TN. 
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4 RESULTS AND DISCUSSION 

To verify the decision-making performance of the PDSDNet product design sketch decision model, 
this experiment selected three networks for comparative analysis: the traditional capsule network, 
ResNet50, and AlexNet. Their decision-making performance was compared in terms of design area 

styling semantics, feasibility, and overall styling semantics evaluation. 

4.1 Decision-Making in Design Area Styling Semantics 

First, various models were employed to make decisions regarding the styling semantics of three 
design areas within the desk lamp design sketches. The outcomes of these decisions are presented 

in Table 4. 

 

Design Area 
Decision 

Network Model 
Precision Recall Accuracy F1 

Region 1 
(Lampshade) 

AlexNet 0.6799 0.7083 0.6800 0.6938 

ResNet50 0.7778 0.7913 0.7800 0.7845 

CapsuleNet 0.7237 0.7476 0.7300 0.7326 

PDSDNet 0.7660 0.7820 0.7600 0.7739 

Region 2 
(Lamp Pole) 

AlexNet 0.6087 0.5491 0.5900 0.5774 

ResNet50 0.7071 0.7157 0.7200 0.7114 

CapsuleNet 0.7753 0.6404 0.6900 0.7014 

PDSDNet 0.7563 0.7178 0.7300 0.7365 

Region 3 
(Lamp Base) 

AlexNet 0.6486 0.6713 0.6300 0.6598 

ResNet50 0.6928 0.7130 0.6900 0.7028 

CapsuleNet 0.7237 0.7476 0.7300 0.7326 

PDSDNet 0.7387 0.7488 0.7400 0.7437 

 

Table 4: Network decision results on different desk lamp styling design areas. 

 

The experimental results in Figure 6 show that PDSDNet and ResNet50 achieved the highest decision 
accuracy among the four network models tested, with F1 scores surpassing the other two networks 
in most of the design areas. A comparison of decision results across different design areas reveals 
that all models performed better in design area 1 compared to the other two areas. This could be 

because designers often pay more attention to the design of the lampshade area during the design 
and sketching process, resulting in more design elements in this part of the image and making it 
easier for the model to train and make decisions. Additionally, the shaping of the lamp pole is often 

more ambiguous in the design process, and it occupies a smaller proportion of the overall design 
sketch, making it less distinctive compared to the other two design areas. Therefore, this aspect 
likely influences the decision-making model's accuracy in styling decisions for the lamp pole area. 

4.2 Decision-Making on the Feasibility and Styling Semantics of Overall Design 

In the experiment, the overall design sketches served as the subjects for decision-making. The 
model was initially trained and subsequently used to make decisions regarding the feasibility of the 
overall styling design. The results of these decisions are presented in Table 5. Different models have 
achieved satisfactory results in making decisions about the feasibility of the overall design, with 
PDSDNet slightly outperforming the other models in terms of decision accuracy. This is because the 

complexity of product design often has a significant relationship with its feasibility. 
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Figure 6: F1 score of the model for decision-making in different design areas. 

 

Decision Network 
Model 

Precision Recall Accuracy F1 

AlexNet 0.8200 0.8125 0.8200 0.8129 

ResNet50 0.9073 0.8846 0.8900 0.8991 

CapsuleNet 0.9101 0.8960 0.9000 0.9037 

PDSDNet 0.9672 0.9531 0.9600 0.9654 

 

Table 5: Decision results on the feasibility of the overall design. 

 

Design sketches of complex product drafts tend to receive lower scores in feasibility assessments. 
Therefore, the product design sketch decision model can implicitly learn the complexity of the 
sketches through the network, effectively realizing the feasibility of decision-making for product 
design sketches. 

In the decision-making regarding the overall semantic styling, different models exhibited 
significant differences in performance, as shown in Table 6. Figure 7 displays the confusion matrices 

of the decision results of different networks on the test set. 

 

Decision Network 
Model 

Precision Recall Accuracy F1 

AlexNet 0.6857 0.6800 0.6800 0.6737 

ResNet50 0.7608 0.7546 0.7600 0.7558 

CapsuleNet 0.7987 0.7937 0.8000 0.7909 

PDSDNet 0.8201 0.8166 0.8200 0.8146 

  
Table 6: Network decision results on the overall styling of desk lamp design.  
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AlexNet ResNet50

CapsuleNet PDSDNet  
 
Figure 7: Comparison of confusion matrices for decision results: (a) AlexNet, (b) ResNet50, (c) 

CapsuleNet, and (d) PDSDNet. 

 

Figure 8 visually displays the decision-making results of models built using different networks on the 
test set. The decision models utilizing capsule networks exhibit notably higher accuracy in the 
decision-making process for the overall semantic styling of sketches compared to those using 
convolutional neural networks. This enhanced performance is due to the capsule network's more 
effective capture of the relationships between individual design styling areas within the sketches and 

the overall design proposal. By conducting a detailed analysis of poses in sketches, the capsule 
network can more comprehensively understand and express the interactions between different 
elements, thereby improving the accuracy of the decision model in terms of overall semantic styling. 
This improvement is derived from the capsule network's sensitivity to spatial relationships, enabling 
it to understand better and infer the relationships between design elements and their impact on 
overall styling semantics. Consequently, capsule networks demonstrate superior decision-making 

capabilities in tasks involving overall semantic styling. 

In the experiment, our proposed PDSDNet, compared to the traditional CapsuleNet, achieved 
further improvements in accuracy for overall styling semantics decisions. This improvement is 
attributed to the stronger feature extraction capabilities of the ConvNeXt backbone network used in 
the PDSDNet model, which helps to capture abstract features and subtle semantic information in 
sketches more accurately. The use of the AdamW optimizer leads to more effective weight updates, 
assisting the model in converging faster and maintaining better generalization performance during 

training. These factors contributed to the significant improvement of PDSDNet in decision-making 
tasks for overall styling semantics. The capsule network employing Inverted dot-product attention 
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routing not only speeds up computations but also addresses the issue of gradient vanishing 
commonly encountered in the training process of classic capsule networks. 

 

 
 

Figure 8: Results of network decision on the overall styling of desk lamp design. 

 

Figure 9 shows the loss curves of CapsuleNet and PDSDNet during the training process. It can be 
observed that PDSDNet is more stable than CapsuleNet during training, and PDSDNet tends to 
stabilize at the 70th epoch, while CapsuleNet requires until the 85th epoch to reach stability. 

 

 
 

Figure 9: Training loss curves of PDSDNet and CapsuleNet. 

5 CONCLUSIONS 

To further enhance the efficiency of decision-making in product design sketches, this paper 

introduces the PDSDNet product design sketch decision model. This model utilizes an improved 
inverted dot-product attention routing capsule network to overcome the gradient vanishing issue 
common in classical capsule networks. ConvNeXt, as the backbone network, extracts image features 
from sketches, thereby increasing attention to the details in the sketch images. In PDSDNet, the 
AdamW optimizer is used instead of the traditional SGD, enhancing the training speed and stability 
of the capsule network and strengthening the model's learning and inference abilities regarding the 
overall styling semantics. The experimental results demonstrate that in the decision-making of 

overall styling semantics, PDSDNet achieves an F1 score of 0.8146, outperforming other models, 
thus providing valuable assistance to designers in the sketching phase of product design. In addition, 

in order to verify the generalization ability of the PDSDNet model, we apply it to the decision-making 
process of automobile sketch. Experimental results show that PDSDNet also performs well in the 
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overall style semantic decision-making of automobile sketches, reaching 0.8 F1 score. This result 
shows that although the model was initially built for the lamp design sketch, it has a high applicability 
in dealing with specific fields such as car design sketches. We believe that this is due to the model's 
deep understanding of the details of the sketch and its powerful feature extraction capabilities, which 

enable the model to capture the key design elements and style features in the car sketch. 
This paper selects semantic annotation of product design from a pre-defined semantic database 

without considering the relationship between a single word and a specific morphological feature 
region, the semantic description of key feature regions in images inevitably has some inaccuracies, 
which will be the focus of future research. Additionally, our model can only be applied to 2D grayscale 
sketches, not to color pictures or 3D data. we are considering integrating this model with technologies 
such as Magic3D to enable intelligent decision-making throughout the entire design process from 

sketch to final product, further facilitating designers to enhance work efficiency using AI technology 

throughout the entire design cycle. 
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