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Abstract. Magnetic Resonance Spectroscopy (MRS) is a noninvasive imaging tool providing
metabolic imaging to characterize biological tissues. Studies have shown the important role
of modeling and visualizing these concentrations according to brain anatomy and in high
resolution to improve the study and diagnosis of several diseases such as Alzheimer and tumor.
MRS provides information on the relative concentrations of metabolites within a well-localized
volume in the brain. This metabolic information is stored inside a single or multiple MRS
voxel. Each one of them encompasses several Magnetic Resonance Imaging (MRI) slices and
different tissues. However, a voxel only contains a single relative concentration value, which
does not take into account distribution and tissue influence. This clinical representation
is therefore limited to visualize the impact of the pathology in a fine way. Commonly used
software for visualization of these data does not rely on the biological properties of brain tissue
to display the metabolite ratio mappings. Thus, its visualization is limited to the resolution
of the spectroscopy grid. In this work, we propose a new modeling method that produces
a precise model to represent and compute spectroscopic data, based on a reconstruction
method offering a 3D topological mesh. The 3D object is then iteratively cut by several
planes to extract the part of the mesh included in each MRS voxels. We use this continuous
model and the information of the spectroscopy voxel to calculate and visualize the metabolic
concentrations in a finer resolution (attached to each anatomical volume).
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1 INTRODUCTION

Magnetic resonance spectroscopy (MRS) is a noninvasive technique to explore in vivo biological tissues during
brain magnetic resonance imaging (MRI) examination. MRS can give information about the chemical com-
position of brain tissues, and thus combined with anatomical images, it can be helpful for diagnosis and the
following of pathologies (tumors, Alzheimer’s diseases, stroke...) [16]. Acquisition can be performed using
two different types of sequence: Single voxel spectroscopy (SVS) or multi-voxel chemical shift imaging (CSI).
The metabolic information, which is a relative concentration of different molecules, is stored inside a single or
multiple MRS voxels, that are precisely localized in the brain [12]. Each voxel encompasses several MRI slices
and can be composed of multiple tissues: White matter (WM), gray matter (GM) or cerebrospinal fluid (CSF)
at least, and, possibly, different type of lesions due to diseases. Metabolites are known not to be uniformly
distributed between anatomical structures. Yet, a single concentration value for each metabolite is given for
the whole volume whatever the tissues present in it. This clinical representation is therefore limited to visualize
the impact of the anatomical structures in a fine way.

Methodologies have been proposed to improve the accuracy of the acquired values without having to
lengthen or complicate clinical protocols. Those are based on the use of partial volume effect (PVE), which
gives, for each voxel in a MRI scan, the probability that it belongs to one of the tissue type [3]. Basic
interpolation algorithms can be applied on the data in order to improve the spatial resolution of the result.
However, the volume composition of a spectroscopy voxel is not taken into consideration. The visualization
and representation of concentrations of metabolite dispatch between all different tissues of the brain remains
a challenge.

A voxel-based model can be created directly through the segmentation of MRI images, assigning each
voxel to a specific physiological element corresponding to an anatomical tissue segment. However, using this
discrete representation for modeling brain tissues close to reality exhibits several drawbacks: (1) address-
ing holes and cavities becomes challenging, (2) the boundaries lack smoothness, and (3) the calculation of
geometric properties is constrained by the voxel size. In order to conduct a comprehensive analysis of the
anatomical composition of the brain, it is necessary to work with a continuous and coherent 3D mesh. This
mesh should consist of compact volumes without overlaps or empty spaces (volumes not associated to any
type). A lot of frameworks provide reconstructed (surface) meshes from medical data for precise visualization
and analyses [5, 7, 13, 17], mainly based on deep learning algorithms. However, their focus is exclusively on
cortical reconstruction, specifically the white matter and pial surface, assuming homomorphism to a sphere.
This assumption is flawed in the presence of a tumor or post-operative conditions. Consequently, they lack
adequacy in accurately visualizing noisy data comprising multiple tissues representing anatomical elements.
Understanding topological relations, such as adjacency and inclusion, is primordial at this stage. This descrip-
tion aligns with the partitioning of 3D space into volumes, incorporating known neighborhood information
(topology).

In this paper, we propose a new modeling method that produces a precise model to represent and compute
spectroscopic data, based on a reconstruction method offering a 3D topological mesh. The proposed method
relies, at first, on a robust, topologically-consistent, volumetric mesh of a brain reconstructed from MRI images,
producing a partition of 3D space. The 3D object is then iteratively cut by several planes to extract the part
of the mesh included in each MRS voxel. One important point is that, unlike methods that can be found
in the literature, this new plane cutting operation explicitly handles the inclusion of volumes during the cut
phase. The new topological model is enhanced by spectroscopic data, and then used to better calculate and
visualize the metabolic concentrations by exploiting information of each anatomical volume.

All statistics presented in the following have been produced on an Intel core(TM) I9-9900 3.10 GHz
processor, with 8 cores and 96 GB of memory. Our method was implemented by integrating the kernel of a
topological modeler Moka [21] within the open-source software 3D Slicer [9], which provides many tools to
analyze and handle medical data.
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2 STANDARD MODELING APPROACH

In this section, we introduce the current approach for visualizing the concentration of a metabolite in individual
voxels within a well-defined grid in the brain. This grid is specifically localized to the region where the
spectroscopic data acquisition took place. Practitioners use both segmented MRI images and MRS grid to
visualize a specific metabolite concentration (Figure 1c).

In medical imaging, segmentation is a technique used to isolate and highlight a tissue, lesion, or organ
from images, by separating them into different segments. Medical segmentation is represented in the form of
a grid of voxels, similar to 3D imaging, where each voxel is assigned a numerical value corresponding to the
label of a tissue, enabling them to be distinguished (Figure 1c). This voxel grid is overlayable with that of the
MRI images, and thus depends on the dimension and orientation of the latter. In this study, the segmentation
grid is created using the FSL-FAST method [23], a widely employed tool for segmenting T1-weighted brain
MRI images into distinct tissue categories, including white matter (WM), gray matter (GM) or cerebrospinal
fluid (CSF). This method also enables the generation of probability maps for each tissue (PVE). A threshold
is then applied to each tissue probability map, leading to the creation of binary masks for each type of tissue.
All are combined inside the same grid to produce the segmentation grid, wherein the value of each voxel
provides information regarding its belongingness to a tissue (1 for CSF, 2 for WM, 3 for GM with FSL-FAST),
or background (value 0). The resolution of the voxel in 3T scans (use for MRS analysis for the brain) depends
on the acquisition parameters, but is typically 0.89*0.89*0.9mm3 or 1*1*1 mm3.

MRS acquisition grid is composed of large voxels, in a well-localized volume in the brain. The relative
molecular concentration of various metabolites is estimated for each voxel after the acquisition process (Fig-
ure 1a). This lower spatial resolution grid, in comparison to MRI images, comprises a substantial volume of
voxels, where each one usually measures 6.875*6.875*20 mm3. Within each voxel, the concentration value
is uniformly distributed across its entire 3D space. The practical limitations of available scan time impose
significant constraints on the resolution of this type of data. To mitigate the acquisition time and minimize the
emergence of artifacts in the estimated data, the voxel volume is increased. Acquiring molecular concentrations
with larger voxel sizes enables a reasonable acquisition time for the patient but compromises the analysis of
tissue microstructural features [2].

Figure 1: Basic Visualization Method: (a) MRS grid [red colored] on a T1 MRI slice; (b) 3D view of the
acquisition grid into the brain and the concentration distribution inside it, from the higher concentration [red
colored] to the lower concentration [dark blue colored]; (c) linear interpolation on the estimated concentration
values on a MRI slice segmented into three brain tissues: cerebrospinal fluid [blue colored], white matter [white
colored] and gray matter [green colored].
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The spectroscopic resolution is significantly less refined compared to the resolution used in MRI. Thus,
traditional interpolation methods found in typical processing tools rely on interpolation algorithms directly on
the images without considering the composition of the brain (Figure 1b) to improve the resolution and detail of
the originally acquired data. These approaches are referred to as super-resolution technique, but they do not fix
the issue related to PVE and can introduce error when quantifying molecular concentration [14]. Additionally,
since the thickness of the acquisition grid consists of a single voxel, interpolation is conducted solely in 2D.
These algorithms overlook the heterogeneity within a volume composed of various tissues, potentially resulting
in inaccuracies when quantifying metabolite concentrations in smaller voxels. It is possible to work only with
a discrete model, but this implies oversampling the coarser grid in order to work with a resolution compatible
with both grids [1]. Nevertheless, additional considerations include the fact that MRI and MRS grids cannot
be naturally superimposed, either because the MRS grid is not aligned with the MRI images, or because
of the size of the voxels, one not being a multiple of the other. In this scenario, an approach using a 3D
mesh corresponding as closely as possible to the anatomical data would be more suitable than voxel-based
approaches.

3 OUR NEW MODELING METHOD

In order to employ a continuous model for analyzing spectroscopic data, we divide our new modeling approach
into two steps: firstly, reconstructing topologically all anatomical tissues from segmented MRI images, and
secondly, performing a plane-cutting operation to extract the spectroscopic grid from the mesh. The goal is
to generate a more precise and suitable representation of a well localized volume within the brain for medical
applications.

3.1 Topological Representation

The first step of the proposed method consists in producing a 3D model that corresponds to the anatomical
images. For that purpose, it’s crucial to employ a topologically-based model that satisfies specific criteria.
Topological data structures, specifically cellular models, delineate the neighbor relationships among cells (ver-
tices, edges, faces, volumes), facilitating efficient processing of the model. Typically, these structures segregate
the topological and geometric aspects. Furthermore, a topological model can accommodate various dedicated
data such as semantic information, property values or even geometry (coordinates of vertices are usually in
R3). Our primary goal is to portray anatomical tissues as volumes, ensuring they possess characteristics like
being watertight, closed, and having clear adjacency relationships. Moreover, two tissues cannot occupy the
same location and the whole space is filled, leading to a space partition. The topological model outlined in
this article utilizes Generalized Maps (G-maps) [15], which explicitly represent neighbor relations for all cell
dimensions. A 3-G-map defines the structure, or topology, of an object by specifying its boundaries in each
dimension: a volume is delineates by its faces, a face by its edges, and an edge by its vertices. The basic
element of a G-Map is the dart. From now, topological relations in dimension i are denoted αi. Figure 2
shows how this topology is organized (for clarity, vertices linked in dimension 0 to make up edges are not
represented). Also, two darts linked by α1 represents a vertex (red circles in Figure 2).

For that purpose, a topological 3D reconstruction from the segmented MRI images of the brain tissues is
performed based on [10]. The topological reconstruction process consists of two main steps. Initially, using
a Marching Cubes (MC) based method [18], we extract the surface corresponding to each segment from the
segmented MRI images. As detailed in section 2, the segmentation voxel grid assigns a value to each voxel: 0 for
background voxels and a specific number for segmented regions. A black-and-white grid is generated for each
segment to indicate voxel membership. Consequently, the resulting surface for each segment represents the
isosurface associated with isovalue 0.5, represented by the set of points X ∈ R3 : F (X) = 0.5. In the second
step, we construct the corresponding G-map to generate topologically closed, watertight volumes. Within
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Figure 2: G-Map representation involves connecting topology links αi in each dimension between cells of the
same dimension: (a) edges (dimension 1) connect to form faces, (b) faces (dimension 2) connect to construct
volumes, and finally (c) volumes (dimension 3) are linked to create more intricate objects.

these volumes, adjacent faces are explicitly linked at their common edges by topological links of dimension 2
(α2), illustrated in Figure 2b. Note that inclusion links (volumes completely included in another volume), are
not reconstructed. The formalization of the G-Map allows the cells to be associated with semantic information,
such as the anatomical tissue from which they come. The geometric, topological and semantic information of
the model is used for a multi-criteria classification of the volumes to remove the volumes deemed artifacts in
order to respect the anatomical constraints (typically, volumes generated by acquisition noise). Then, all the
reconstructed segments are integrated in the same space, by linking the common faces of adjacent volumes
of different segments using α3 links (Figure 2c). Thanks to topological properties, we correct locally all
remaining inconsistencies and empty spaces, using PVE maps and anatomical constraints define by our clinical
partner (those are optional). Finally, coordinates of each vertex of the 3D mesh are slightly modified using
PVE maps in order to deform the model to best match the acquired MRI data. By deforming according to
voxel information, we ensure a better adaptation of the constructed shape to the acquired discrete data. Our
method automatically produces a partition of the 3D space corresponding to a volumetric mesh from several
segmented tissues; in other words, the mesh is free from empty spaces and volume overlaps. This partition
exhibits explicit adjacency relationships defined by a G-Map model.

3.2 Cutting by Plane Operation

We aim to cut a 3D mesh according to a spectroscopic grid to obtain a 3D topological spectroscopic model.
The resulting model must constitute a partition of space, ensuring that no holes or overlaps are present. To
achieve this, we require an operation to separate the elements of a mesh along any given plane while preserving
topological coherence and semantic information. Since a grid is a particular mesh, built with infinite planes
oriented along three perpendicular directions, it is possible to design a dedicated corefinement process relying
on a single operation: the cutting of a mesh by a plane.

Given a soup of faces (volume boundaries), the corefinement operation consists in reconstructing a set of
volumes representing the fusion of input meshes, with the necessary adjacency relations, eliminating overlaps
and empty spaces by cutting intersecting faces and edges [4]. Aside from self-intersections, the corefinement
operation is designed to correct intersections among reconstructed 3D cells (volumes) by operating in lower
dimensions (faces and edges). Practical challenges persist, particularly in cutting faces and edges. Exact
arithmetic [11] or predicates [24] ensure accuracy but are impractical for large meshes due to resolution time.
Various approaches aim to reduce temporal complexity by limiting geometric inaccuracies [6, 8, 20], yet they
cannot handle models with nested surface meshes because they do not account for inclusion.

Our method is based on a topological and geometrical process, that deals with volume inclusion and
preserves topological and semantic information. Once a cutting plane is defined, we compute its intersection
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with the edges of each face and generate separation lines representing face/plane intersections.
In the special case where the cutting plane passes through the vertex of a face in the mesh, we consider

that the latter is cut out a little before its vertex (using a very small epsilon). This implies that for each face
to be cut, whatever the configuration, an even number of intersection points is expected. At each intersection
point calculated, a new vertex is inserted into the G-Map. Once the vertices have been inserted, the edges
are inserted into the face to split it into two. Indeed, the intersection calculation and, as a consequence
the coordinates of the new points to be inserted, are sensitive to numerical precision. Besides, two faces
that share a common edge may not position the point of intersection at exactly the same position in space
because of a very small offset. To avoid this problem, we rely on the model’s adjacency relations, so that
an intersection point on an edge of a face is computed only once and used again when an adjacent face is
processed (Figure 3). Inserting a vertex automatically affects the incident faces without additional computation
time. Once the vertices are inserted, the edges are placed within the face to divide it into two (Figure 4).

Same geometrical 
point (vertex)

Figure 3: Example of intersection between a separation line and adjacent faces, in compact view (on the
left) and its corresponding exploded view (on the right). The newly inserted darts are computed and inserted
once, and are depicted in green to differentiate them from those already present before the intersection.

(a)                                        (b)                                      (c)
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Figure 4: Cutting of only two faces of a cube by a cutting plane (depicted in green) where one face is
intersected, and the new darts (highlighted in green, alongside topological edges) are inserted at the intersection
point (b), to be utilized again during the cutting of an adjacent face (c).

At this stage, the 3D mesh has not yet been separated according to the cutting plane. To do so, we exploit
the intersection points generated by the previous step. The algorithm 1 summarizes the 3 main steps required
for generating the cut model.

1. The mesh is first separated based on its new vertices;
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2. A closing operation is used to construct the new topological faces, thereby generating the new volumes;

3. An additional closure is applied to these faces in order to maintain the topological properties of the
model.

The model is thus properly separated into two at the intersection points inserted according to the cutting
plane.

Algorithm 1: Algorithm for generating the cut model from the vertices generated by the intersection
point insertion step on the faces

Input: D : The darts created by the intersection/insertion step
1 // ........... Initialization of a list to store pairs of darts.
2 new pairList < dart, dart > () ;
3 // ........... Step 1: unsew the darts to separate the mesh and storing the pairs of unsewn darts.
4 for ( d ∈ D ) do
5 pairList.add(d, α2(d)) ;
6 2− unsew(d) ;

7 end for
8 // ...........Step 2: Creating new faces by closing the α2 free darts in α2.
9 2− closing(D) ;

10 // ...........Step 3: Sewing in α3 of each α2 from the pairs of darts stored in the pair list.
11 for ( pair ∈ pairList ) do
12 2− sew(α2(pair[0]), α2(pair[1])) ;

13 end for

To separate the initial model based on its inserted intersection points, a cut is made according to these
points. More precisely, all the new darts are unsewn in α2 by the topological operation of unravelling in
dimension 2. Figure 5 illustrates the cutting generated by this operation. To avoid creating open volumes, two
topological closure operation are called to, first, create a face representing the footprint of the cutting plane for
each cut volume, and then ensure the property of partition of space. Finally, in case of nested volumes, after
the operation is done, co-planar faces may appear. To deal with inclusion information, the newly-created face
of the nested volume is included in the one of the container volume. We therefore detect this face inclusion
to introduce an inclusion information (as a α2 link) between the volumes (Figure 6). Semantic information is
kept during each part of the process: newly added elements store the semantic of their corresponding volume.

We tested the plane cutting operation on multiple objects, synthetic (models Sphere and Rabbit) and from
data provided by the 3DSlicer software (the model BrainS). The models Sphere and Rabbit are initially
composed of a single volume, with respectively 364 quadrilateral faces and 30,338 triangular faces. Table 1
presents the execution times for the cutting by plane operation applied on these models. The model BrainS,
on the other hand, consists of 7 volumes and 541,104 faces. For the following tests, the cutting planes were
positioned arbitrarily. The mesh complexity, in terms of faces and volumes, plays a significant role on the
execution time of each step: the more complex the mesh, the slower the execution time. To reduce the time
complexity of the plane cutting operation, we have added an initialization step that examines the model and
allows determining the faces that will definitely be cut and working only on those. The variation in time to
handle inclusion between cuts 2 and 3 for BrainS is due to the addition of inclusion information (Figure 6).
In fact, the number of faces to test and their complexity can vary the required processing time for handling
inclusion. The plane cutting operation preserved the inclusion of volumes at the cutting level for the BrainS
model (Figure 6). It can be noted that the number of cutting plane is arbitrary, and will depend of the
application (see Section 4).
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Insertion of all 
new darts according
to the cutting plane

Separation into two
open volumes according
to the newly added darts

Topological closure
to generate new faces

and close separated volumes

Topological closure
to ensure the closure property

of the model, thus closed volumes

3

Figure 5: Schematic representation in an exploded view of the separation into 2 closed volumes of a cube
by a cutting plane (from Figure 4).

# Volumes = 1 # Volumes = 13# Cutting Planes = 4

# Volumes = 1 # Volumes = 13# Cutting Planes = 4

       # Volumes = 1                        # Cutting Planes = 4                       # Volumes =  13

         # Volumes = 7                         # Cutting Planes = 2                  # Volumes = 28

Figure 6: Example of the cutting by plane operation for two different meshes, the results of which, at the
right, are in topological view to observe the different volumes generated. From top to bottom: Stanford bunny
and a cerebral cortex, which is made up of several nested volumes (inclusion information is encircled in red).
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Model Index of Initialization Insertion Separation of Time to

the cut time step the model handle inclusion

Sphere 1 8ms 1ms >1ms 7ms

2 7ms 1ms >1ms 8ms

Rabbit 1 2s 36ms 79ms 1s

2 2s 33ms 77ms 1s

3 1s 38ms 81ms 1s

4 1s 42ms 86ms 1s

BrainS 1 10s 1s 501ms 17s

2 12s 2s 224ms 24s

3 14s 3s 486ms 11s

Table 1: Detailed execution times of the different stages of the cut by plane operation on different models.

Note that, after applying this operation, any part of the mesh that is surely outside the MRS voxel grid
can, interestingly, be deleted, even if other plane cuts must still be applied.

4 APPLICATION ON SPECTROSCOPIC DATA

We want to produce a model enriched with topological data that represents the various brain tissues present
inside the spectroscopy voxel grid. To achieve this, we apply our new modeling method presented in the
previous section 3). The planes used for generating the final model are defined using information about the
shape of the grid to be represented (as if we superimposing our model with the voxel grid), thus their number
is pre-determined by the acquired grid.

4.1 Generation of the Model

MRI and MRS sequences are performed under the same conditions for a patient. Thus, the anatomical images
and spectroscopy voxels are in the same space. Data regarding the placement of images and spectroscopy
voxels are stored in the DICOM files output from the acquisition. However, with only MRS data, the voxels
cannot be positioned within the anatomical images. Indeed, the coordinates accessible in the DICOM file for
MRS acquisition are given in patient space, while MRI images are in image space. Therefore, we need to
register the MRS voxels into MRI images.

In practice, MRI information is recorded in the DICOM files output from the machine, and another DICOM
file labeled CSI contains the data from the MRS acquisition (in the case of multi-voxel acquisition, otherwise,
it would be SVS for a single voxel). In this CSI file, the data is classified according to labels, and we have
access to:

• The coordinates of the center of the spectroscopy voxel grid;

• The dimensions and orientation (length, width, and height) of the grid;

• The spacing between two voxel centers along the axes of the three planes (coronal, axial, and sagittal).

We know that a CSI grid consists only of voxels arranged in rows and columns. Their number is derived
from the spacing and dimensions of the grid. Since the coordinates of the center of the CSI grid are provided
in patient space, we perform a transformation using the MRI image positioning matrix. This allows positioning
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this center in the space of the anatomical images, and it is sufficient to exploit this information to find the
coordinates of the first voxel of the spectroscopy grid. Thus, we can create the rest of the voxels using the
number of rows and columns.

Figure 7: Generation of the 3D model sthe spectroscopy voxel grid. (a) 3D view of the first cut on the
brain, with volumes separated at the level of the green plane, and after the 6 cuts, extraction of the volumes
contained within the MRS grid; (b) successive cuts following the green plane and the direction of the green
arrow to represent the lines of the SRM voxel grid, then the same with the yellow one.

The plane cutting operation is used multiple times successively, first to restrict the entire brain model to the
area corresponding to the spectroscopy voxel grid and then to produce the final model. Specifically, the plane
cutting operation is applied along the x, y, and z axes, twice per axis, using the normals of the faces of the
initial grid to define the planes. After each separation of the initial model, the unnecessary part is permanently
removed (Figure 7a). This portion removed from the result corresponds to volumes that lie outside the area
acquired during the SRM acquisition. From a purely technical standpoint, this also helps reduce the mesh
size, thus reducing the temporal complexity of subsequent processing steps, as well as the memory complexity
of the model. At this stage, the cuts based on the SRM voxel grid are missing. Therefore, the plane cutting
operation is applied successively to obtain the number of columns and rows corresponding to the spectroscopy
voxel grid (Figure 7b). From the data acquired by SRM, we can deduce the normal and coordinates of each
cutting plane, as well as their number. Figure illustrates the result obtained from the initial data.

At the end of this step, we have a 3D topological model accurately representing the volumes contained
within the study area of the SRM acquisition. The model is now ready to be enriched with spectroscopy
information. Obviously, tissue semantic information is preserved throughout these steps, and inclusion between
volumes of different tissues are taken care explicitly to keep the topological properties of the model.
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MRS and MRI acquisition

3D Topological
reconstruction

Spectroscopic grid
3D Anatomical topological grid

Each spectroscopic voxel
is split according to
anatomical tissues 

Figure 8: 3D Anatomical topological construction matching the spectroscopy grid. Using the information of
the spectroscopy grid and its voxels, the 3D brain model is split in accordance with the number of rows and
columns of the initial grid. The resulting model is composed of identified volumes, from a specific spectroscopy
voxel and brain tissue.

4.2 Results and Discussion

Applied to the context of MRS, we have a 3D topological model that accurately represents the volumes
contained in the study area of the MRS acquisition (Figure 8). This section presents results of our new
modeling method on real MRI and MRS scans on a healthy patient (Healthy). Images are acquired on a
Magnetom Skyra 3 Tesla (Siemens Healthineers, Erlangen, Germany). The sequence used is a 3D T1 MPRAGE
0.9 mm isotropic (TE: 2.41 ms, TR: 1950 ms, TI: 816 ms, FOV: 256 by 213 mm2, matrix: 240x288, slices:
192, turbo factor: 224). Original DICOM data are converted to NIFTI to be used in our homemade automated
pipeline. As a post-processing step, FSL-BET [19] is applied to remove subcutaneous fat in order to create a
mask of brain only. Then, FSL-FAST is launched to obtain the 3 segmentation classes: (i) Cortex also known
as Gray Matter, (ii) White Matter, (iii) Cerebral Spinal Fluid.

Table 2 presents the evolution of the number of faces and volumes during the successive plane cutting
operation, along with the associated execution time. As a reminder, the modelisation of the 3D topologic
spectroscopy grid starts with six cuts (two per axis), and at the end of each of them, the cut volumes deemed
unnecessary for the subsequent process are removed. Thus, we observe that the first cut is the one that
requires the most time but also eliminates the most volumes. This is partly explained by the fact that the
operation processes a larger number of volumes during its execution (a number that then reduces significantly,
along with the execution time). In fact, the order of the cuts was not chosen randomly. The first cut aims
to eliminate the largest number of volumes and thus reduce the size of the model, and is chosen upstream by
studying the number of elements that will possibly be eliminated by the plane cutting operation for a specific
plane. Table 3 presents in detail the distribution of the computation time required for the operation for the
six cuts. As observed in the previous section 3, initialization time and inclusion handling time are the longer
ones, because the number of elements to process affects the duration of these steps of the operation.

We can now enhance the model by spectroscopic information. Since the plane cuts were used to separate
the volumes to represent the grid voxels acquired by MRS, each reconstructed volume has the voxel identifier
and the initial relative concentration of the metabolite. Also, for each volume in the final model, we know
the nature of the associated anatomical tissue (semantics), the identifier of the spectropscopic voxel and the
adjacent volumes (topological neighbourhood). Thus it encompasses all necessary information to compute
and represent accurate metabolic concentration and dispatch it between every anatomical volume. To give a
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Model Index of the cut Elapsed time # initial volumes # initial faces # deleted volumes

Healthy 1 3min 47s 835 1 930 522 789

2 2min 02s 105 1 483 912 69

3 1min 14s 88 704 546 16

4 42s 87 661 663 33

5 38s 78 612 695 23

6 33s 77 567 077 18

Table 2: Characteristics of the first six cuts of a healthy brain model, in order to restrict the entire brain
model to the area corresponding to the spectroscopy voxel grid (Figure 7a).

Model Index of Initialization Insertion Separation of Time to

the cut time step the model handle inclusion

Healthy 1 1m 18s 9s 4s 2min 16s

2 40s 6s 2s 42s

3 20s 1s 1s 30s

4 18s 1s 1s 22s

5 16s 1s 1s 20s

6 14s 1s 1s 19s

Table 3: Detailed execution times of various treatments during the first six cuts of a healthy brain model.

more precise example, the concentration of a metabolite present in a single tissue can be reinterpreted by the
actual volume covered by the tissue and not the whole volume of the voxel, so the concentration obtained is
higher. The molecular concentration is thus recalculated for each volumes based on mass conservation, the
concentration of a given metabolite in each tissue related to its distribution rates, and the exact volume size,
more details regarding these calculations can be found in [1]. The topological definition of volumes allows
all computations to be performed locally, which greatly reduces the processing time. The study of metabolic
concentration inside the brain using our 3D model is shown in Figure 9.

We tested our model on real spectroscopic data to show the variation in the concentration of a metabolite in
each tissue on healthy patients. Within distinct volumes, a minor variation in metabolite concentration is noted
for identical tissue types. This variation arises from the impact of both the tissue’s inherent characteristics and
its specific position within the brain on the concentration values [22] and our results correspond to the literature
(see Table 4). In comparison, conventional methods yield a consistent concentration value throughout the
entire depth of a voxel acquisition for a given 2D position, which does not give information about the impact of
a tissue on the metabolism. With our model, we propose two kinds of visualization: within or by discretizing our
3D model. By giving continuous volumes, we offer more details about the changes in metabolic concentration,
mainly at the borders between the reconstructed tissues. Also, our model does not contain any ambiguous
volumes by exploiting PVE maps during the reconstruction process, compared to voxel-based representation.
By discretizing our model, we can produce 2D slices that display a metabolite concentration contain in each
corresponding 3D volume. The resolution of the visualization can be chosen arbitrarily by practitioners to
facilitate their studies regarding the influence of brain tissue on metabolism. In fact, the resolution can be
increased, thus giving higher definition at the boundaries between tissues.
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Metabolite concentration for each 
anatomical volumes from the

3D topological model

Spectroscopic grid 3D Spectroscopic topological grid

3D Anatomical 
topological grid

Metabolite
recalculation

Spectroscopic
voxel

Anatomic
voxel

Figure 9: Metabolites computation on the spectroscopy voxel grid: The concentration of a spectroscopy
voxel is distributed in an anatomical voxel according to its tissue.

Metabolite N-acetylaspartate (NAA) Choline (CHO) Creatine (Cr)

GM region WM region GM region WM region GM region WM region

Clinical studies [22] 15.7± 1.5 17.6 ± 1.6 1.8 ± 0.4 2.7 ± 0.5 11.3 ± 1.4 10.3 ± 1.2

Our model 15.7± 1.4 17.5 ± 1.7 1.6 ± 0.5 2.7 ± 0.6 11.1 ± 1.6 10.3 ± 1.3

Table 4: Quantitative comparison of metabolite concentration (in mmol kg−1) variations between those
calculated using our model and those estimated in [22] for several metabolites inside gray matter and white
matter.

5 CONCLUSIONS

In this work, we have proposed a new modeling method to produce a model that represent and visualize in a
finer way spectroscopic data. Our method apply a specific corefinement process between the acquired MRS
grid and the anatomical 3D mesh. The new proposed model ensures that the geometry of the tissue covered
by each voxel is well defined and topologically coherent. Using the well-identified volumes, distribution of a
metabolite concentration takes into account the real nature of the underlying tissues based on distribution
rates evaluated in clinical studies. Our 3D topological model is an adaptive tool to represent anatomical
structures and their impact on the metabolism as close as possible to the real data.
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