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Abstract. The shape uniqueness theorem for free-form curves shows the conditions on which
the shapes of two parametric curves de�ned by three control points are identical altough
their parametrization may be di�erent [6]. According to this theorem, even though their
blending functions look di�erent, the curves become identical by reparametrization under
some conditions on their blending functions.

A lot of researches have been done on the blending functions of free-form curves so far
and many types of free-from curves are available for curve designers. These designers must
be confused on which type of curve should be used for their design. We hope that the shape
uniqueness theorem for free-form curves will help the designers classify and categorize types
of curves and select the most suitable one for their design purposes because it identi�es the
curves which super�cially look di�erent but represent the same shape.

In this paper we will apply the shape uniquness therem to the H-Bézier curve, whose
blending functions are de�ned by recursively using integral forms. We think that it is worth
while to apply the shape uniquness theorem to a uniquely de�ned free-form curve.
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1 INTRODUCTION

The shape uniqueness theorem for free-form curves shows the conditions on which the shapes of two para-
metric curves de�ned by three control points are identical altough their parametrization may be di�erent.
According to this theorem, even though their blending functions look di�erent, the curves become identical
by reparametrization under some conditions on their blending functions.
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A lot of researches have been done on the blending functions of free-form curves so far and many types of
free-from curves are available for curve designers. These designers must be confused on which type of curve
should be used for their design. We hope that the shape uniqueness theorem for free-form curves will help
the designers classify and categorize types of curves and select the most suitable one for their design purposes
because it identi�es the curves which super�cially look di�erent but represent the same shape.

In this paper we will apply the shape uniquness therem to the H-Bézier curve [3], whose blending functions
are de�ned by recursively using integral forms. We think that it is worth while to apply the shape uniquness
theorem to a uniquely de�ned free-form curve.

2 H-BÉZIER CURVE [3, 2]

The H-Bézier curve of degree n with parameter α is

q(t) =
n∑

i=0

Zn
i (t)bi (1)

for t ∈ [0, 1], where Zn
i is the H-basis function of degree n de�ned by

Z1
0 (t) =

sinhα(1− t)

sinhα
(2)

Z1
1 (t) =

sinhαt

sinhα
(3)

and recursively

Wn
i (t) =

∫ t

0

Zn
i (s)ds (0 ≤ i ≤ n) (4)

Zn+1
0 (t) = 1− Wn

0 (t)

Wn
0 (1)

(5)

Zn+1
i (t) =

Wn
i−1(t)

Wn
i−1(1)

− Wn
i (t)

Wn
i (1)

(1 ≤ i ≤ n) (6)

Zn+1
n+1 (t) =

Wn
n (t)

Wn
n (1)

(7)

for n ≥ 1. The quadratic H-basis functions are

Z2
0 (t) =

1− coshα(1− t)

1− coshα
(8)

Z2
1 (t) =

coshα(1− t)− coshα− 1 + coshαt

1− coshα
(9)

Z2
2 (t) =

1− coshαt

1− coshα
(10)
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and the cubic H-basis functions are

Z3
0 (t) =

α(1− t)− sinhα(1− t)

α− sinhα
(11)

Z3
1 (t) =

αt+ sinhα(1− t)− sinhα

α− sinhα
− sinhα(1− t) + αt coshα+ αt− sinhαt− sinhα

α coshα+ α− 2 sinhα
(12)

Z3
1 (t) =

sinhα(1− t) + αt coshα+ αt− sinhαt− sinhα

α coshα+ α− 2 sinhα
− α(1− t)− sinhαt

α− sinhα
(13)

Z3
0 (t) =

α(1− t)− sinhαt

α− sinhα
(14)

Note that

Z2
1 (t)

2

Z2
0 (t)Z

2
2 (t)

= 2(1 + coshα). (15)

The quadratic rational Bézier basis functions R2
i (t), i = 0, 1, 2 are given by

R2
0(t) =

(1− t)2

(1− t)2 + 2(1− t)tw + t2
(16)

R2
1(t) =

2(1− t)tw

(1− t)2 + 2(1− t)tw + t2
(17)

R2
2(t) =

t2

(1− t)2 + 2(1− t)tw + t2
(18)

where w is the weight of the second control point. Then

R2
1(t)

2

R2
0(t)R

2
2(t)

= 4w2 (19)

From the shape uniqueness theorem for the free-form curve de�ned by three control points [6], the shapes of
quadratic H-Bézier and rational Bézier curves are identical for the same given control points if 2(1+coshα) =

4w2
h, i.e. the equivalent weight wh =

√
1+coshα

2 . Since coshα > 1 for α > 0,
√

1+coshα
2 > 1.

2.1 Shape Equivalence of the Cubic H-Bézier Curve

In this section, we will discuss on the shapes of cubic H-Bézier curve and the up-degreed curve of the quadratic
rational Bézier curve based on the recursive algorithm explained in the previous section. The up-degree
procedure is di�erent from the generation by multiplying (1 − t) + t to the lower basis functions. In the
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quadratic rational Bézier basis functions are up-degreed as

R3
0(t) =

√
−w − 1

√
w − 1(log(2t(t(−w) + t+ w − 1) + 1)− 2t+ 2)

2
√
−w − 1

√
w − 1 + 4w tan−1

( √
w−1√
−w−1

)
+

2w
(
tan−1

(
(1−2t)

√
w−1√

−w−1

)
+ tan−1

( √
w−1√
−w−1

))
2
√
−w − 1

√
w − 1 + 4w tan−1

( √
w−1√
−w−1

) (20)

R3
1(t) =

(w − 1)
(
(w + 1) log(2t(t(−w) + t+ w − 1) + 1) + 2

√
−w − 1

√
w − 1 tan−1

(
(2t−1)

√
w−1√

−w−1

))
2
(√

−w − 1
√
w − 1 + 2 tan−1

( √
w−1√
−w−1

))(√
−w − 1

√
w − 1 + 2w tan−1

( √
w−1√
−w−1

))
−

2
√
−w − 1

√
w − 1 tan−1

( √
w−1√
−w−1

)
((2t− 1)(w − 1) + log(2t(t(−w) + t+ w − 1) + 1))

2
(√

−w − 1
√
w − 1 + 2 tan−1

( √
w−1√
−w−1

))(√
−w − 1

√
w − 1 + 2w tan−1

( √
w−1√
−w−1

)) (21)

R3
2(t) =

(w − 1)
(
(w + 1) log(2t(t(−w) + t+ w − 1) + 1)− 2

√
−w − 1

√
w − 1 tan−1

(
(2t−1)

√
w−1√

−w−1

))
2
(√

−w − 1
√
w − 1 + 2 tan−1

( √
w−1√
−w−1

))(√
−w − 1

√
w − 1 + 2w tan−1

( √
w−1√
−w−1

))
+

2
√
−w − 1

√
w − 1 tan−1

( √
w−1√
−w−1

)
((2t− 1)(w − 1)− log(2t(t(−w) + t+ w − 1) + 1))

2
(√

−w − 1
√
w − 1 + 2 tan−1

( √
w−1√
−w−1

))(√
−w − 1

√
w − 1 + 2w tan−1

( √
w−1√
−w−1

))
R3

3(t) =

√
−w − 1

√
w − 1(log(2t(t(−w) + t+ w − 1) + 1) + 2t)

2
√
−w − 1

√
w − 1 + 4w tan−1

( √
w−1√
−w−1

)
+

2w
(
tan−1

(
(2t−1)

√
w−1√

−w−1

)
+ tan−1

( √
w−1√
−w−1

))
2
√
−w − 1

√
w − 1 + 4w tan−1

( √
w−1√
−w−1

) (22)

These basis functions are di�erent from those of the cubic Bézier curve and, for example R3
1(t)

2/(R3
0(t)R

3
2(t))

is dependent on parameter t. Hence they are quite di�erent from those of the cubic rational Bézier curve.
Please refer to [4] on the shape uniqueness theorem for the free-form crve de�ned by four or more control
points. Figure 1 shows these basis functions with w = 1/2.

2.2 Reparametrization of Integration

Identical shape of two parametric curves is de�ned as follows [1]:

De�nition 1. For two parametric curves r : I → R3 and r̃ : Ĩ → R3, there exists a C∞ function ϕ : I → Ĩ,
1) ϕ is a one to one and onto mapping from I to Ĩ. 2) ϕ is strictly increasing. 3) For all t ∈ I, r̃(ϕ(t)) = r(t).
We say that r and r̃ de�ne the same curve or their shapes are identical.

Then r̃((ϕ(t)) is called reparametrization of r(t). For example, there is a function ϕ(t) such that

R2
i (ϕ(t)) = Z2

i (t) i = 0, 1, 2 (23)

We assume that ∫ ϕ(t)

0

R2
0(ϕ(t))dϕ(t) = T 3

0 (ϕ(t)) (24)
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Figure 1: Basis functions of the up-degreed rational quadratic Bézier curve with w = 1/2.

Since ϕ(1) = 1,

R3
0(ϕ(t)) = 1− T 3

0 (ϕ(t))

T 3
0 (1)

(25)

R3
1(ϕ(t)) =

T 3
0 (ϕ(t))

T 3
0 (1)

− T 3
1 (ϕ(t))

T 3
1 (1)

(26)

R3
2(ϕ(t)) =

T 3
1 (ϕ(t))

T 3
1 (1)

− T 3
2 (ϕ(t))

T 3
2 (1)

(27)

R3
3(ϕ(t)) =

T 3
2 (ϕ(t))

T 3
2 (1)

(28)

Hence, R3
i is naturally reparametrized by ϕ(t).

Before discussing the relationships among Z3
i and R3

i , i = 0, · · · , 3, we show the properties of Z3
i . From

their de�nition,

3∑
i=0

Z3
i (t) = 1 (29)

3∑
i=0

dZ3
i (t)

dt
= 0 (30)

3∑
i=0

∫ t

0

Z3
i (t)dt = t (31)

Especially when t = 1, we obtain

3∑
i=0

∫ 1

0

Z3
i (t)dt = 1 (32)
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Figure 2: The identical two curves with α = 1/2 and w =

√
1+cosh 1

2

2 .

Z2
i (t) are given by

Z2
0 (t) = −dZ3

0 (t)

dt

∫ 1

0

Z2
0 (t)dt (33)

Z2
1 (t) =

dZ3
0 (t)

dt

∫ 1

0

Z2
0 (t)dt−

dZ3
1 (t)

dt

∫ 1

0

Z2
1 (t)dt (34)

Z2
2 (t) =

dZ3
1 (t)

dt

∫ 1

0

Z2
1 (t)dt−

dZ3
2 (t)

dt

∫ 1

2

Z2
2 (t)dt =

dZ3
3 (t)

dt

∫ 1

2

Z2
2 (t)dt (35)

Hence

Z2
1 (t)

2

Z2
0 (t)Z

2
2 (t)

= −
(
dZ3

0 (t)
dt

∫ 1

0
Z2
0 (t)dt−

dZ3
1 (t)
dt

∫ 1

0
Z2
1 (t)dt)

2

dZ3
0 (t)
dt

∫ 1

0
Z2
0 (t)dt

dZ3
3 (t)
dt

∫ 1

2
Z2
2 (t)dt

(36)

is not dependent on parameter t and a constant.
Since R3

i is naturally reparametrized by ϕ(t), given the same four control points, the shapes of the curves
whose basis functions are Z3

i (t) and R3
i (t), respectively are identical. Figure 2 shows the identical two curves

de�ned with the same control points (0, 0), (1, 1), (2, 0), and (3, 1).

3 Generalized Trigonometric Curve [5]

We will apply the recursive procedure explained in �rst section to obtain the quadratic generalized trigonometric
basis functions. We will start from

q(t) =

n∑
i=0

Sn
i (t)bi (37)

for t ∈ [0, 1], where Sn
i are the basis functions of degree n de�ned by

S1
0(t) = cos

πt

2
(38)

S1
1(t) = sin

π2

2
(39)

Computer-Aided Design & Applications, 22(3), 2025, 458-475
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


464

and recursively

Y n
i (t) =

∫ t

0

Sn
i (s)ds (0 ≤ i ≤ n) (40)

Sn+1
0 (t) = 1− Y n

0 (t)

Y n
0 (1)

(41)

Sn+1
i (t) =

Y n
i−1(t)

Y n
i−1(1)

− Y n
i (t)

Y n
i (1)

(1 ≤ i ≤ n) (42)

Sn+1
n+1(t) =

Y n
n (t)
n
n(1)

(43)

for n ≥ 1. The quadratic basis functions are

S2
0(t) = 1− sin

πt

2
(44)

S2
1(t) = sin

πt

2
+ cos

πt

2
− 1 (45)

S2
2(t) = 1− cos

πt

2
(46)

The above basis functions are the same as the generalized trigonometric basis functions. Note that

S2
1(t)

2

S2
0(t)S

2
2(t)

= 2 (47)

Hence, from the shape uniqueness theorem for three control points, if the weight w of the second control point
of a quadratic rational Bézier curve is equal to 1/

√
2, the shapes of the quadratic generalized trigonometric

curve and the quadratic rational Bézier one are identical.
The cubic basis functions are

S3
0(t) =

π(1− t)− 2 cos
(
πt
2

)
π − 2

(48)

S3
1(t) =

−2πt+ 2(π − 2) sin
(
πt
2

)
− 4 cos

(
πt
2

)
+ 4

(π − 4)(π − 2)
(49)

S3
2(t) =

2
(
π(t− 1)− 2 sin

(
πt
2

)
+ (π − 2) cos

(
πt
2

)
+ 2

)
(π − 4)(π − 2)

(50)

S3
3(t) =

πt− 2 sin
(
πt
2

)
π − 2

(51)

Figure 3 shows these cubic basis functions. They are di�erent from the cubic generalized trigonometric basis
functions and S3

1(t)
2/(S3

0(t)S
3
2(t)) is dependent on parameter t.

Since R3
i is naturally reparametrized by ϕ(t), given the same four control points, the shapes of the curves

whose basis functions are S3
i (t) and R3

i (t), respectively are identical. Figure 4 shows the identical two curves
de�ned with the same control points (0, 0), (1, 1), (2, 0), and (3, 1).

4 Extension of Generalized Trigonometric Curve [5]

We will apply the recursive procedure explained in �rst section to obtain an extension of the quadratic gen-
eralized trigonometric basis functions. Similar to Eqs.(2) and (3) we replace sinh with sin, we will de�ne S1

0
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Figure 3: Basis functions of the up-degreed quadratic generalized trigonometric basis functions.
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Figure 4: The identical two curves with w = 1/
√
2.

and S1
1 as

S1
0(t) =

sin πβ(1−t)
2

sin πβ
2

(52)

S1
1(t) =

sin πβ t
2

sin πβ
2

(53)

and recursively

Y n
i (t) =

∫ t

0

Sn
i (s)ds (0 ≤ i ≤ n) (54)

Sn+1
0 (t) = 1− Y n

0 (t)

Y n
0 (1)

(55)

Sn+1
i (t) =

Y n
i−1(t)

Y n
i−1(1)

− Y n
i (t)

Y n
i (1)

(1 ≤ i ≤ n) (56)

Sn+1
n+1(t) =

Y n
n (t)
n
n(1)

(57)
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for n ≥ 1. Note that to guarantee the monotonicity of S1
0(t) and S1

1(t), we restrict β as 0 < β ≤ 1. The
quadratic basis functions are

S2
0(t) =

1− cos πβ(1−t)
2

1− cos πβ
2

(58)

S2
1(t) =

cos πβ(1−t)
2 + cos πβ t

2 − cos πβ
2 − 1

1− cos πβ
2

(59)

S2
2(t) =

1− cos πβ t
2

1− cos πβ
2

(60)

To guarantee the positivity of S2
0(t), S

2
1(t) and S1

1(t), we restrict β as 0 < β ≤ 2. T The above basis functions
are the same as the generalized trigonometric basis functions. Note that

S2
1(t)

2

S2
0(t)S

2
2(t)

= 4 cos2
πβ

4
(61)

From the shape uniqueness theorem for the free-form curve de�ned by three control points [6], the shapes of
quadratic extended generalized trigonometric curves and rational Bézier curves are identical for the same given
control points if 4 cos2 πb

4 = 4w2
t , i.e. the equivalent weight wt = cos πβ

4 . Since 0 < β ≤ 2, 0 ≤ cos πb
4 < 1.

From the same theorem, the shapes of quadratic H-Bézier and extended trigonometric curves might be for
the same given control points if their equivalent weights wh and wt are the same. However their equivalent

weights won't be the same since wh =
√

1+coshα
2 > 1 and wt = cos πβ

4 < 1.

The cubic basis functions are

S3
0(t) =

πβ(1− t)− 2 sin
(

πβ(1−t)
2

)
βπ − 2 sin πβ

2

(62)

S3
1(t) =

πβt− 2 sin
(
1
2
πβ(t− 1)

)
− 2 sin

(
πβ
2

)
πβ − 2 sin

(
πβ
2

)
+

csc
(
πβ
2

) (
−πβt+ 2 sin

(
πβt
2

)
+ 2 sin

(
1
2
πβ(t− 1)

)
+ π(−β)t cos

(
πβ
2

)
+ 2 sin

(
πβ
2

))
πβ cot

(
πβ
4

)
− 4

(63)

S3
2(t) =

−πβt+ 2 sin
(
πβt
2

)
+ πb− 2 sin

(
πβ
2

)
πb− 2 sin

(
πβ
2

)
+

csc
(
πβ
4

)
sec

(
πβ
4

) (
πβ(t− 1)− 2 sin

(
πβt
2

)
− 2 sin

(
1
2
πβ(t− 1)

)
+ πβ(t− 1) cos

(
πβ
2

)
+ 2 sin

(
πβ
2

))
2πβ cot

(
πβ
4

)
− 8

(64)

S3
3(t) =

πβ t− 2 sin
(
πβ t
2

)
βπ − 2 sin πβ

2

(65)

Figure 5 shows these cubic basis functions with β = 1/2.
Since S3

i is naturally reparametrized by ϕ(t), given the same four control points, the shapes of the curves
whose basis functions are S3

i (t) and Z3
i (t), respectively are identical. Figure 6 shows the identical two curves

de�ned with the same control points (0, 0), (1, 1), (2, 0), and (3, 1).

5 Quartic Curves

Since integration preserves reparametrization, we expect the shapes of the quartic curves are identical if those
of their lower-degree curves are identical. Furthermore, if the shapes of the lower-degree curves are identical,
those of the curves of any higer degree are identical. In this section we will con�rm this fact for quartic curves.
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Figure 5: Basis functions of the up-degreed extended quadratic generalized trigonometric basis functions with
β = 1/2.
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Figure 6: The identical two curves with w = 1/
√
2.
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Figure 7: Quartic Rational Bézier Basis Functions with w =

√
1+cosh 1

2

2 .
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Figure 8: Quartic H-Bézier Basis Functions with α = 1/2.

Appendices describe the basis functions of rational Bézier, H-Bézier and extended generalized trigonome-

toric curves of degree 4. Figures 7 and 8 show quartic rational Bézier basis functions with w =

√
1+cosh 1

2

2 and

quartic H-Bézier basis functions with α = 1/2 and �gures 9 and 10 do quartic rational Bézier basis functions
with w = cos π

8 and quartic extended generalized trigonometric basis functions with =
	
1/2, respectively.

Figure 11 shows the quartic rational Bézier curves with

√
1+cosh 1

2

2 and the quartic H-Bézier curves a = 1/2
are identical and �gure 12 does the quartic rational Bézier curves with w = cos π

8 and the quartic extended
generalized trigonometric curves =

	
1/2 are identical.
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Figure 9: Quartic Rational Bézier Basis Functions with w = cos π
8 .
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Figure 10: Quartic Extended Generalized Trigonometric Basis Functions with b = 1/2.
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Figure 11: The identical two quartic curves with

√
1+cosh 1

2

2 for rational Bézier and a = 1/2 for H-Bézier
curves. The second curve is translated in the vertical direction by 0.1.
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Figure 12: The identical two quartic curves with w = cos π
8 for rational Bézier and a = 1/2 for extended

generalized trigonometric curves. The second curve is translated in the vertical direction by 0.1.

6 C-Bézier Curve

The C-Bézier curve was proposed by Zhang [7] and it is de�ned by 4 control points using the following basis
functions:

C3
0 (t) =

(α− t)− sin(α− t)

α− sinα
(66)

C3
1 (t) = M [

1− cos(α− t)

1− cosα
− C3

0 (t)] (67)

C3
2 (t) = M [

1− cos t

1− cosα
− C3

3 (t)] (68)

C3
3 (t) =

t− sin t

α− sinα
(69)

where

M =

{
1 if α = π

sinα(1−cosα)
2 sinα−α−α cosα if 0 ≤ α < π

(70)

where 0 < α ≤ π.
In this de�nition the range of parameter t is [0, α] and we adopt its second form by reparametrizing as

s = t/α as follows:

C3
0 (s) =

α(1− s)− sinα(1− s)

α− sinα
(71)

C3
1 (s) = M [

1− cosα(1− s)

1− cosα
− C3

0 (s)] (72)

C3
2 (s) = M [

1− cosαs

1− cosα
− C3

3 (s)] (73)

C3
3 (s) =

αt− sinαs

α− sinα
(74)

We would like to reverse the recursive procedure described in Section 1 and obtain the lower version of
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these blending functions. By di�erentiating Eqs.(5), (6), and (7), with respect to s with Eq.(4), we obatin

dCn+1
0 (s)

ds
= −Cn

0 (s)

Dn
0 (1)

(75)

dCn+1
i (s)

ds
=

Cn
i−1(s)

Dn
i−1(1)

− Zn
i (s)

Dn
i (1)

(1 ≤ i ≤ n) (76)

dCn+1
n+1 (s)

ds
=

Cn
i (s)

Dn
n(1)

(77)

where

Dn
i (s) =

∫ s

0

Cn
i (t)dt (0 ≤ i ≤ n) (78)

For the �rst the basis functions of the C-Bézier curve, we obtain from Eq.(75),

C2
0 (t) = −dC3

0 (s)

ds
D2

0(1) (79)

We assume when s = 0, C2
0 (0) = 1. Since

dC3
0 (s)

ds
=

α(cosα(1− s)− 1)

α− sinα
, (80)

then

dC3
0 (0)

ds
=

α(cosα− 1)

α− sinα
, (81)

Hence

D2
0(1) = − 1

dC3
0 (0)
ds

= − α− sinα

α(cosα− 1)
(82)

Therefore

C2
0 (t) =

α(cosα(1− s)− 1)

α− sinα

α− sinα

α(cosα− 1)
=

1− cosα(1− s)

1− cosα
(83)

We assume that C2
2 (s) = C2

0 (s) and C2
1 (s) = 1− C2

0 (s)− C2
0 (s) and

C2
1 (s) =

cos(αs) + cosα(1− s)− cosα− 1

1− cosα
(84)

C2
2 (s) =

1− cosαs

1− cosα
(85)

Note that

C2
1 (s)

2

C2
0 (s)C

2
2 (s)

= 2(1 + cosα) (86)

Therefore its equivalent weight wc =
√

1+cosα
2 . Since 0 < α ≤ π, 0 < wc ≤ 1.
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Similarly we obtain

C1
0 (s) =

sinα(1− s)

sinα
(87)

C1
1 (s) =

sinαs

sinα
(88)

When α = πβ/2, Eqs.(52) and (53) become the same.
Let's review the de�nition of the second form of the C-Bézier curve and we can rewrite them as

C3
1 (s) = M [C2

0 (s)− C3
0 (s)] (89)

C3
2 (s) = M [C2

2 (s)− C3
3 (s)] (90)

M is automatically determined by the partition of unity of the basis functions.
In conclusion, the basis functions of the C-Bézier curve consist of the mixture of the quadratic and cubic

basis functions of the extended generalized trigonometric functions.

7 CONCLUSIONS

In this paper we have applied the shape uniquness theorem to the H-Bézier curve [3], whose blending functions
are de�ned by recursively using integral forms. We have shown the equivalence of quadratic H-Bézier and
quadratic rational Bézier curves and that of quadratic extended generalized trigonometric ones. Also we have
shown that the reparametrization is kept by the integration and if the original curves are equivalent, the
recursive procedure guarantees the equivalence of the up-degreed curves. Furthermore we have derived new
basis functions of degrees 3 and 4 based on the construction of H-Bézier basis functions.
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A Quartic rational Bézier basis functions

The basis functions in Appendices A, B and C are �symmetrical�, that means

Z4
3 (t) = Z4

r1(1− t) (91)

Z4
4 (t) = Z4

r0(1− t) (92)

Hence, we write only Z4
0 (t), Z

4
1 (t) and Z4

2 (t).

Z4
r0(t) =

fr0(t)

gr0(t)
(93)

Z4
r1(t) =

fr1(t)

gr1(t)
(94)

Z4
r2(t) =

fr2(t)

gr2(t)
(95)

(96)

where

fr0(t) = 1 − (
fnr0(t)

fdr0(t)
− tan

−1
( √

w − 1
√

−w − 1

)
) (97)

gr0(t) = −
√

−w − 1
√

w − 1 − 2 tan
−1

( √
w − 1

√
−w − 1

)
(98)

fr1(t) =
1

2
√

w − 1
(

√
−w − 1(2t2(w − 1) + (−2tw + 2t − 1) log(2t(t(−w) + t + w − 1) + 1)) + hr1(t)

√
−w − 1

√
w − 1 + 2 tan−1(

√
w−1√

−w−1
)

−2
√

−w − 1(tan
−1

( √
w − 1

√
−w − 1

)(
(w − 1)(2t(t(−w) + t + w + 1) + (1 − 2t) log(2t(t(−w) + t + w − 1) + 1) + 2) − 2

√
−w − 1

√
w − 1 tan

−1
(

(2t − 1)
√

w − 1
√

−w − 1

))

+(w − 1)

(
2(t(w − 1) + 1) tan

−1
(

(2t − 1)
√

w − 1
√

−w − 1

)
− t

√
−w − 1

√
w − 1(log(2t(t(−w) + t + w − 1) + 1) − 2)

)
− 2

√
−w − 1

√
w − 1 tan

−1
( √

w − 1
√

−w − 1

)2

)

(99)

gr1t = −2w
2

+ 4(w + 1) tan
−1

( √
w − 1

√
−w − 1

)2

+ 2(w + 3)
√

−w − 1
√

w − 1 tan
−1

( √
w − 1

√
−w − 1

)
+ 2

 (100)

fr2(t) = −
(
(w − 1)

(
(w + 1) log(2t(t(−w) + t + w − 1) + 1) − 2

√
−w − 1

√
w − 1

(
(2(t − 1)t + 1) tan

−1
( √

w − 1
√

−w − 1

)
+ (1 − 2t) tan

−1
(

(2t − 1)
√

w − 1
√

−w − 1

)))
(101)

gr2(t) = 2

(
w

2 − tan
−1

( √
w − 1

√
−w − 1

)(
(w + 3)

√
−w − 1

√
w − 1 + 2(w + 1) tan

−1
( √

w − 1
√

−w − 1

))
− 1

))
(102)
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where

fnr0(t) = −2t2
√
−w − 1w + 2t2

√
−w − 1− 2t

√
−w − 1 log

(
−2t2(w − 1) + 2t(w − 1) + 1

)
+ 2tw

√
−w − 1 log

(
−2t2(w − 1) + 2t(w − 1) + 1

)
+

√
−w − 1 log

(
−2t2(w − 1) + 2t(w − 1) + 1

)
+ 4tw

√
w − 1 tan−1

( √
w − 1√
−w − 1

)
+ 4tw

√
w − 1 tan−1

(
(1− 2t)

√
w − 1√

−w − 1

)
− 2

√
w − 1 tan−1

(
(2t− 1)

√
w − 1√

−w − 1

)
(103)

fdr0(t) = 2
√
w − 1 (104)

hr1(t) = 2
√
w − 1(1− 2tw) tan−1(

√
w − 1√
−w − 1

) + 2
√
w − 1(2tw + 1) tan−1(

(2t− 1)
√
w − 1√

−w − 1
) (105)

B Quartic H-Bézier basis functions

Z4
h0(t) =

a2(t− 1)2 − 2 cosh(a− at) + 2

a2 − 2 cosh(a) + 2
(106)

Z4
h1(t) =

f4
h1

g4h1
(107)

Z4
h2(t) =

a(a(t− 1)t+ sinh(at) + sinh(a− at)− a(t− 1)t cosh(a)− sinh(a))(
a cosh

(
a
2

)
− 2 sinh

(
a
2

))2 (108)

where

f4
h1(t) = (sinh(a)− a)(at

(
a2(t− 1) + 2

)
+ 2 sinh(at) + 2 sinh(a− at)

+ a(a
(
sinh(a− at)− (t− 1)2 sinh(a)

)
− 2(t− 1) cosh(a)− 2 cosh(a− at))− 2 sinh(a)) (109)

g4h1(t) =
(
a2 − 2 cosh(a) + 2

) (
a cosh

(a
2

)
− 2 sinh

(a
2

))2

(110)

C Quartic extended generalized trigonometric basis functions

Z4
t0(t) =

π2β2(t− 1)2 + 8 cos
(
1
2
πβ(t− 1)

)
− 8

π2β2 + 8 cos
(
πβ
2

)
− 8

(111)

Z4
t1(t) =

π2
(
−β2

)
(t− 2)t− 8 cos

(
1
2
πβ(t− 1)

)
+ 8 cos

(
πβ
2

)
π2β2 + 8 cos

(
πβ
2

)
− 8

−
πβ(πβ − 2 sin(πβ

2
))(fzt1(t)− gzt1(t))

−πβ sin
(
πβ
2

)
− 4 cos

(
πβ
2

)
+ 4

(112)

Z4
t2(t) =

πβ tan
(
πβ
4

) (
πβ(t− 1)t sin

(
πβ
2

)
+ 2

(
cos

(
πβt
2

)
+ cos

(
1
2
πβ(t− 1)

)
− 1

)
− 2 cos

(
πβ
2

))(
πβ cos

(
πβ
4

)
− 4 sin

(
πβ
4

))2 (113)

(114)
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where

fzt1(t) =

1
2
πβt2 − 2t sin

(
πβ
2

)
+

4(cos( 1
2
πβ(t−1))−cos(πβ

2 ))
πβ

πβ − 2 sin
(
πβ
2

) (115)

gzt1(t) =
csc

(
πβ
4

)
sec

(
πβ
4

) (
π2β2t2

(
cos

(
πβ
2

)
+ 1

)
− 4πβt sin

(
πβ
2

)
+ 8

(
cos

(
πβt
2

)
+ cos

(
1
2
πβ(t− 1)

)
− cos

(
πβ
2

)
− 1

))
4πβ

(
πβ cot

(
πβ
4

)
− 4

)
(116)
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