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Abstract. In least squares �tting, the best �tting curve to a given set of points can be
obtained by minimizing the sum of the square errors of the points from the curve, hence
enabling a solution for the parameters and the production of an ellipse. In this paper, the
least squares �tting of a curve is computed by using parameterization of an ellipse. The
paper focuses on datasets that form a segment of ellipse rather than forming a full ellipse.
Di�erent z-values from parametric equations that ranges between 0 to 2π radians will give
di�erent curve �ttings to the given data. However, a simple algorithm that uses a numerical
optimization technique called simulated annealing is proposed to obtain the optimum z-values
that yield the best curve �tting for any given data in a segment of an ellipse. Subsequently,
road curvature estimation can be computed using this algorithm which can potentially be
utilized in real-life applications particularly within the engineering domain.
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1 INTRODUCTION

The �tting of geometric features such as circle and ellipse to given points is applicable in various �elds [21].
Ellipses for example, may represent many real-world situations such as orbits of the planets, satellites, and
comets. These conic sections are also relevant in science, astronomy, and variety of engineering applications [8].
In real-world practice, least squares �tting is used in various manufacturing industries and software applications
[23]. Indirectly, it is also signi�cant in pattern recognition [5] and Computer-Aided Design (CAD).

A circle, an ellipse, a parabola or a hyperbola are curves that are referred to as conic sections. These
four conic sections are derived from intersecting a cone with a plane in four distinct and non-trivial relative
positions [14]. Meanwhile, Aguirre-Ramos et al. [1] de�ne a conic section as the result of intersecting a
cutting plane with a double right circular cone, which produces a regular 2D curve in the form of a circle, a
parabola, an ellipse, or a hyperbola. By incorporating method such as changing the inclination angle of the
plane, the resulting curve can be obtained.
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Elliptical arcs are preferred over general conic arcs as ellipses are frequently encountered shapes found as a
component in various objects and have been proven to be bene�cial in �elds such as Computer-Aided Design
(CAD), computer graphics and computer vision [18]. For instance, we are interested to �t data that forms an
arc or a segment of an ellipse. Hence, in this paper we apply ellipse �tting rather than other curve �tting. In
addition, ellipse ranks among the most prevalent geometric shapes found in the real world [22].

For geometric features, there are two main classi�cations of least squares �tting problems, namely algebraic
and geometric �tting whereby they are di�erentiated by the de�nition of error distances [3]. For algebraic
�tting, it uses implicit form of the conic section [9]. Deviations of the implicit form from the expected value are
described as the error distances. Ahn et al. [3] describes the error distances for geometric �tting by computing
the orthogonal or shortest distances from the given points to the �tted curve of the geometric features. The
best curve �tting is obtained by trying to minimize the orthogonal distance to the curve [4].

In this paper, we are interested to �t parametric curves in the least squares sense. The best �tting curve
to a given set of points is obtained by minimizing the sum of the square errors of the points from the curve
[2]. This mathematical procedure is called least squares �tting. Gander et al. [11], Watson [23], and Pilu et
al. [17] apply least squares �tting based on data that forms entire circles and ellipses but here, we only discuss
a part of an ellipse or a circle that represents an arc [6] or a curve. While the parameter z for a full ellipse
ranges between 0 to 2π radians, the challenge with data that form partial ellipse is to determine where it lies
in the parameter z. Firstly, we will determine the parameter z that best �ts the data points presumed to be
part of an ellipse. We will then demonstrate how this parameter can be utilized to estimate road curvature
and compare it with the experimental approach employed by engineers.

A simple algorithm that uses a numerical optimization technique is introduced to obtain the best curve
�tting for any given set of data, speci�cally data that forms a segment of an ellipse. This technique is known as
simulated annealing. Structural optimization problems use simulated annealing extensively due to its inherent
simplicity and capacity to discover the global optimum even when dealing with numerous design variables [13].
There are extensive usage of simulated annealing in real-life applications in which the primary bene�t of it lies
in its simplicity [7]. It is known that simulated annealing demonstrates e�ciency, ease of implementation, and
theoretically reliable but there are also disadvantages such as a slow convergence rate [12].

The general parametric conic arcs introduced by [10] outline the process of creating conic blending arcs
by utilizing a uni�ed rational parametric representation that merges the distinct cases of blending parallel and
non-parallel edges based on given constraints such that it requires the arc to maintain a speci�ed distance
from a line, point, or a circle. Otherwise, intersect a circle or line at a predetermined angle. In this paper,
instead of interpolating points, we used least squares �tting to approximate points for any given data.

2 LEAST SQUARES FITTING ON A SEGMENT OF AN ELLIPSE

2.1 Fitting An Ellipse In Parametric Form

Generally, in order to �t an ellipse in parametric form, we follow Späth [19] and consider the equations:

x(z) = a+ p cos(z)

y(z) = b+ q sin(z)
(1)

where (a, b) is the center of the ellipse, p is the radius along the x-axis, q is the radius along the y-axis and
parameter z lies between 0 to 2π radians. The function to be minimized is:

S(a, b) =

n∑
i=0

(xi − a− p cos(zi))
2 + (yi − b− q sin(zi))

2, (2)

where zi is a parametrized value that lies between 0 to 2π radians and (xi, yi) are data points.

Computer-Aided Design & Applications, 22(3), 2025, 476-486
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


478

Späth [19] utilizes (1) to �t an ellipse based on data forming a complete elliptical shape. However, we
consider the case where collected data are from a segment and not the entire ellipse. The issue is dealt with
in [4]; however, we use a parameterization approach in minimization as described in the next section.

In this case, we aim to minimize (2) where zi is a parameterized value that lies between θ1 and θ2.
Parameter zi should cover a certain part of an ellipse. For instance, if the data is half of an ellipse that forms
the upper half of ellipse, zi should cover from 0 to π radians. If let's say the data forms the bottom half of the
ellipse, then zi can be from π to 2π radians. The range can be determined through observation; nonetheless,
we will select the optimal values for θ1 and θ2 by optimizing equation (2).

The values of a, b, p and q can be solved by di�erentiating (2) with respect to each parameter and equate
it to 0:

δS

δa
= 0 ,

δS

δb
= 0 ,

δS

δp
= 0 ,

δS

δq
= 0. (3)

The presence of parameter zi and the uncertainty regarding its interval render the problem di�cult to solve.
Therefore, we will determine the values of a, b, p, and q using simulated annealing, a method that will be
further elaborated in Section 2.2

2.2 Minimizing The Error Distances

To establish the minimization process using simulated annealing, we start by discussing about parameter z in
the ellipse function. The parameter zi can be computed by:

zi = θ1 + (i− 1)h, (4)

where i = 1, 2, ..., n and θ1 denotes the start of the interval while h is de�ned as the step size for parameter
zi and it is assigned arbitrarily.

For instance, if h = 0.1, then z = {θ1, θ1 + 0.1, θ1 + 0.2, θ1 + 0.3, ...}. By choosing any value from θ1
to θ2 from this range, where θ2 = θ1 + (n − 1)h, we can see the pattern of the error distance to be either
increasing or decreasing. To minimize (2), we employ a numerical approach to evaluate the value of S(a, b).
We aim to �nd the values of θ1 and h that will minimize the function.

The error distance can be obtained by using:

d =

n∑
i=0

|(Xi, Yi)− (xi, yi)|, (5)

where (Xi, Yi) are the points on the estimated curve and (xi, yi) are the original data points. Hence the
minimum value of (5) is the solution to the minimization problem.

We perform the minimization by using a numerical optimization technique called simulated annealing
which is available as a built-in function in Mathematica. The purpose is to �nd the optimum values of z, and
parameters a, b, p, q, θ1 and h in order to obtain the best curve �tting of an ellipse. The next part of the
algorithm is to input data i.e. number of observations, n, coordinates (x1, y1), (x2, y2),..., (xn, yn), v1, and
v2. Then, minimizing (2) using simulated annealing subject to constraint 0 ≤ θ1 ≤ 2π and v1 ≤ h ≤ v2,
whereas v1 and v2 are the minimum and maximum step sizes respectively. For our experiment, we let v1 and
v2 range from 0.1 to 0.5 where v1 < v2. As a result, the output obtained are the parameters a, b, p, and q
for the equation of ellipse, the minimum error distance, and the values of θ1 and h. For further reference, the
coding for this algorithm is included in Fig. 1.
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Figure 1: The Mathematica coding used for minimization.

3 DATA ANALYSIS

This section introduces least squares �tting of a curve based on the parameterization of an ellipse. Spath [19]
proposed that the �tting of an ellipse follows Equation (1). Instead of generalisation, we choose a set of data
that forms a segment of an ellipse to demonstrate the di�erence between our approach and the literature.
The data set is generated arbitrarily from an ellipse with the addition of some noise. Table 1 shows a sample
data for further analysis. The data are taken in x and y coordinates, as depicted in the original data set
shown in Fig. 2a. This section also discusses minimum value of the error distances which is the solution to
the minimization problem in (5). Both are pertinent as the solution to the minimization problem will give the
best curve �tting for the given data.

To obtain the best curve �tting for the given data from Table 1, we perform the proposed algorithm
according to the speci�cation outlined in Section 2.2. A critical step in �nding minimization using simulated
annealing is to de�ne an appropriate interval of h which are the values of v1 and v2. If one de�nes v1 and v2
as too small, for example v1 = 0 and v2 = 0.05, then the parameter z will not be able to cover the whole
data points. For this example, several intervals are used for h within 0.1 and 0.5. By de�ning v1 = 0.1 and v2
= 0.3, we obtained the value of θ1 = 1.21592 and h = 0.21939 with a minimum error distance of 0.037444.
The best curve �tting is shown in Fig. 2b which yields a = 3.56603, b = 1.76578, p = 5.72653, and q =
2.29323 forming a complete ellipse as shown in Fig. 2c that �ts the points on a segment nicely.

Hence, we observe that θ1 = 1.21592, which is approximately equal to 69.667 degrees, representing the
orientation between the origin and the initial point. Consequently, θ2 = 1.21592 + 8(0.21939) = 2.97104.
This is equivalent to 170.23 degrees, which is approximately the angle between the origin and the �nal point.

For the regularity of parameterization, our current setting is optimal based on observations and veri�cation
with real-life data. We note that the formulation de�ned in this approach is uniform because the data is self-
selected, resulting in behaviour that is close to uniform, thus yielding good results. In cases where the data
is non-uniform, we need to extend our approach, as the parameterization must be adjusted to accommodate
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Points Coordinates

1 (5.52445, 3.83790)

2 (4.36629, 4.12056)

3 (3.10566, 4.11217)

4 (1.85366, 3.99601)

5 (0.70330, 3.67780)

6 (-0.32466, 3.42801)

7 (-1.10022, 2.99983)

8 (-1.74638, 2.67906)

9 (-2.07959, 2.18775)

Table 1: The data in x and y coordinates.

non-uniform data.

4 THE APPLICATION OF ELLIPSE FITTING ON ROAD CURVATURE ESTIMATION

After the minimization procedure, during which we obtained the best-�tting curve for data forming a segment
of an ellipse, we now aim to apply the proposed algorithm to �t data from small segments of roads, particularly
those with curvy shapes. Few points will be taken along the desired segment of a road. Hence, �tting an
ellipse on the segment of a road will allow us to calculate the radius of curvature for each point precisely based
on its coordinate on the road.

For the radius of curvature, we compare our approach to Luo et al. [15]. In their paper, radius of curvature
was calculated at 9 di�erent test sites, chosen from highway ramps and �eld measurement was used to conduct
the validation tests. Besides, this paper uses roadway centerline to measure the radius of curvature and curve
length.

In the following subsection, we will determine the road coordinates by referencing the selected test sites
stated in [15]. Ellipses will be constructed, and the equation obtained will be used to estimate the radius of
curvature. The radius of curvature can be calculated by using (6):

R =
[(x′)2 + (y′)2]

3
2

|x′y”− y′x”|
(6)

where x(z) and y(z) are from Equation 1.

4.1 Test Site 3

Test Site 3 as shown in Fig. 3 is located in Interstate 35 (I-35) in Kansas, United States that begins at
39◦02'20.43" N, 94◦40'26.76" W and ends at 39◦02'29.26" N, 94◦40'22.67" W with the length of 324 m.
The radius of curvature obtained from �eld measurement is 104.15 m [7]. Coordinates of 9 points along
Test Site 3 from Google Maps were chosen and presented in Table 2 and the best curve from minimization
procedure is �tted as shown on the left side of Fig. 4. Meanwhile, the right side of Fig. 4 displayed the �tting
of a full ellipse.

We can observe that the centre of the ellipse segment is in between point 4 and point 5 and the radius of
curvature in between those points lies between 123.686 m and 94.6137 m. The radius of curvature obtained
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(a) The plotted data of 9 coordinates.

(b) The best curve �tting of the 9 coordinates.

(c) Fitting of a full ellipse of the 9 coordinates.

Figure 2: A segment of an ellipse using 9 coordinates.

from our proposed algorithm is nearly equal to the radius of curvature found by Luo et al. [15] which is 104.15
m. We do not provide an exact comparison as we are uncertain of which speci�c point is referenced in [15].
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Points Coordinates Radius of curvature (m)

1 (39.039408, -94.672916) 293.312

2 (39.039537, -94.672637) 213.213

3 (39.039712, -94.672455) 157.344

4 (39.039871, -94.672347) 123.686

5 (39.040104, -94.672268) 94.6137

6 (39.040312, -94.672229) 85.0239

7 (39.040496, -94.672251) 89.7698

8 (39.040704, -94.672315) 110.282

9 (39.040944, -94.672433) 153.020

Table 2: The coordinates and radius of curvature for 9 points taken along Test Site 3.

Figure 3: Location of Test Site 3 on Google Maps.

Figure 4: Left: Best curve �tting along Test Site 3; Right: Fitting of a full ellipse on Test Site 3.
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4.2 Test Site 5

Another example is demonstrated on Test Site 5 as shown in Fig. 5 which is located in Interstate 69 (I-
69) in Michigan, United States that begins at 42◦59'7.26" N, 83◦43'55.37" W and ends at 42◦59'8.03" N,
83◦44'3.70" W with the length of 558 m. The radius of curvature obtained from �eld measurement is 70.02
m [7]. Coordinates of 11 points along Test Site 5 from Google Maps were chosen and presented in Table 3
and the best curve from minimization procedure is �tted as shown on the left side of Fig. 6. Meanwhile, the
right side of Fig. 6 displayed the �tting of a full ellipse. Here, more points are taken along Test Site 5 to
further prove the signi�cance of the �ndings.

Points Coordinates Radius of curvature (m)

1 (42.986070, -83.735240) 646.703

2 (42.986047, -83.735622) 419.772

3 (42.985966, -83.735905) 266.901

4 (42.985827, -83.736163) 145.825

5 (42.985630, -83.736310) 76.2067

6 (42.985409, -83.736378) 42.8404

7 (42.985167, -83.736384) 50.4153

8 (42.984951, -83.736249) 101.878

9 (42.984772, -83.736009) 209.18

10 (42.984650, -83.735730) 357.332

11 (42.984610, -83.735478) 500.231

Table 3: The coordinates and radius of curvature for 11 points taken along Test Site 5.

Figure 5: Location of Test Site 5 on Google Maps.

We can observe that the centre of the ellipse segment is in between point 5 and point 6 and the radius of
curvature in between those points lies between 76.2067 m and 42.8404 m. The radius of curvature obtained
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Figure 6: Left: Best curve �tting along Test Site 5; Right: Fitting of a full ellipse on Test Site 5.

from our proposed algorithm is nearly equal to the radius of curvature found by Luo et al. [15] which is 70.02
m. Hence, the results demonstrate the signi�cance of our approach in obtaining the radius of curvature.

The method used in our paper shows a high similarity to the �eld measurement in which radius of curvature
obtained from the least squares �tting on a segment of an ellipse is found to be approximately equal to the
radius of curvature obtained by Luo et al. [15].

5 CONCLUSIONS

In this paper, least squares �tting is applied to obtain the best curve �tting to the given data that form a
segment of ellipse by minimizing the sum of square errors using simulated annealing. It can be observed that
the solution to the minimization problem approximates the data closely by the ellipse. In addition, we �t the
data of a small segment of a road to obtain its curvature at any speci�c point on the road. For perspective,
this can be extended in future research for travel time prediction in [20] or for the purpose of road safety in
[16]. The positive aspect of our approach lies in its cost e�ciency as we rely on the readily available GPS data.
Generally, if a set of a parametric data is assumed to behave in ellipse shape, we should be able to perform
least squares �tting using the proposed algorithm. A few segment of roads have been tested by using this
approach and the results demonstrated were proven reliable by the proposed algorithm in obtaining the radius
of curvature. In the future, it would be advantageous for us to incorporate the non-uniform parameterization
and consider the case where noise is added to the data. The appropriateness of applying uniform and non-
uniform parameterization in the presence of noise will be observed. This would strengthen our approach from
another point of view.
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