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Abstract. The road space within the historic district serves as a vital carrier for 
pedestrian activities. The distribution of pedestrian density and the patterns of 
route choice are typically influenced by environmental factors, particularly the 
features of the roads. However, the same distribution of pedestrian density may 
result from various route choices. Therefore, comprehensively considering both the 

distribution of pedestrian density and the underlying patterns of route choices, as 
well as their combined relationship with road environment features, becomes 
crucial for describing pedestrian walking preferences. This study proposes a 
pedestrian walking preference model: it maps the road network into a graph 
structure and employs a second-order Markov chain to describe pedestrian walking 
processes, thereby predicting pedestrian density distribution and route choices. In 

this process, an NGO-BP neural network is utilized to learn the route choice 
probabilities under the influence of road features. Additionally, a route choice 

feature characterization method based on stroke cluster is proposed to adapt to the 
irregularities and small-scale road network features commonly found in historic 
districts. Finally, using Quanzhou Ancient City as a case study, data obtained from 
both online networks and field surveys are used for simulation experiments. By 
comparing the simulation results with actual data, this method is demonstrated to 

assist planners in regulating pedestrian distribution and walking trajectories 
through the transformation of the built environment within the historic district. This 
enables a more refined approach to the preservation and revitalization of historic 
districts. 
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1 INTRODUCTION 

The primary objective of urban public environment renewal decision-making is to enhance the 
pedestrian experience in public spaces by altering urban environmental factors, thereby attracting 
crowds and providing positive impacts on various aspects of society, economy, and culture. Within 

historic district, the road space serves as the primary carrier for the transmission of historical 
culture and the occurrence of pedestrian activities in urban public spaces. Spontaneous 
congregation of people occurs due to their preferences for the environment. However, unplanned 
pedestrian flows may lead to an imbalanced distribution of density in the roads. Therefore, it is 
necessary to consider regulating pedestrian movement to promote the sustainable development of 
historic district. With the increasing importance of historic cultural heritage preservation in the 
concept of smart cities, and the demand for refined urban design [1], urban planners face 

challenges in identifying pedestrian walking preference patterns within historic district with 
complex environments. They require more comprehensive and accurate algorithms to assist in the 
renovation of historic district.  

In recent years, within the research scope of urban planning, street vitality has often been the 
focus of attention concerning the spatial distribution of the macro density or its specific route 
choices in relation to environmental factors. However, these two directions of inquiry are often 

studied independently, with fewer studies addressing the mechanisms behind the influence of 
pedestrian route choices on pedestrian density distribution and their combined relationship with 
environmental factors. This may obscure the true pedestrian intentions behind density distributions 
and lack practicality. Additionally, determining effective scales and corresponding evaluation 
method in complex, geographically heterogeneous historic district remains a challenge. 

Hence, we aim to devise a method to assist in the planning decisions for historic district 

revitalization from a more flexible multi-scale perspective. This study introduces a model based on 

second-order Markov chains to predict pedestrian density and trajectory distribution influenced by 
the environment within the historic district, where the measurement cost of transition probabilities 
is significant. To address this, we propose a method based on stroke cluster to characterize the 
route choice features combined with deep learning to derive pedestrian route choice preference 
patterns, which can predict transition probabilities based on environmental factors. This approach 
can aid planners in guiding pedestrian trajectories by altering environmental factors, thereby 
achieving density distribution regulation objectives.  

The paper consists of the following five sections, each covering the following content:  

1. Introduction: This section provides an overview of the research background and significance, 
research objectives, content, and the structure of the paper. 

2. Literature Review: This section reviews existing research in the field of historic districts, 
focusing on pedestrian distribution, route choice, and their relationships with the road environment 

features.  

3. Main Idea: This section develops a pedestrian walking dynamics model based on second-order 
Markov chains. It proposes a method of route choice feature characterization based on stroke 
clusters and utilizes NGO-BP neural networks to explore pedestrian route choice preference 
patterns. 

4. Experimental Validation and Analysis: This section encompasses research scope selection, 
experimental data acquisition, and processing, as well as validation and analysis of experimental 
results. 

5. Conclusion and Outlook: This section provides a retrospective review of the main research 
content and summarizes the research conclusions and innovations. 
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2 LITERATURE REVIEW 

Studying pedestrian activities has always been a focal point for the preservation and revitalization 
of historic districts. Excessive pedestrian traffic may exert pressure on historic heritage [2], while 
limited visitation may lead to the abandonment of historic heritage [3]. 

Influenced by environmental factors such as road network structure and built environment [4-
7], research on pedestrian activities encompasses macro-level pedestrian density distribution and 
micro-level route choice, among which route choice is the underlying cause of density distribution 
changes [8]. Therefore, these studies typically approach the topic from two perspectives:  

(a) Various environmental factors indicators influence the distribution of pedestrian density. These 
studies often employ graph theory, complex networks, and other theoretical frameworks to 
describe the metrics, geometry, and topological properties of urban road networks, such as 

accessibility, centrality, and connectivity [9, 10]. For instance, Zou et al. [11] utilized road 
network data and Baidu heat map data, employing spatial and statistical analysis methods to 
establish an associative model between the road building environment (SBE) and population 
density distribution in historical areas of Wuhan. They concluded that small businesses in historical 
areas play a pivotal role in fostering street vitality. Zhang et al. [12] evaluated the architectural 
and landscape features of roads, and then employed a discrete choice model to investigate the 

impact of environmental indicators in historical roads on the distribution intensity of pedestrian 
trajectory points. They found that road width and road aspect ratio significantly influence tourist 
distribution.  

(b) Research on the relationship between pedestrian route choice patterns and environmental 
factors. Ben-Akiva and Bierlaire discussed the application of various discrete choice models in 
route choice decision-making, assuming that based on the principle of maximum utility, decision-
makers probabilistically select travel plans from a set of route choices  [13]. Foltete et al. indicated 

that tall residential buildings along the route decrease the likelihood of the route being chosen [14]. 
A study in San Francisco suggests that excessively high vehicle speeds and flow on roads can 
reduce the probability of pedestrian route choice [15].  

The aforementioned two aspects of research are often treated as independent study objects. It 
is worth noting that different route choice patterns may lead to the same pedestrian density 
distribution, which can be mathematically explained: multiple solutions can be obtained by 
inversely solving the transition probability matrix from the stable distribution of a dynamical 

system [16]. This implies that focusing solely on density distribution may result in overlooking 
valuable information. Therefore, this paper attempts to comprehensively consider both the 
population density distribution and the underlying route choice patterns in the context of historic 
district, along with their collective relationship with environmental evaluation indicators.  

In fact, Markov chains can effectively describe pedestrian walking behavior, enabling the 
construction of more accurate pedestrian mobility models. Jiang and Jia utilized Markov chains to 

simulate human movement in large-scale road networks [17]. Jiang suggested that simulating 
pedestrian random walks on graph-structured networks can reflect the complex network properties 
of road networks, such as scale-free and small-world characteristics. It is believed that the 
accuracy of constructing walking models using higher-order Markov chains can significantly 
improve [18]. Additionally, the irregular and small-scale road networks of historic district may lead 
to inaccuracies in single-scale assessment indicators calculation methods.  

In summary, considering the memory-based nature of pedestrian activities, this paper 

proposes a multi-scale walking preference model based on second-order Markov chains to adapt to 
the context of historic district.  

http://www.cad-journal.net/
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3 MAIN IDEA 

3.1 Pedestrian Density and Trajectory Distribution Model Based on Second-Order Markov Chain 

3.1.1 Walking process and Markov chain 

One can map road segments in the road network as edges and map intersections as vertices 
through the original graph representation method [19] to establish a graph structure ( , )G V E , 

where V  is a set of n  vertices and E  is a set of edges. This facilitates the preservation of the 

topological morphology and connectivity of the road network to simulate a more realistic pedestrian 
walk.  

In the road network G , there are multiple possible trajectories for a pedestrian to traverse 

from vertex A  in a block to vertex B  further away, which can be described using chains in graph 

theory, as shown in Figure 1(a). A chain 1 1 2 2( , , , , , )kv e v e v  is a sequence formed by a group of 

alternating vertices and edges, where 1( , )i i ie v v .  

A Markov chain is a stochastic process model that describes a series of possible events. Its 
characteristic is that the probability of the system being in each state at the current moment 
depends on the states of events that have occurred within a set memory duration [20]. For 
example, in an m-order Markov chain, there is  

 
∣

∣
1 1 2 2 1 1

1 1 2 2

, , ,

, , ,  for 
n n n n n n

n n n n n n n m n m

P X x X x X x X x

P X x X x X x X x n m
 (1) 

 

 
 

Figure 1: (a) Several possible trajectories from vertex A  to vertex B , (b) The walking process 

described by second-order Markov chains.  

3.1.2 Dynamic modeling of walking  

To establish a dynamic model describing pedestrian walks in historic districts, it is necessary to 
consider that when a pedestrian crosses from one road segment to another through an 
intersection, they are simultaneously influenced by both the previous route and several potential 
next routes. This means that the choice of the next vertex is jointly determined by the previous 
vertex and the current vertex, reflecting the memory-based nature of pedestrian walking [21]. 

Therefore, the pedestrian walking process can be described using a second-order Markov chain, as 
shown in Figure 1(b). The second-order transition probability involves the states of three time 
points, which is denoted as  

 1 1( | , ), for , ,kij t t tP P X j X i X k i j k V  (2) 

where tX  represents the vertex index where a pedestrian is located at time t . The specific values 

of the second-order transition probabilities can be obtained from the pedestrian walking preference 
mode constructed later in the text. Specially, if there is no connection between two vertices, the 

corresponding transition probability is recorded as zero. The second-order distribution ( )t
ki  

Previous route Next route 
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represents the proportion of pedestrians who were at vertex k  at time 1t  and are now at vertex 

i  at time t , relative to the total number of pedestrians, thus there is  

 ( 1) ( )

1

, for , ,
n

t t
ij ki

k
kij i j k VP  (3) 

which describes the evolution of second-order distribution over time in a block with a constant 

total number of pedestrians.  

Given the initial density distribution on each vertex, i.e., the first-order distribution, solely 
relying on second-order transition probabilities is insufficient to determine the subsequent 
evolution of the system. This is because it necessitates employing a first-order transition 
probability acting on the first-order distribution to obtain the initial second-order distribution. In 
the scenario where second-order transition probabilities are known while first-order transition 

probabilities are unknown, considering that the same system should be able to evolve to the same 

steady-state distribution via first- and second-order transition probabilities ( )
i , one can utilize 

second-order transition probabilities to derive the uniquely corresponding first-order transition 
probabilities.  

Based on the relationship between the first-order distribution and the second-order distribution 
as  

 ( ) ( 1) ( ) ( 1)

1

, ,
n

t t t t
i ij ij i ij

j

P  (4) 

one can derive that the first-order transition probabilities under steady-state distribution satisfy:  

 

( )

( )

1

ij
ij n

ij
j

P  (5) 

Where ( )
i , in principle, can be obtained by repeatedly multiplying the second-order transition 

probability matrix infinitely. However, in practice, we cannot perform infinite calculations. 
Therefore, consider the following approach:  

By defining the element in the [( 1) ]l n j -th row and [( 1) ]k n i -th column of the second-

order transition probability matrix P  as  

 ,

, for

0, for 0
kij

lj ki

P l i
P

l
 (6) 

there is ,
1

1
n

lj ki
j

P , causing matrix P  to have spectral radius max( ) 1i . Diagonalize matrix P  in 

the manner of 1P F F , resulting in  

 1 1 1, for 1
( ) ( )e

o
, wh r

0, f
e

r 1

x
f f x

x
P F F F F  (7) 

Based on the above conclusion, one can take any column of P  to obtain ( )
i , and then from 

Equation (5) one can obtain the first-order transition probability.  

3.1.3 Discussion on open systems  

Furthermore, this model can also be used to simulate the dynamic evolution of open systems, 
corresponding to scenarios where the number of pedestrians in the road network can vary. We 
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introduce 0v  in the vertex set V  to represent the external environment, while ( )
0
t
i  and ( )

0
t
i  

respectively represent the proportion of pedestrians going from vertex i  to the outside and 

entering vertex i  from the outside to the total number at time t . It should be noted that ( )
0
t
i  is 

determined by the second-order distribution from the previous time step, whereas ( )
0
t
i , due to its 

unpredictability, can only be treated as a known condition. Therefore, in open systems, the vertex 
indices in Equation (2) should satisfy 0i .  

Thus, when the second-order transition probabilities are known, simulating the second-order 

distribution of pedestrian counts at each moment in a real open neighborhood only requires 

specifying the initial distribution (0)
ki  and the current ( )

0
t
i .  

3.2 Predicting Pedestrian Trajectory Selection Preference Modes Based on Environmental Factors 

In pedestrian movement simulated by Markov chains, it is assumed that a pedestrian can transition 
from one vertex to adjacent vertices within a unit time interval. When a pedestrian reaches the 

vertex iv  and needs to choose the next direction to move; this process is referred to as the route 

choice process, which can be described using second-order transition probabilities in Equation (2). 

Here, iv  represents the intermediary point at this moment, the edge 1ie  that the pedestrian has 

just passed through is considered the previous route, and the edge ie  that the pedestrian will take 

next is considered the next route. Influenced by the overall road environment factors, including 
both the previous route and all available next routes, the route choice process exhibits a pattern 
known as route choice preference, as illustrated in Figure 2(a).  
 

 
 
Figure 2: (a) Route Choice Preferences, (b) A stroke cluster is formed by two smoothly connected 
road segments, where smaller turning angles between segments indicate higher overall 
smoothness, (c) With a network scale of 50md  and a truncation length of 100mL , all strokes 

found from edge 2 3( , )v v  are included in the search results.  

 

3.2.1 Road feature assessment indicators  

Drawing upon previous research [11, 22, 23], this study employs commonly used environmental 
factors to evaluate pedestrian preferences for road features. In terms of the built environment, 
indicators for evaluating road features include road width, length, tortuosity, width-to-height ratio 
(W/H), plot ratio, building density, POIs (Points of Interest) diversity, as well as the density of 

POIs such as dining, shopping, daily necessities, public facilities, accommodation, and scenic spots. 

Regarding the inter-road relationships, evaluation indicators encompass road deflection degree and 
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the (co-)counter flow. Specifically, the (co)counter flow is represented using one-hot encoding. We 
refer to this collection of road feature assessment indicators as the feature set. The selection of 
indicators and their specific contents are as follows:  
 

road Feature 
Assessment 
Indicators 

Indicators for 
Road 

Meaning 
Calculation 

Formula 

Metrics 
Road Width Road average width W  

Road Length Road axis length cL  

Geometric Tortuosity 
The curvature of a road is expressed as the 
ratio of road length to straight-line distance. c c/L L  

Built 
Environment 

W/H 

The ratio of the average width of roads to the 
average height of buildings, where i  denotes 

the building index. 

/ iW h  

Building 
Density 

The ratio of the total building footprint area 
to the road buffer area. 

r/i
i

s S  

Plot Ratio 
The ratio of the total built-up area to the road 

buffer area. 
r/i

i

S S  

Density of POIs 
The ratio of the number of POIs to the length 

of road. c/N L  

Diversity of 
POIs 

The diversity of POI types, where ip  

represents the proportion of the POI i -th 

type. 

2log
i

i ip p  

Road 
Relationship 

Road Deflection 
Degree 

The deflection angle between road a  and b . ab  

(Co)Counter 

Flow 

The alignment of route choice with the 

direction of pedestrian flow. 
- 

 
Table 1: The road feature assessment indicators.  

 

3.2.2 Route choice feature characterization method based on stroke cluster  

The characterization of road features at appropriate scales is crucial for accurately reflecting road 
information. In small-scale road networks, features of short roads are often characterized using 
stroke-based methods and shared evaluation indicators with other strokes, while in large-scale 
networks, long roads are often divided into smaller segments to capture road detail features. To 

investigate pedestrian walking preferences, it is necessary to quantify the road features that 
influence pedestrian route choice. However, historic district road networks, unlike regular grid 
systems, consist of irregular and fragmented road segments, making it challenging to find 
appropriate scales for computing assessment indicators. Additionally, Previous methods have not 
adequately captured all the road branch features that must be taken into account in route choice.  

We propose a route choice feature characterization method based on stroke cluster to compute 
the feature set for each route choice. A stroke [24] is a naturally extended road formed by 

connecting multiple road segments smoothly, as illustrated in Figure 2(b), where smaller turning 
angles between segments indicate higher overall smoothness. The smoothness of a stroke is 
defined as the sum of turning angles between segments. In this study, we define the feature set of 
a stroke as the collection of average features of all segments it contains. In small-scale road 
networks, strokes exhibit superior feature representation capabilities compared to individual 
segments, while in large-scale networks, constraining the length of strokes can effectively describe 

road details. Thus, strokes can flexibly adapt to multi-scale requirements.  

http://www.cad-journal.net/
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As shown in Figure 2(c), when a cluster of strokes extends from an intermediary point, the 
edge from which these strokes originate is termed as the starting edge of the stroke cluster. 
Depending on the desired scale, one can flexibly set the truncation length L  of strokes. By 

employing a Depth-First Search (DFS) method, one can obtain all strokes extending outward from 

a central point with a length not exceeding L, which can be grouped into multiple clusters based on 
different starting edges. The comprehensive feature set of a stroke cluster, where each stroke's 
feature set is weighted by its straightness, is defined as the integrated feature set of the starting 
edge. During a route choice process, all available next edges are in competition. Hence, all edges 
connected to the intermediary point should be considered, not limited to just one pair of previous 
and next edges. Consequently, the comprehensive feature set that fully describes a route choice 
process is formed by merging the integrated feature sets of all edges connected to a central point. 

It is important to note that at a central point, multiple pairs of previous-next edges may undergo 

route choice processes, distinguished by the placement sequence of the integrated feature sets in 
the route choice feature set, which follows the order of the previous edge, next edge, and others.  

This approach avoids redundant computations of data at different scales, thereby enhancing 
efficiency. Moreover, the introduction of a stroke cluster not only reflects the feature of individual 
roads but also captures the overlay of attributes from underlying potential roads, thereby 
providing a more comprehensive perspective.  

3.2.3 Using NGO BP neural network to predict route choice preferences 

The NGO-BP neural network (Northern Goshawk Optimization BP Network), based on intelligent 
swarm optimization techniques, aims to mimic the cognitive processes and foraging tendencies 
exhibited by the Northern Goshawk. Renowned for its remarkable optimization accuracy and 

consistency, this algorithm has found widespread application in fitting nonlinear relationships [25-
27]. The selection of the fitness function involves using the mean square error between the output 

results and the expected values as the objective function:  

 
2

i iF y o  (8) 

where n  represents the number of output nodes in the neural network, iy denotes the expected 

output of the i -th node of the BP neural network, and io  represents the predicted output of the i -

th node.  

To uncover pedestrian route choice preference, the NGO-BP neural network can be employed 
to establish the mapping relationship between the route choice feature set determined by the road 
environment and its corresponding second-order transition probabilities. Subsequently, predictions 
of unknown route preferences can be made based on the new road environment.  

 

 
 

Figure 3: Flow chart of the technical method.  
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4 CASE STUDY 

The technical method of this study is shown in Figure 3.  

4.1 Research Scope 

The study focuses on the historic district of West Street and its surrounding areas in Quanzhou 
Ancient City, Fujian Province, China. The research will include samples from the streetscape of 
West Street, a historical and cultural pedestrian road, and adjacent lively roads, excluding main 
traffic arteries and residential roads within closed residential areas. The study will consider 
pedestrian groups primarily comprising tourists, including local residents.  

4.2 Data Acquisition and Processing 

Geospatial data during the National Day holiday and regular holidays in October 2023 and 
pedestrian walking behavior data were collected to obtain route choice features assessment 
indicators and probability distributions.  

 

4.2.1 Obtaining route choice features from geospatial data 

Geospatial data for the National Day holiday and regular holidays in October 2023 were collected 
from the basic geographic database of the Baidu API (Application Programming Interface). 

The building data includes height, building footprint area, shape vector, etc., Baidu heat map 
data, provided in vector format, consists of 32 heat map data sets for October 1st and 22nd, with 
hourly intervals and precision ranging from levels 17 to 19.  

POIs data, in text format, is categorized into six types based on route choice feature 
assessment indicators: dining, shopping, daily necessities, public facilities, accommodation, and 
scenic spots. During the National Day holiday, a large number of mobile stalls were set up in 
Xiaoxicheng and Suqingmen Square, so data of mobile stalls on Quanzhou West Street was 

updated in the commercial POIs data.  

Road data comprises road segment names, grades, lengths, types, etc. The average length of 
roads in the statistical research area is 121.89m, with a minimum length of 13.65m for natural 
road sections and a maximum length of 483.81m.  

The above basic geospatial data is imported into ArcGIS. Based on the average length of the 
road in the area, the road network data is processed into scales of 50m, 100m, 150m, and 200m. 

In other words, roads longer than the specified scale are divided into smaller segments, ensuring 
that the average length of the road network approaches the specified value. Subsequently, the 
road features of the road segments are computed for the road network on these four scales during 

the National Day holiday and regular holidays in October 2023.  

4.2.2 Obtaining probability distribution of route choice from pedestrian walking behavior data 

(a) Tourist Trajectory Data 

Tourist trajectory data was obtained from the Six Feet GPS Travel Community website 
(http://www.foooooot.com/) and converted to vector data in ArcGIS. A trajectory recognition 
algorithm was designed to calculate the probability distribution of each path selection, resulting in 
a collection of 620 path selection data.  
(b) Self-collected Pedestrian Walking Video Data  

The trajectory data of online tourists is more concentrated on the main roads of the West Street, 
and there is less data on the internal streets and alleys. Therefore, it is necessary to supplement 
the path selection data within the streets and alleys. From October 1st to 5th, 2023, high-

definition cameras were installed at 47 intersections within the study area, as shown in Figure 4, 
to capture pedestrian walking video data from 9:00 AM to 6:00 PM. The video data was cleaned, 
integrated, and processed for resolution. A total of 3256 video data were obtained.  
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The YOLOv5-DeepSORT [28, 29] multi-target tracking algorithm was used to identify 
pedestrian trajectories in the videos. Trajectory mining algorithms were employed to remove offset, 
short, or misidentified trajectories that may be vehicles or errors [30]. The trajectories were 
processed into probability distributions of route choice. Selected for 1-hour data from 10 

intersections randomly, and manual calculations were conducted to validate the accuracy of the 
algorithm in extracting probability distributions. The results showed that the accuracy of the data 
obtained using video mining technology was 90.135%.  

 

 
 

Figure 4: Research scope and camera position 

4.3 Experimental Results and Analysis 

4.3.1 Density distribution prediction results and analysis 

Multiple sets of road networks with different scales of road segments are configured, each paired 
with varying truncation lengths L. Utilizing a route choice feature characterization method based 
on stroke cluster, partial route choice features and their corresponding probabilities are extracted 
from the basic geographic spatial data and pedestrian walking data during the National Day 

holiday. These are then utilized to train an NGO-BP neural network to establish the mapping 
relationship between feature data and probability data, i.e., pedestrian route choice selection 
preferences, to predict other unknown route choice probabilities. The training ratio is set at 0.85.  

To mitigate the impact of random data, each dataset is iteratively computed 20 times. The 
mean squared error averaged across all datasets is 0.031. After multiple experiments, it was found 
that the dataset with a 50-scale graph structure and a truncation length of 200 meters yielded the 

best mean square error performance, with an average mean square error of 0.026. Therefore, this 
scale is selected to predict the probabilities of all route choice in the entire historic district, and 
then to conduct dynamic simulations to obtain the value of pedestrian density and trajectory 
distribution. The density values were imported into QGIS and the Inverse Distance Weighted (IDW) 
interpolation method was used to generate raster graphics. After vectorization, the average 
density values were linearly assigned to the road elements. The final result is shown in Figure 5.  

Comparing the predicted density distribution during the 2023 National Day period with the 

actual average density data, as shown in Figure 5(a) and Figure 5(b), demonstrates the model's 
ability to accurately predict areas of high pedestrian concentration in the road network due to 
favorable road features. It also effectively reflects the overall density distribution.  

The area centered around the Suqingmen Square and Xiaoxicheng is considered a high-density 
region, as depicted in Box 1 in Figure 5(b). Suqingmen Square, a historical heritage site along the 

West Street, features a spacious layout and numerous mobile stalls, contributing to the high foot 
traffic. Additionally, Xiaoxicheng, which also hosts numerous mobile stalls like Suqingmen, exhibits 

http://www.cad-journal.net/
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relatively lower heat intensity. This could be attributed to the narrowness of the alley leading to 
Xiaoxicheng, measuring only 2.5 meters wide, indicating that in similar business environments, 
road width is an important indicator affecting pedestrian flow.  

Additionally, In Figure 5(b), at the location marked by Box 2, the model's predicted relative 

population density is lower than the actual value. This discrepancy may be due to the presence of 
a large hospital with a high concentration of people in the area. As a result of sampling, the model 
tends to reflect the distribution of tourist-dominated groups.  

Comparing the predicted density distribution during the National Day holiday and regular 
holidays, as depicted in Figure 5(b) and Figure 5(e) respectively, during regular holidays, the heat 
intensity around Suqingmen Square and Xiaoxicheng notably decreases, as shown in Box 3, 
resulting in a more uniform heat distribution across the area, without the presence of high-density 

zones observed during the National Day holiday. This is primarily attributed to the closure of 

temporary mobile stalls that were set up during the National Day period, leading to the removal of 
their corresponding POIs from the dataset. Consequently, this area exhibits reduced attractiveness, 
as illustrated in Figure 5(f). Conversely, there is a relative increase in crowd density in other areas, 
indicating that highly attractive regions can quickly attract crowds, but once the high 
attractiveness diminishes, there is a higher probability of crowd dispersion to surrounding areas.  

When road networks feature well-designed characteristics and highly attractive areas, they 
may attract significant pedestrian flows that exceed the carrying capacity of historic districts. In 
such cases, timely adjustments to the road features within historic districts are necessary to 
ensure their sustainable development. Conversely, if certain historic heritage sites experience low 
visitation rates, interventions to enhance environmental features are warranted to attract 
pedestrian traffic.  

 

 
 

Figure 5: (a) Real average density distribution map during the National Day holiday, (b) Predicted 
density distribution map during the National Day holiday, (c) Distribution map of POIs in 
Xiaoxicheng and Suqingmen Square during the National Day holiday, (d) Real average density 
distribution map during regular holidays, (e) Predicted density distribution map during regular 

holidays, (f) Distribution map of POIs in Xiaoxicheng and Suqingmen Square during regular 
holidays.  
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In (a), (b), (d), and (e), the colors in the road network represent relative density, as indicated in 
the legend, with values ranging from 0 to 1. In (c) and (f), the red dots represent POI locations, 
with each dot having the same transparency. The apparent color intensification in certain areas is 
due to overlapping dots, and the transparency itself holds no actual significance.   

 

4.3.2 Trajectory prediction results and analysis 

On the other hand, the scope of trajectory prediction encompasses the diverse environmental 
settings, concentrated road networks, and ample samples of West Street. Upon specifying the 

previous route and trajectory length, a trajectory set can be obtained, where each trajectory is 
associated with a selection probability, as illustrated in Figure 6(a). For a given length of trajectory 
set, the predictive probabilities of individual trajectories and their actual probabilities are 

represented by vectors q  and p  respectively. The prediction accuracy can then be quantified 

using the Kullback-Leibler Divergence (KLD)   

 KL log i
i

ii

p
D p

q
 (9) 

which is shown in Figure 6(b) and (c). The trajectory prediction performs well within the initial 10 

steps. Moreover, the KLD approximately follows an exponential function of the trajectory length.  
 

 
 

Figure 6: (a) In a 50-meter-scale road network, with a truncation length of L=200 meters, and 
given the previous direction, the probability distribution of pedestrian trajectories for eight steps, 
(b) The relationship between (KLD) and the number of steps between predicted probability and 

actual probability under the setting conditions of Figure 6(a), (c) The KLD in Figure 6(b) is 

approximately an exponential function of the number of steps, where 0.0038C  and 1.22 . 

Please note that selecting a logarithmic vertical axis will amplify the fluctuations in the image 
within fewer steps.  

4.3.3 Discussion on the accuracy of density and trajectory prediction 

As the number of dynamic evolution steps increases, the accuracy of the model in predicting 
pedestrian density distribution gradually improves, while conversely, the accuracy of trajectory 
distribution prediction gradually decreases. The reason behind this phenomenon is that trajectory 
distributions contain more details, and under steady-state conditions, the same density distribution 
can correspond to multiple different trajectory distributions. A simple example is when two 

trajectories intersect at a certain point. If the predictions of their probabilities are respectively 
biased towards overestimation and underestimation, this will lead to a reduction in the prediction 
density error at the intersection point due to mutual cancellation. Below, this conclusion will be 
explained in more rigorous mathematical terms.  

Let the actual second-order transition probability be denoted as kijp , and the corresponding 

predicted value as kijp . Then, the true probability of the trajectory determined by vertices 1 2, , , si i i  

is  
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1 2 1 2

2

, , , ,
1

s j j j

s

i i i i i i
j

p p  (10) 

According to Equation (9), the KLD between the predicted probability and the actual probability of 
a t-step trajectory departing from a certain road is given by: 

 
1 2

1 2

1 2

1

,1
1

KL , 1
1All the step

trajectories ,
1

( ) log
j j j

j j j

j j j

t

i i it
j

i i i t
jt

i i i
j

p

D t p

p

 (11) 

The KL( )D t  approximately follows an exponential function of the step t , as shown in Figure 6(c), 

possibly originating from the relationship between the number of trajectory types and the step t  in 

the graph structure involved in this study. On the other hand, denoting the actual second-order 

transition probability matrix as P  and its corresponding prediction as P , considering that the 

actual density distribution approximates the steady state of dynamic evolution, the prediction error 

of the density distribution ( ) ~ P P , is a finite value, which can be obtained through 

Equation (7).  

5 CONCLUSIONS 

Considering both trajectory and density distributions can better reveal the microscopic essence of 
pedestrian movements within the historic district and obtain more comprehensive pedestrian 

walking information. This facilitates direct guidance on altering environmental factors to influence 

pedestrian trajectories, thereby regulating the density distributions of the historic district.  

We propose a multi-scale pedestrian preference model based on a second-order Markov chain 
to predict pedestrian density and trajectory distributions. By considering the influence of stroke 
clusters, we mitigate model distortion when the road network scale changes. Incorporating 
memory-based route preference patterns enables a more accurate simulation of pedestrian route 
choices influenced by the historic districts. Predicting and comparing density and trajectories 

during the National Day holiday in 2023 with regular holidays demonstrate the model's ability to 
capture variations in environmental factors within historic districts, reflected in density and 
trajectory distributions. This approach assists planners in regulating the pedestrian distribution and 
walking trajectory by revitalizing environments in historic districts, facilitating more nuanced 
preservation and revitalization efforts.  
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